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Abstract

Type I interferons (IFNα, IFNβ) are key regulators of innate and adaptive immunity, modulat-

ing the severity of both viral and bacterial infections. While type I IFN signaling leads to

improved outcomes in viral infections, its role in bacterial infections is more contextual and

depends on the specific pathogen and route of infection. Given the limited evidence on

whether type I IFN signaling affects enteric bacterial pathogens, we investigated the role of

this signaling pathway in Salmonella enterica serovar Typhimurium (S. typhimurium)–

induced colitis. Comparing mice deficient in IFNAR1- the common receptor for IFNα and

IFNβ- with wild-type mice, we found that type I IFN signaling leads to more rapid death,

more severe colonic inflammation, higher serum levels of pro-inflammatory cytokines, and

greater bacterial dissemination. Specific ablation of plasmacytoid dendritic cells (pDCs),

which are prominent producers of type I IFNs in antiviral responses, did not alter survival

after infection. This result established that pDCs do not play a major role in the pathogenesis

of S. typhimurium colitis. Flow cytometric analysis of macrophages and conventional den-

dritic cells (cDCs) during active colitis demonstrated an increase in CD11c- macrophages

and CD103+ cDCs in the colon of Ifnar1-/- animals. Interestingly, cells expressing the anti-

inflammatory cytokine receptor IL-10R are more abundant within these subsets in Ifnar1-/-

than in wild-type mice. Moreover, blockade of IL-10R in Ifnar1-/- mice increased their sus-

ceptibility to S. typhimurium colitis, suggesting that altered numbers of these immunoregula-

tory cells may underlie the difference in disease severity. This cross-talk between type I IFN

and IL-10R signaling pathways may represent a key host cellular mechanism to investigate

further in order to unravel the balance between pathogenic inflammation and homeostasis

of the colon. Taken together, our data clearly demonstrate that type I IFN signaling is patho-

genic in S. typhimurium colitis.
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Introduction

Pathogen-induced inflammation is a natural response that is beneficial to the host as an initial

mechanism of defense. However, excessive inflammation caused by an overwhelming immune

response can lead to severe damage to the host, including organ dysfunction, septic shock, and

death [1]. Thus, the balance of the inflammatory response must be tightly regulated to avoid

excessive damage to the host. Type I interferon (IFN) encompasses a class of cytokines that

play a key role in the balance between immunity and pathogenesis. Type I IFN’s causal role in

pathology has been demonstrated in the setting of various autoimmune diseases, such as lupus

and multiple sclerosis [2, 3]. Both of the major type I IFNs, α and β, signal through a common

receptor, IFNAR1. Studies in mice deficient in IFNAR1 have elucidated both the immunity-

enhancing and pathogenic roles of type I IFN.

The role of type I IFNs in modulating infection has been most extensively studied in the

context of viral infections, in which they promote immunity. While there is burgeoning evi-

dence that type I IFNs also modulate the severity of bacterial infections, this effect appears to

depend on context [4]. For example, type I IFNs are protective against infections with many

extracellular bacteria (e.g., Streptococcus species, Pseudomonas aeruginosa) but are detrimental

during infection with intracellular bacteria (e.g., Francisella tularensis, Brucella abortus) [5, 6].

Moreover, the route of infection is important: in mice, type I IFN signaling during Listeria
infections is pathogenic in parenteral infections but beneficial in enteric ones, the latter mim-

icking the natural route of infection for this pathogen in humans [7]. An important proof-of-

concept study recently demonstrated that type I IFN signaling is detrimental in Salmonella
infection; however, this study used non-physiologic routes of infection- i.e., intravenous and

intraperitoneal injection [8]. This study showed that during Salmonella enterica serovar Typhi-

murium (S. typhimurium) infection in vitro, IFN signaling induces necroptosis in infected

macrophages; therefore, Ifnar1-/- macrophages are resistant to S. typhimurium-induced cell

death. Murine infections with S. typhimurium can model either a typhoid-like illness with

prominent systemic dissemination (with no antibiotic pre-treatment) or primarily gastroen-

teritis combined with systemic dissemination (after pre-treatment with streptomycin) [9].

