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Abstract:  Neuregulin-1 (NRG1) signaling participates in the synaptic plasticity, maintenance or regulation of adult brain. 
Although ErbB4, a key NRG1 receptor, is expressed in multiple regions in the adult animal brain, little is known about its 
localization in Alzheimer’s disease (AD) brains. We previously reported that ErbB4 immunoreactivity showed regional 
difference in the hippocampus of age-matched control. In the present paper, immunohistochemical characterization of the 
distribution of ErbB4 receptor in the hippocampus relative to pathology staging were performed in age-matched control (Braak 
stage 0, n=6) and AD (Braak stage I/V, n=10). Here, we found that ErbB4 immunoreactivity was significantly increased in 
apoptotic hippocampal pyramidal neurons in the brains of AD patients, compared to those of age-matched control subjects. In 
AD brains, ErbB4 immunoreactivity was demonstrated to colocalize with the apoptotic signal Bax in apoptotic hippocampal 
pyramidal neurons. These results suggest that up-regulation of ErbB4 immunoreactivity in apoptotic neuron may involve in the 
progression of pathology of AD.
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demonstrated that the underlying neurodegeneration in AD 
is associated with morphological and biochemical features 
of apoptosis. Human studies have shown significant synaptic 
pathology in AD (Gonatas et al., 1967) and have identified 
synapse loss as a major correlate of cognitive impairment 
in the disease (Terry et al., 1991). Among the mechanisms 
of cell death, apoptosis has been proposed to explain the 
cell loss observed in many neurodegenerative disorders 
(Sathasivam et al., 2001). There are two major pathways of 
apoptosis, namely, the intrinsic pathway and the extrinsic 
pathway. In the intrinsic pathway, the interaction between the 
anti-apoptotic protein Bcl-2 and the pro-apoptotic protein 
Bax plays a key role in the activation of apoptotic signals 
involving mitochondria which secondary release cytochrome 
C. Subsequently, the initiator caspase-9 is activated and 
can initiate the activation of executioner caspase, mainly 
caspase-3. The activated caspase-3 then leads to cell 
destruction by proteolysis (Sathasivam et al., 2001).

Neuregulins (NRGs) are highly expressed in the nervous 
system, where ErbB4 (an NRG receptor) is expressed at high 

Introduction

Alzheimer’s disease (AD) is most common cause of 
de men tia in elderly individuals. Brain regions involved 
in learning, memory, and emotional behaviors (namely, 
the entorhinal cortex, hippocampus, basal forebrain, and 
amygdala) are reduced in size in AD patients as a result of the 
degeneration of synapses and ultimately, the death of neuron 
(Cutler et al., 2004). The molecular pathological hallmarks of 
AD are intracellular neurofibrillary tangles and extracellular 
amyloid (Aβ) plaques. Despite the influence of various genetic 
and environmental factors, as well as the aging process on 
the manifestation of AD, multiple lines of evidence from 
studies in experimental models and in AD brain tissue have 
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levels in neurons during brain development (Marchionni et 
al., 1993). Studies of mice with targeted mutations revealed an 
essential role of NRGs in cardiac and neural crest-derived cell 
population development (Meyer & Birchmeier, 1995). NRG1 
and its receptor ErbB tyrosine kinase are expressed not only 
in the developing nervous system, but also in the adult brain. 
Further, NRG1 function is largely mediated by a class of 
receptor tyrosine kinases including ErbB2, ErbB3, and ErbB4. 
Among the ErbB receptors, ErbB4 has been suggested to be 
the primary mediator of NRG1 function in the CNS. Recent 
biochemical studies indicated that ErbB4 is highly enriched 
in the postsynaptic density (PSD) of excitatory synapses 
(Garcia et al., 2000; Huang et al., 2000; Li et al., 2007a) and 
GABAergic presynaptic terminals in the cerebral cortex (Woo 
et al., 2007). Additionally, in the hippocampus, NRG1 mRNA 
is highly expressed in CA3 area, a region presynaptic to CA1 
which exhibits ErbB4 expression (Law et al., 2004; Woo et al., 
2007). 