This facultative intracellular bacterium causes an estimated 90 million cases of gastroenteritis

per year [10], displaying an intricate interplay with the human immune system [11]. Using the

typhoid model of Salmonella infection, investigators have recently shown that IFNβ promotes

bacterial dissemination- an observation consistent with the idea that type I IFN signaling is

detrimental under these conditions [12]. Given the discordant results for systemic and enteric

infections with Listeria monocytogenes, we wanted to determine what role type I IFN signaling

plays in Salmonella-induced colitis. Moreover, we wanted to explore the relevant immune-cell

subsets involved in type I IFN signaling during Salmonella infection, about which only few

details are known.

In this study, we found that type I IFN signaling is pathogenic in S. typhimurium-induced

colitis, with wild-type (WT) mice dying faster than Ifnar1-/- mice. This greater susceptibility to

mortality in WT mice was associated with increased dissemination of bacteria, increased

serum levels of pro-inflammatory cytokines, and increased colonic inflammation. Numbers of

CD11c- colonic macrophages, which may be similar to CD11clo macrophages that reside in the

muscularis mucosa region and regulate gut motility [13], as well as numbers of CD103+ den-

dritic cells, which play an important role in inflammatory diseases and antigen carriage from

intestine to mesenteric lymph nodes (MLNs) [14], were higher in infected Ifnar1-/- mice than

in infected WT mice. Notably, these cell types expressing the immunoregulatory interleukin

10 receptor (IL-10R) were similarly increased in Ifnar1-/- mice. These results suggest that type I

IFN signaling leads to a loss of these cell types that is associated with worse overall outcomes.
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Indeed, blockade of IL-10R in Ifnar1-/- mice resulted in increased susceptibility to S. typhimur-
ium colitis, eliminating the difference in mortality compared to WT mice. Thus, type I IFN sig-

naling is pathogenic in Salmonella colitis, and its pathogenicity is likely to be a result of

decreased numbers of immunoregulatory macrophages and dendritic cells.

Material and methods

Mice

Ifnar1-/- mice (B6.129S2-Ifnar1tm1Agt/Mmjax, stock number 010830) and BDCA2-DTR mice

(C57BL/6-Tg(CLEC4C-HBEGF)956Cln/J, stock number 014176) on a C57BL/6 background

were purchased from Jackson Laboratory (Bar Harbor, ME). The genotype of C57BL/6-Tg

(CLEC4C-HBEGF)956Cln/J mice was confirmed by polymerase chain reaction with a previ-

ously described protocol [15]. All genetically deficient mice and their respective controls were

age-matched (6–8 weeks) and were co-housed under specific pathogen free (SPF) conditions.

All experiments on animals were approved by the Harvard Medical Area Standing Committee

on Animals (animal protocol number IS00000187).

S. typhimurium-induced infectious colitis

Streptomycin sulfate in PBS (20 mg/mouse, Sigma-Aldrich) was administered to mice via oral

gavage. At 24 hours after treatment, 102 to 107 CFU of S. typhimurium strain SL1344 (grown

overnight at 37˚C in LB Broth, Miller (Luria-Bertoni) with added streptomycin, washed and

diluted in PBS) was administered to each mouse via oral gavage. A dose of 104 CFU was selected

following dose response studies. For survival studies, body mass was measured daily and mice

were observed for symptoms of pain or distress as per our institutional animal protocol until

the end of the experiment. Mice were euthanized immediately and reported as dead once body

condition score of less than 2 out of 5 was observed or they appeared moribund. Approximately

less than 5% of animals were found dead beyond supervision and were considered to have died

on the day of observation for the purpose of data analysis. For flow cytometric analysis, serum

cytokine quantification, bacterial burden assessment, and histopathology studies, mice were

euthanized on days 1, 3 or 5 after infection.

Cell isolation from primary tissues

For single-cell suspensions of mesenteric lymph nodes (MLNs), the first five MLNs (starting

from the cecum) were treated with collagenase type IV (1 mg/ml; Sigma) for 30 minutes at

37˚C in an atmosphere of 5% CO2 and passed through a 70-μm mesh. Single cells were isolated

from colonic tissue as previously described [15]. In brief, the tissue was first cut transversely

into small pieces and then cut longitudinally to expose the lumen. Pieces were washed in 1

mM dithiothreitol (Sigma) in PBS for 10 minutes and then in PBS. Three washes of 8 minutes

each in 30 mM EDTA in PBS were then employed to strip off epithelial cells. After one more

wash in PBS, tissue was treated with RPMI medium containing 5% fetal bovine serum (FBS)

and collagenase type IV (1 mg/ml) for 1 hour at 37˚C in 5% CO2. Finally, tissue sections were

passed through mesh (70-μm) to yield single-cell suspensions.

Flow cytometric analysis

The following mouse-specific IgG monoclonal antibodies were purchased from BioLegend

(San Diego): biotin-conjugated anti-MHCII; Brilliant Violet 605-conjugated streptavidin;

Pacific Blue–conjugated anti-CD45; allophycocyanin-conjugated anti-F4/80; fluorescein iso-

thiocyanate-conjugated anti-B220; phycoerythrin-conjugated anti-IL-10R and anti-SH;
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PerCP-Cy5.5-conjugated anti-CD11b; PE-Cy7-conjugated anti-CD11c; and Brilliant Violet

510-conjugated anti-CD103. Fixable Viability Dye eFluor780 was purchased from eBioscience

(San Diego). Single-cell suspensions from primary tissues were stained with a suitable combi-

nation of fluorochrome-conjugated antibodies and Fixable Viability Dye, fixed in 2% parafor-

maldehyde in PBS, and examined with a BD LSR II flow cytometer (Becton, Dickinson). The

data were analyzed with FlowJo software. For counting of cells by flow cytometry, Flow-Count

Fluorospheres (Beckman Coulter, Brea, CA) were used per instructions provided by the

manufacturer.

Serum cytokine quantification

Mice were treated with streptomycin and infected with 104 CFU of S. typhimurium strain

SL1344 as described above. On day 5, mice were euthanized, and blood was collected into

1.1-ml Z-Gel Micro Tubes (Sarstedt). Blood was left at room temperature for 30 minutes

before the coagulated cells were spun out (10,000 g, 10 minutes), and serum was stored at

-80˚C. Levels of tumor necrosis factor α (TNFα) and interleukin-6 (IL-6) were quantified with

ELISA Duoset kits (R&D Systems, Minneapolis, MN) according to the manufacturer’s

protocol.

Bacterial burden in major organs

For determination of bacterial burden, mice were euthanized on day 1, 3, or 5 after infection

(104 CFU), and specific tissues (MLNs, liver, and spleen) were collected. Organs were weighed,

hand-mashed, and homogenized with a Stomacher 80-paddle action blender (Seward, Port

Saint Lucie, FL). Serial 10-fold dilutions were prepared with sterile PBS supplemented with 2%

FBS. A 10-μl volume of each dilution was plated onto LB Strep plates and incubated at 37˚C in

5% CO2 for 24 hours. Results are expressed as total CFU per tissue.

Histopathology

Cecum, and colon tissues were fixed and stored in Bouin’s solution (VWR Scientific, West

Chester, PA). Fixed tissues were embedded in paraffin, sectioned, mounted onto slides, and

stained with hematoxylin and eosin. Sections were evaluated in blinded fashion by a single

pathologist (Dr. R. T. Bronson, Harvard Medical School); samples were scored from 0 to 4 for

degree of observable inflammation.

Plasmacytoid dendritic cell (pDC) depletion in vivo

Diphtheria toxin (200 ng/dose) from Corynebacterium diphtheriae (Sigma, St. Louis, MO) was

administered to BDCA2-DTR and WT mice four times (days -3, -1, +1, and +3 relative to the

day of oral infection with SL1344). Mice were monitored for pDC depletion by measurement

of the loss of Siglec H+B220+CD11b-CD11c+ cells in the MLNs and spleen by flow cytometry.