Moreover, recent studies have indicated that NRG1 can 
be neuroprotective for cortical neurons (Li et al., 2003), 
motor neurons (Ricart et al., 2006), dopaminergic neurons 
(Zhang et al., 2004), cochlear sensory neurons (Stankovic et 
al., 2004) and PC12 cells (Goldshmit et al., 2001; Di Segni 
et al., 2005) it has also exhibited neuroprotection following 
ischemia (Shyu et al., 2004; Li et al., 2007b; Croslan et al., 
2008). These findings suggest that NRG1/ErbB4 signaling 
might be important in cognition, learning and memory 
formation through the modulation of synaptic plasticity 
and neuronal survival and is, therefore, a critical molecule 
in neurodegenerative disease. In this study we investigate 
whether ErbB4 immunoreactivity correlate to the apoptotic 
signing in AD. 

Materials and Methods

Reagents and antibodies
ErbB4 (sc-283, sc-8050) antibody was purchased from 

Santa Cruz Biotechnology Inc. (Santa Cruz, CA, USA). Bax 
(#2774) human specific antibody was purchased from Cell 
Signaling Technology Inc. (Beverly, MA, USA). Fluorescein 
avidin D (A-2001), Rhodamine avidin D (A-2002), avidin-
biotin blocking solution (SP-2001), Vectashield (H-1000), 
Vector NovaRED peroxidase substrate kit (SK-4800), 
Biotinylated anti-rabbit IgG (BA-1000) and Biotinylated 
anti-mouse IgG (BA-2001) were supplied by Vector 

Laboratories (Burlingame, CA, USA). Hoechst 33342 (bis-
Benzimide H33342 trihydrochloride, 14533) and DAB 
(3,3`-Diaminobenzidine tetrahydrochloride, D-5905) were 
supplied by Sigma Aldrich (St. Louis, MO, USA). TUNEL 
kit (ApoTaq plus peroxidase in Situ apoptosis detection kit, 
S7101) was purchased from Millipore Corporation (Billerica, 
MA, USA).

Human tissues preparation 
All human brains (6 age-matched control and 10 

Alzheimer brains) used for this study were generous gifts 
from Dr. Roger A. Brumback (School of Medicine, Creighton 
University, Omaha, NV, USA). They were obtained from 
autopsy within 24 postmortem hours and were diagnosed 
at the Alzheimer Center of the OUHSC (Oklahoma City, 
OK, USA). All experimental procedures were performed in 
accordance with ‘The Guidelines of the Ethics Committee 
at Eulji University’. Immediately after removal, all brains 
were fixed within 10% neutral buffered formaline, and then 
prepared according to routine histological procedures for 
paraffin sectioning. The sections, 10 μm in thickness, were 

Table 1. The brains studied

Case Groups
Age 

(years)
Sex

Brain

weight 

(grams)

Braak 

stage 

(Aβ)

Braak 

stage 

(NFT)

1 Age-matched control 61 M 1,391 0 0

2 Age-matched control 61 F 1,212 0 0

3 Age-matched control 67 M 1,210 0 0

4 Age-matched control 71 M 1,300 0 0

5 Age-matched control 73 M 1,323 0 0

6 Age-matched control 79 F 1,280 0 0

7 AD 67 M 1,148 A I

8 AD 68 M 1,280 B I

9 AD 69 M 1,440 B II

10 AD 72 M 1,390 B II

11 AD 76 M 1,350 A I

12 AD 76 M 1,340 B II

13 AD 79 F 1,200 B II

14 AD 79 F 1,220 B II

15 AD 83 F 1,264 B I

16 AD 87 F 1,220 A II
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deparaffinized and hydrated according to routine graded 
xylene-alcohol methods. Hematoxyline and eosin staining 
for general histopathology and modified silver staining by 
Campbell et al. (1987) for detecting senile plaques and NFTs 
were employed. The detailed data for each brain has been 
summarized in Table 1.