IL-10R blockade in vivo

300 μg/mouse of rat anti-mouse IL-10R mAb (clone: 1B1.3A, rIgG1; BioXcell, West Lebanon,

NH) or rat IgG1 isotype control antibody (BioXcell, West Lebanon, NH) was administered

intraperitoneally 3 days prior to and on the day of infection with S. typhimurium. 3 days post

infection, an additional dose of 200μg/mouse of the IL-10R mAb or isotype control antibody

was administered intraperitoneally.
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Statistical analysis

Statistical analysis was performed using the standard appropriate tests. For survival studies the

log-rank test was used to compare differences between the survival of two groups. All other

experiments were statistically analyzed with the Mann-Whitney non-parametric test.

Results

IFNAR1 signaling contributes to mortality in S. typhimurium-induced colitis

To assess the effect of type I IFN signaling on susceptibility to S. typhimurium infection after

streptomycin treatment, we initially investigated the survival of WT and Ifnar1-/- animals after

infection with various doses of S. typhimurium. When we used inocula of S. typhimurium (102

and 104 CFU) that approximate the infectious dose in humans [16], WT mice died signifi-

cantly faster than Ifnar1-/- mice (Fig 1A and 1B, respectively). Interestingly, when we used a

much larger inoculum (107 CFU), there was no difference in survival between the groups (Fig

1C). This finding suggests that, with a higher infectious burden, another pathway overwhelms

the effects of IFNAR1 signaling. These results demonstrate that at lower, clinically relevant

doses of Salmonella, IFNAR1 signaling is pathogenic in Salmonella-induced colitis.

Colonic and systemic inflammation are augmented by IFNAR1 signaling

To assess the effects of IFNAR1 signaling on S. typhimurium-induced colonic inflammation [9,

17], we examined and scored the histopathological condition of the colon and cecum of WT

Fig 1. IFNAR1 signaling is pathogenic in Salmonella gastroenteritis. S. typhimurium SL1344 was administered orally to mice at various doses after

treatment with streptomycin. Doses: (A) 102 CFU, (B) 104 CFU, (C) 107 CFU. Statistical analysis was performed with a log-rank test. ns, not significant;

**p<0.01; ***p<0.001.

https://doi.org/10.1371/journal.pone.0188600.g001
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and Ifnar1-/- mice on days 3 and 5 after infection. The cecum was highly inflamed on both day

3 and day 5, with no difference between WT and Ifnar1-/- mice (Fig 2A and 2B, respectively).

In contrast, although no difference in colonic inflammation was observed on day 3 (Fig 2C),

on day 5 WT mice had significantly greater inflammation (as manifested by edema, immune

cell infiltrations, and loss of normal colonic architecture) than did Ifnar1-/- mice (Fig 2D and

2E).

To obtain a better understanding of the dynamics of bacterial dissemination during Salmo-
nella gastroenteritis, we examined bacterial burden in several major organs throughout the

course of infection. The bacterial burden in the MLNs, liver, and spleen was significantly

Fig 2. IFNAR1 signaling leads to increased colonic inflammation. Mice were infected by oral gavage with 104 CFU of S. typhimurium SL1344. (A, B)

Inflammation in the cecum on day 3 (A) and day 5 (B) after infection. (C, D) Inflammation in the colon on day 3 (C) and day 5 (D) after infection. (E)

Representative images of WT and Ifnar1-/- colon on day 5 after infection. Villus structure was completely lost and severe edema was observed in WT colon,

whereas only minor cellular infiltration was seen in Ifnar1-/- mice. Results are mean values ± SEM; statistical analysis was performed with the Mann-Whitney

non-parametric test.

https://doi.org/10.1371/journal.pone.0188600.g002
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higher in WT than in Ifnar1-/- animals on days 3 and 5 after infection (Fig 3B and 3C, respec-

tively). In contrast, bacterial dissemination to these organs was not different on day 1 after

infection; thus, these groups of mice had a similar disease burden at an early time point (Fig

3A). To gain insight into the systemic response to infection, we measured serum levels of the

Fig 3. IFNAR1 signaling leads to increased Salmonella dissemination. Mice were infected by oral gavage with 104 CFU of S. typhimurium

SL1344. (A-C) Salmonella burden in MLNs, liver, and spleen on day 1 (A), day 3 (B), and day 5 (C) after infection. (D) Serum levels of TNF-α and

IL-6 in infected animals on day 5 after infection. Results are mean values ± SEM; statistical analysis was performed with the Mann-Whitney test.

*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001.

https://doi.org/10.1371/journal.pone.0188600.g003
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pro-inflammatory cytokines TNFα and IL-6 on day 5 after infection. Consistent with the

greater degree of bacterial dissemination in WT mice, we found that WT mice had higher

serum levels of TNFα and IL-6 than did Ifnar1-/- animals (Fig 3D). Overall, these studies dem-

onstrate that WT mice have more severe disease than do Ifnar1-/- mice, as evidenced by greater

colonic inflammation, systemic dissemination of bacteria, and faster death.

To assess whether there were differences in bacterial colonization that were driving the dif-

ferential outcome of the disease, we measured bacterial CFU in the feces of WT and Ifnar1-/-

mice on day 1 after infection. As in distal organs, where we observed no significant difference

in bacterial numbers on day 1 (Fig 3C), we found that bacterial numbers were overall similar

in Ifnar1-/- and WT feces at this early time point (S1 Fig). These results suggest that better over-

all disease outcome could not be attributed to lower-level initial colonization in Ifnar1-/- mice.

pDCs do not play a significant role in pathogenesis during S.

typhimurium infection

Having demonstrated that type I IFN signaling is pathogenic in Salmonella infections, we

wanted to define which immune cells contribute to this phenotype. pDCs are an important

source of type I IFNs and a major initial source of IFNα: their early removal during viral infec-

tion delays antiviral immunity while in a murine model of lupus similar removal reduces the

disease [2, 18]. In addition, pDCs are involved in the immune response to bacterial pathogens,

including both extracellular and intracellular organisms [19–21]. Given their contribution to

other viral and bacterial infections and their involvement in other autoimmune and inflamma-

tory diseases, we examined whether pDCs play a role in S. typhimurium infection. By adminis-

tering diphtheria toxin (DT) to the well-defined BDCA2-DTR mice, in which pDCs are the

only cells that express the diphtheria toxin receptor (DTR), we were able to specifically deplete

pDCs. Depletion of pDCs (�95%) in uninfected mice using this system has previously been

demonstrated [15]. We confirmed depletion of pDCs in the spleen and MLN of Salmonella-

infected mice using flow cytometric analysis (S2 Fig). As a control, we first confirmed that

diphtheria toxin administration did not influence mortality in Salmonella-infected mice that

do not express DTR (Fig 4A). Similarly, depletion of pDCs had no effect on mortality during S.

typhimurium infection (Fig 4B). Thus, the absence of pDCs does not affect the outcome of Sal-
monella colitis.

Salmonella-infected Ifnar1-/- mice have more CD11c- macrophages and

CD103+ DCs than WT mice

Since pDCs are dispensable for disease severity, we explored the role of other immune-cell sub-

sets by enumerating innate immune cells in the colon and MLNs on day 3 after infection. We

focused our analysis on macrophages (CD45+MHCII+CD11b+F4/80+CD103-) and conven-

tional DCs (cDCs; CD45+MHCII+CD11c+ F4/80-) (Fig 5A), which are major producers of

type I IFN [22–24]. Indeed, as indicated previously, macrophages at other sites have been dem-

onstrated to play a major role in Salmonella infection [25]. Compared with naïve animals,

infected mice had significantly higher total colonic macrophage numbers, with no difference

between WT and Ifnar1-/- mice (Fig 5B, left panel). CD11c expression by colonic macrophages

helps distinguish cell subsets that are functionally and anatomically distinct; CD11c+ macro-

phages are present in the lamina propria and CD11c- may be like CD11clo macrophages in the

muscularis mucosa region or draining the tissue during inflammation [13]. While the CD11c+

macrophage population did not differ between infected WT and infected Ifnar1-/- mice,