TUNEL staining
For the best quality of staining, the following TUNEL 

method is usually applied to formalin-fixed, paraffin 
embedded brain tissue. The TUNEL method was done as 
follows. After dewaxing and hydration, the sections were 
washed in phosphate buffered saline (PBS, pH 7.6) for 5 
minutes (min), and were treated with Proteinase K (20 μg/
ml) diluted in PBS at room temperature (RT) for 15 min. 
They were then washed in distilled water (DW) for 5 min. 
The TUNEL incubation solution was prepared in double 
distilled water (DDW) according to the manufacture’s pro-
tocol (Millipore). This solution was comprised of TdT buffer, 
cobalt chloride, TdT and biotin-16dUTP. The sections were 
incubated in TdT buffer for 1 hour (hr) at 37oC. After the 
incubation, brain sections were applied with stop solution 
for 10 min and washed twice in the PBS (each for 5 min). 
The sections were then incubated with anti-digoxigenin 
antibody peroxidase conjugate at RT for 30 min. Finally, brain 
sections were incubated in the DAB solution for 1 min. The 
fragmented DNAs were visualized as a brownish color inside 
nuclei. The sections were counter-stained with methyl green 
before being dehydrated and cleared through graded alcohols 
and xylenes, and cover-slipped. Images were captured with 
a Axiocam digital camera (MRC; Carl Zeiss Inc., GÖttingen, 
Germany) attached on the Olympus AX70 microscope.

Immunohistochemical staining
Immunohistochemical analysis of ErbB4 was performed 

using a biotin-avidin method. The antibody reaction was 
visualized using 3,3-diaminobenzidine tetrahydrochloride 
plus hydrogen peroxide. The double immunostaining for 
ErbB4 and Bax was carried out by repeating two cycles of 
the indirect immunostaining as reported previously (Ezaki 
2000). Appropriate combinations for color reactions were 
Ni-DAB (gray) for ErbB4 versus NovaRed (Red) for second 
markers. Images were captured with an Axiocam (MRC; 
Carl Zeiss Inc., GÖttingen, Germany). In order to retrieve 
antigenecity, dewaxed sections were boiled within 0.1 mol/
L citrate-buffered saline (pH 6.0) for 10 min. After cooling 

down for 30 min, the sections were rinsed in PBS. The 
endogenous peroxidase was quenched by 1% hydrogen 
peroxide in 10% methanol for 30 min. After two changes of 
PBS-T (0.1% Triton X-100 in 0.1 mol/L PBS, pH 7.6) washing 
for 5 min respectively, the sections were blocked for 1 hr in 
blocking solution (5% host serum ＋1% BSA in PBS-T) and 
incubated in primary antibody (anti-ErbB4, 1 : 200 or anti-
Bax, 1 : 200) at 4oC overnight. After PBS-T rinses, the sections 
were incubated in a biotinylated secondary antibody for 1 
hr at RT. After PBS rinsing and an avidin-biotin-peroxidase 
complex (Vectastain Elite ABC kit) treatment for 1 hr at 
RT, the sections were developed for 5 min in a 0.05% DAB 
solution. As a negative control for nonspecific staining, the 
sections were incubated with initial incubation media minus 
the primary antibody, and otherwise processed as described. 
Images were captured with a Axiocam digital camera attached 
on the Olympus AX70 microscope. 

Confocal immunofluorescence
Immunofluorescence was performed as previously 

described (Murata & Dalakas, 1999). In brief, the prestain-
ing process was the same as above. Sections were incubated 
overnight at 4oC in blocking solution containing rabbit 
anti-Bax (1 : 50) and after washing, with the appropriate 
secondary biotinylated antibody. After rinsing, the sections 
were incu bated with rhodamine avidin D. Normal horse 
serum was then applied for 1 hr to block nonspecific 
background staining. Then sections were incubated with 
avidin-biotin blocking solution (Vector Laboratories) and 
incubated overnight at 4oC in blocking solution containing 
rabbit anti-ErbB4 (1 : 50). Following this, they were washed 
and incubated with the appropriate secondary biotinylated 
antibody and after rinsing, the sections were incubated 
with FITC avidin D. The sections were then incubated with 
Hoechst 33342 for 30 min and mounted. The images were 
visualized using Bax with rhodamine (red) fluorescence, 
the ErbB4 with FITC (green) fluorescence, and Hoechst 
33342 (blue) with UV fluorescence on the same sections, 
using a LSM 510 meta system (Zeiss LSM 510 laser scanning 
microscope, Carl Zeiss, Germany).