CD11c- macrophages (which represent the majority of colonic macrophages) were more

numerous in the colon of Ifnar1-/- mice (Fig 5B, center and right panels).
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Similar to our findings with colonic macrophages, total numbers of colonic cDCs did not

differ between infected WT mice and infected Ifnar1-/- mice (Fig 5C). Intestinal cDCs can be

distinguished by CD103 expression; CD103+ cDCs have important roles in carrying antigens

to MLNs and regulating the inflammatory response [14]. Interestingly, there was a marked

increase in the colonic CD103+ cDC population in Ifnar1-/- mice over that in WT mice, while

the two groups did not differ in numbers of CD103- cDCs (Fig 5C).

Given that the MLN is an important draining lymph node in enteric Salmonella infection

and is likely to represent the gateway to systemic dissemination, we enumerated macrophages

and cDCs in this compartment. The results were quite different from those in the colon.

Fig 4. pDCs do not contribute to Salmonella pathogenesis. (A, B) Survival curves for WT mice (A) and

BDCA2-DTR mice (B) given diphtheria toxin (DT) or PBS and infected with 104 CFU of S. typhimurium SL1344.

Statistical analysis was performed with a log-rank test.

https://doi.org/10.1371/journal.pone.0188600.g004
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Although the number of macrophages (both CD11c+ and CD11c-) went up for both WT and

Ifnar1-/- mice in the setting of infection, there was no difference between the two groups (S3

Fig). Moreover, the number of cDCs (total and CD103+) in MLNs was higher in infected WT

animals than in infected Ifnar1-/- mice (S3 Fig).

Increase in tolerogenic IL-10R+ colonic antigen-presenting cells (APCs)

in the absence of IFNAR1 signaling

Colonic macrophages expressing the receptor of anti-inflammatory cytokine IL-10 (IL-10R)

have anti-inflammatory properties and protect against colitis [26, 27]. Given that numbers of

Fig 5. Specific subsets of colonic APCs are modulated by IFNAR1 signaling during Salmonella infection. Cells were isolated

from the colonic lamina propria of uninfected mice (CTRL) or infected mice on day 3 after oral infection with 104 CFU Salmonella

(SAL). (A) Gating strategy to identify macrophages and cDCs. (B) Numbers of total, CD11c+, and CD11c- colonic macrophages in

WT and Ifnar1-/- mice. (C) Numbers of total, CD103+, and CD103- colonic cDCs in WT and Ifnar1-/- mice. Results are mean

values ± SD. Statistical analysis was performed with the Mann-Whitney test. ns, not significant; *p<0.05; **p<0.005.

https://doi.org/10.1371/journal.pone.0188600.g005
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specific macrophage and dendritic cell subsets were increased in Ifnar1-/- mice, which have less

severe disease than WT animals, we investigated whether these cell types correspond to tolero-

genic subsets marked by IL-10R. Indeed, while the number of IL-10R+ CD11c+ macrophages

increased similarly in infected WT and Ifnar1-/- mice, Salmonella-infected Ifnar1-/- mice had

more IL-10R+ CD11c- macrophages than did infected WT mice (Fig 6A). Similarly, Salmo-
nella-infected Ifnar1-/- mice had more IL-10R+ CD103+ cDCs than infected WT mice because

of a decrease in this cell type in the setting of type I IFN signaling (Fig 6B).

Fig 6. IFNAR1 signaling is associated with a decrease in IL-10R+ colonic APCs in Salmonella-infected mice. (A-B) Cells were isolated from the colonic

lamina propria of uninfected mice (CTRL) or on day 3 post-infection from mice orally infected with 104 CFU Salmonella (SAL). (A) The number of IL-10R+

colonic macrophages, CD11c+ IL-10R+, and CD11c- IL-10R+ macrophages were enumerated in WT and Ifnar1-/- mice. (B) The number of total IL-10R+ cDCs,

CD103+ IL-10R+ cDCs, and CD103- IL-10R+ cDCs were enumerated in WT and Ifnar1-/- mice. Results represent the mean with SD. Statistical analysis was

performed using the Mann-Whitney test. *p<0.05, **p<0.005. (C) Survival curve of WT and Ifnar1-/- mice treated with anti-IL-10R mAb (anti-IL-10R) or

isotype control antibody (isotype) on days -3, 0, and +3 and infected with 104 CFU Salmonella. Statistical analysis was performed using a log-rank test. ns, not

significant; *p<0.05.

https://doi.org/10.1371/journal.pone.0188600.g006

Type I interferon signaling in Salmonella infection

PLOS ONE | https://doi.org/10.1371/journal.pone.0188600 November 30, 2017 11 / 16

https://doi.org/10.1371/journal.pone.0188600.g006
https://doi.org/10.1371/journal.pone.0188600


Blockade of IL-10R increases susceptibility of Ifnar1-/- mice to S.

typhimurium

Based on the observed increase in IL-10R expressing CD11c- macrophages and CD103+ cDCs

in S. typhimurium infected Ifnar1-/- mice compared to WT mice, we sought to investigate the

role of IL-10R in the reduced susceptibility of these mice to S. typhimurium colitis. Blockade of

IL-10R in Ifnar1-/- mice significantly reduced the time to death of these mice compared to iso-

type control treated Ifnar1-/- mice (Fig 6C). Notably, with blockade of IL-10R, the difference in

susceptibility of WT and Ifnar1-/- mice is no longer observed (Fig 6C). Taken together, these

data suggest that type I IFN signaling may lead to more severe disease in Salmonella infections

by downregulating these immunoregulatory, IL-10R expressing APC subsets.

Discussion

Infection with S. typhimurium elicits a strong inflammatory response that benefits the bacteria

by creating an environment that provides a growth advantage for Salmonella over members of

the microbiota [11]. Therefore, the ability of the host to actively limit an excessive inflamma-

tory response can be advantageous to the host even in the context of bacterial infection. Here,

we demonstrate that type I IFN signaling is pathogenic in the murine model of Salmonella gas-

troenteritis, as evidenced by shorter time to death, greater bacterial dissemination, higher

serum levels of pro-inflammatory cytokines, and greater colonic inflammation.

In light of the differences in the degree of colonic inflammation between WT and Ifnar1-/-

animals, we characterized prominent colonic APCs, focusing on cell types known to produce

type I IFN. We found that numbers of CD11c- macrophages but not CD11c+ macrophages dif-

fered in the two groups, with higher counts in Ifnar1-/- mice. Since these macrophage subsets

have different anatomic localizations and distinct functional characteristics [13], CD11c- mac-

rophages whose numbers increase in the absence of IFNAR1 signaling may possibly contribute

to the tolerogenic phenotype observed in Ifnar1-/- mice. Interestingly, Ifnar1-/- mice also had

an increased number of CD11c- macrophages expressing IL-10R, a recently described immu-

noregulatory subset of macrophage. IL-10R+ colonic macrophages are crucial in preventing

colitis [26, 27], and IL-10R mutations in humans are associated with the early onset of inflam-

matory bowel disease [28]. In addition, lack of IL10R mediated signaling has recently been

demonstrated to change macrophage programming to an activated inflammasome pathway

driven by mTORC1 [29]. Further investigation will be required to determine whether blocking

IL10R in Ifnar1-/- mice causes earlier death mediated by mTORC1/inflammasome activation.

Taken together, these findings suggest that IL-10R+ macrophages are important for mainte-

nance of colonic homeostasis and prevention of excessive intestinal inflammation.

Our results demonstrate that IFNAR1 signaling results in a decreased number of IL-10R+

macrophages, although the mechanism by which these cell numbers are modulated is unclear.