Statistical analysis
Within each region, two images were captured at evenly 

spaced intervals to represent the entire anatomic area of 
interest. All histological preparations were analyzed by a 
blinded investigator with the aid of Image J software (NIH). 
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For multiple group comparisons, statistical differences were 
calculated using one-way ANOVA followed by Bonferroni’s 
test. For comparison of means from the same group of cells, 
a Student’s paired t-test was used. Values of P<0.05 were 
considered significant.

Results

Immunohistochemical diagnosis in AD hippocampus
All brains (control and AD) were assigned Braak scores 

using neuropathological staging by Braak and Braak (Braak 
& Braak, 1991). The two braak groups are referred to as age-
matched control (Braak stage 0, n=6) or AD (Braak stage I/
V, n=10), referring to the extent of NFT and senile plaque in 
the hippocampus. Postmortem examination confirmed the 
diagnosis of AD given the because the presence of abundant 
modified Campbell silver stained amyloid deposits and NFT; 
H&E and LFB-CV staining also demonstrated marked cell 
loss (Fig. 1). 

Apoptosis within the hippocampus of AD brains
The TUNEL staining was employed to detect apoptotic 

cells within the hippocampus of AD brains. As shown in 

Fig. 2, with AD progression, the number of TUNEL positive 
hippocampal pyramidal neuron was significantly increased 
compared to the age-matched control. No TUNEL-positive 
pyramidal neuron is observed in hippocampal sectors of age-
matched control. 

The level of expression of ErbB4 in the apoptotic 
neurons of AD brains

ErbB4 transcripts have been detected in the hippocampus 
of adult rat brain (Woo et al., 2007). To assess whether the 
level of expression of ErbB4 was altered in the hippocampus of 
AD human brain, we stained hippocampal sections of human 
brain. Neuronal staining was observed in hippocampal CA1 
in 10 patients with a pathologically confirmed diagnosis of 
AD as well as in 6 cognitively normal age-matched controls. 
To determine whether expression of ErbB4 was altered in the 
hippocampal pyramidal neurons of human AD brains, we 
examined ErbB4 expression using both immunostaining and 
immunofluorescence methods. As indicated in Figs. 3A, B, 4A 
and B, ErbB4 immunoreactivity was significantly increased in 
the AD brain as compared to age-matched controls. At high 
magnification, the signal was revealed in pyramidal neurons. 
Programmed cell death or apoptosis, the critical process for 
neurodegeneration, involves multiple signaling pathways 

Fig. 1. Detailed analysis of pathological changes in AD brains. Light micrographs of the CA1-2 transitional field of hippocampus. H&E, LFB-
CV and modified Campbell’s silver stain were sequentially applied to the semi-serial sections n=6 for age-matched control, n=10 for advanced AD. 
Scale bar = 100 μm.
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as well as the crucial modulators of cell survival, the Bcl-2 
family of proteins. To further determine whether ErbB4 was 
correlated with these proteins, we characterized the changes in 
the levels of Bax (pro-apoptotic) and the colocalize with Bax. 
ErbB4 immunoreactivity colocalized with Bax in apoptotic 
pyramidal neurons of hippocampal fields. Quantitatively, 
about 80% of apoptotic pyramidal neurons in the CA2 fields 
expressed ErbB4 (Figs. 3A and 4A). Taken together, these 
results indicate that NRG1/ErbB4 signaling might serve as a 
survival signal in progressing AD.