One possibility is that signaling by type I IFNs leads directly to a reduction of these immuno-

regulatory macrophages. Given recent data demonstrating that IL-10 levels after intraperito-

neal infection with Salmonella are diminished in the absence of IFNβ [12], an alternative,

mutually non-exclusive possibility is that IL-10 levels are decreased in Salmonella-infected

Ifnar1-/- mice with a compensatory increase in the expression of IL-10R. Zigmond et al. found

that IL-10R on macrophages- not IL-10 secreted by macrophages- was critical for the anti-

inflammatory properties of this macrophage subset [27], suggesting that it is the altered num-

ber of IL-10R macrophages that matters, irrespective of the underlying mechanism.

Although pDCs are involved in regulating immunity to viral and some bacterial infections,

we found that they do not contribute significantly to the pathogenesis of Salmonella infection.

Rather, we found that numbers of colonic CD103+ cDCs, which are known to be important
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for uptake and presentation of bacterial antigens during S. typhimurium infection [30, 31],

were lower in WT mice than in Ifnar1-/- mice. Moreover, CD103+ IL-10R+ cDC numbers were

lower in infected WT mice than in uninfected mice, with no change in Ifnar1-/- mice. These

results suggest that Salmonella-induced IFNAR1 signaling leads to the decrease in CD103+ IL-

10R+ cDCs. While IL-10R expression in macrophages is crucial for immune tolerance, the con-

nection between IL-10R expression and DC function has not yet been fully addressed. On the

basis of our demonstration of an association between a numerical decrease in these cells and

worse outcomes, it is intriguing to speculate that IL-10R+ cDCs are similarly involved in

immunoregulation.

In summary, we have demonstrated that type I interferon signaling is detrimental to the

host in a model of Salmonella-induced colitis. Furthermore, CD11c- IL-10R+ colonic macro-

phages are more abundant in Ifnar1-/- mice than in WT mice, and blockade of IL-10R elimi-

nated the mortality differences between WT and Ifnar1-/- mice. These results suggest that these

macrophages may not only play a role in maintaining intestinal homeostasis but may also have

anti-inflammatory functions during severe bacterial infection. Future investigation of how

these different signaling pathways interact with each other during invasion by a mucosal path-

ogen would lead to a better understanding of immune defense and might contribute to the

design of novel approaches to mucosal vaccination for infectious diseases of the GI tract.

Supporting information

S1 Fig. Initial colonization of WT and Ifnar1-/- mice by S. typhimurium preceding antibi-

otic treatment. Mice were infected by oral gavage with 104 CFU of S. typhimurium SL1344;

bacterial burden was assessed in the feces on day 1 after infection. Results are mean

values ± SEM. Statistical analysis was performed with the Mann-Whitney non-parametric test.
�p<0.05.

(TIF)

S2 Fig. Depletion of pDCs in Salmonella-infected BDCA2-DTR mice. BDCA2-DTR mice

were administered 200ng diphtheria toxin (+DT) or PBS (-DT) on days -3, -1, +1, and +3 with

respect to the day of Salmonella infection to deplete pDCs. On day 0, mice were infected with

107 CFU S. typhimurium SL1344 by oral gavage. pDC depletion was monitored in the MLN (A)

and spleen (B) using flow cytometry to measure the loss of SiglecH+B220+CD11b-CD11c+

cells. Results represent the mean of the total number of pDCs per sample ± SD. Statistical analy-

sis was performed using the Mann-Whitney non-parametric test. �p<0.05.

(TIF)

S3 Fig. Specific subsets of APCs in the MLNs are modulated by IFNAR1 signaling during

Salmonella infection. Cells were isolated from MLNs of uninfected mice (CTRL) and from

MLNs of infected mice on day 3 after infection with 104 CFU of Salmonella (SAL). (A) Num-

bers of total, CD11c+, and CD11c- macrophages in MLNs from WT and Ifnar1-/- mice. (B)

Numbers of total, CD103+, and CD103- cDCs in MLNs from WT and Ifnar1-/- mice. Results

are mean values ± SD. Statistical analysis was performed with the Mann-Whitney test.
�p<0.05; ��p<0.005.

(TIF)
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