Discussion

AD is characterized by progressive impairment of cog-
nition and behavioural disturbance that strongly correlate 
with degeneration and death of neurons in the cerebral 
cortex and limbic brain areas, such as the hippocampus and 
the amygdala (Mattson 2004). Multiple lines of evidence 
demonstrate that the regulation of the Bcl-2 protein family 
is crucial for the maintenance of mitochondrial integrity and 
function thereby deciding a cell’s fate after severe stress. The 
Aβ1-42 peptide induces cell death in human neuroblastoma 

cells as well as caspase-3 activation, initially via a Bax/
Bcl-2 ratio increase (Clementi et al., 2006). Additionally, 
Bcl-2 and Bax induction has been shown to be related to 
hyperphosphorylation of tau and neuronal death induced 
by okadaic acid in the rat brain (Mattson & Meffert, 2006). 
Wide-spectrum gene expression studies have demonstrated 
similar depletion of the anti-apoptotic members of the Bcl-
2 gene family in AD hippocampus and superior temporal 
lobe neocortex, and a shift in expression towards the more 
pro-apoptotic Bcl-2 family species Bax, Bad, Bid and Bik 
(Lukiw & Bazan, 2006). It is noteworthy that in this study, 
ErbB4 immunoreactivity colocalized with Bax in apoptotic 
pyramidal neurons of hippocampal fields. Despite this, the 
detailed mechanism involved remains to be clarified. 

Recently, ErbB4 has been shown to play a key role in 
activity-dependent maturation and plasticity of excitatory 
synaptic function (Li et al., 2007a). Further, NRG1 has been 
demonstrated to activate ErbB4 and regulate GABAergic 
transmission in adult brains (Woo et al., 2007). Moreover, 
it was shown that NRG1 and ErbB4 immunoreactivity are 
associated with neuritic plaques in AD brains as well as in 
a transgenic model of AD (Chaudhury et al., 2003). These 
observations suggest that NRG1 may play a role in synaptic 

Fig. 2. Apoptosis within the hippo-
campus of AD brains. TUNEL staining 
in the CA1-2 transitional field of age-
matched control and AD. n=6 for age-
matched control and n=10 for AD. 
Scale bars = 100 μm.
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plasticity, maintenance, or regulation of synaptic structure, or 
some combination thereof in the adult brain. 

In the present study, ErbB4 immunoreactivity was found 
to be significantly increased in the AD human brains and 
colocalized with Bax in apoptotic pyramidal neurons of 
hippocampal regions. However, whether increased ErbB4 
immunoreactivity or ErbB4 colocalization with Bax in 
apoptotic pyramidal neurons were involved in survival or 
death pathways was not demonstrated. Regardless, our in 
vitro AD experimental results clearly showed that ErbB4 is 
necessary for NRG1 protection of neuronal cell death.  

Similar to APP, ErbB4 is a substrate for γ-secretase and 
as such, represents the first cleavage by TACE to release a 
soluble extracellular peptide that contains the NRG1 binding 

site (ecto-ErbB4). The remaining membrane-anchored 80 
kDa fragment (that is, ErbB4-CTF) is further cleaved in its 
transmembrane domain by presenilin-dependent γ-secretase 
to release the ErbB4 intracellular domain (ErbB4-ICD), which 
has been shown to translocate to the nucleus and to regulate 
transcription (Ni et al., 2001; Lee et al., 2002). In our data, we 
have also found that ErbB4 immunostaining was significantly 
increased in the nucleus, suggesting that the presenilin-
dependent cleavage of ErbB4 may be involved in progressing 
of AD pathology. More work is needed to determine whether 
ErbB4-ICD has a physiological or pathological function in 
neurons. The results of the current study suggest that NRG1/
ErbB4 signaling may be involved in AD neuropathology. 
Further investigation of the role of NRG1 in AD could be 

Fig. 3. Double immuno-labeling studies on ErbB4 and Bax in the 
hippocampal pyramidal neurons of the CA1-2 transitional field of AD 
brains. Double immunohistochemistry on Bax (NovaRED: Red) and 
ErbB4 (Nickel-DAB: grey). (B) Quantitative analysis of data in (A). 
Shown are means±SEM. *P<0.05. Scale bars, 100 μm and 10 μm in 
inset (enlarged areas) of (A).
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useful in understanding the pathogenesis of AD. 
Collectively, our results clearly show that ErbB4 immu-

no reactivity was significantly increased in the AD brain, 
compared to age-matched controls and that ErbB4 immuno-
reactivity colocalized with Bax in apoptotic pyramidal 
neurons of hippocampal fields, suggesting that NRG1/ErbB4 
signaling might serve as a survival signal in AD progression.
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