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Background: Variations in DNA copy number have an important contribution to the development of several
diseases, including autism, schizophrenia and cancer. Single-cell sequencing technology allows the dissection of
genomic heterogeneity at the single-cell level, thereby providing important evolutionary information about cancer
cells. In contrast to traditional bulk sequencing, single-cell sequencing requires the amplification of the whole
genome of a single cell to accumulate enough samples for sequencing. However, the amplification process inevitably
introduces amplification bias, resulting in an over-dispersing portion of the sequencing data. Recent study has
manifested that the over-dispersed portion of the single-cell sequencing data could be well modelled by negative

binomial distributions.

Results: We developed a read-depth based method, nbCNV to detect the copy number variants (CNVs). The nbCNV
method uses two constraints-sparsity and smoothness to fit the CNV patterns under the assumption that the read
signals are negatively binomially distributed. The problem of CNV detection was formulated as a quadratic
optimization problem, and was solved by an efficient numerical solution based on the classical alternating direction

minimization method.

Conclusions: Extensive experiments to compare nbCNV with existing benchmark models were conducted on both
simulated data and empirical single-cell sequencing data. The results of those experiments demonstrate that nbCNV
achieves superior performance and high robustness for the detection of CNVs in single-cell sequencing data.
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Background

Copy number variants (CNVs), which constitute a major
form of DNA structural variation, have been shown to be
closely related to several diseases, including autism [11],
schizophrenia [29] and cancer [5, 8, 15, 21]. Comparative
genomic hybridization and fluorescence in situ hybridiza-
tion have been used to detect CNVs of particular genes or
fragments [26] but are limited in terms of resolution. To
profile genome-wide copy number (CN) landscapes, these
techniques have consequently been replaced by next-
generation sequencing (NGS) technologies [9]. Because it
uses bulk DNA from tissue samples, however, traditional
sequencing provides an average signal from millions of
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cells and is thus of limited utility for the characterization
of tumor heterogeneity at the single-cell level.

An innovative technique, single-cell sequencing (SCS),
was developed to address key issues in cancer stud-
ies, including measurement of mutation rates, tracing of
cell lineages, resolution of intra-tumor heterogeneity and
elucidation of tumor evolution [21, 22]. SCS combines
flow sorting of single cells, whole-genome amplification
(WGA) and NGS to characterize the genome-wide CN
of single cells. Existing WGA techniques, such as degen-
erate oligonucleotide primed-polymerase chain reaction
[30], multiple displacement amplification [17] and mul-
tiple annealing looping-based amplification cycling [36],
inevitably introduce amplification bias to varying degrees
when the whole genome of a single cell is amplified
to microgram levels for NGS [13, 28]. Such technical
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noise due to amplification bias is over-dispersed and
is different from that of bulk sequencing, which does
not involve amplification. There are two main strategies
that use NGS data to detect CNVs: read depth (RD)-
based and read pair (RP)-based methods [20]. To the
best of our knowledge, RD-based methods are arguably
popular for CNV detection. Furthermore, CNV detec-
tion using SCS data requires only sparse sequence cov-
erage to economically accommodate numerous single
cells [4].

The analysis pipeline of RD-based methods consists of
data preparation (optional), data normalization (optional),
CNV region identification (core) and CN profile esti-
mation (optional) [19]. Briefly speaking, the reference
genome is divided into equally or variably sized, non-
overlapping bins for computing read counts (RCs) in
each bin along the whole genome. The RD in each
bin is generated by the corresponding RC divided by
the average RC for the whole genome. The RD sig-
nal is then normalized using strategies such as lowness
smoothing based on guanine-cytosine (GC) content. Dif-
ferent segmentation algorithms are used to detect the
CNV regions. After their detection, the CNV regions
can be translated into a CN profile using available
ploidy information or by other methods [3, 19]. Several
existing RD-based benchmark CNV detection methods,
which we later apply for comparison, are described as
follows.

DNAcopy [27] implements a classical circular binary
segmentation (CBS) [25] algorithm to segment RD data
and identifies abnormal genomic regions. The basic idea
of CBS is to translate a noisy-intensity RD signal into
regions of equal CNs followed by binary segmentation.
Copynumber [24] is a highly efficient algorithm that offers
a unified framework to segment RD data from single or
multiple samples. This approach combines least squares
principles with a suitable penalization scheme for a given
number of breakpoints to detect CN profiles. The above
two methods do not require data preparation and nor-
malization. Control-free copy number and allelic content
caller (Control-FREEC) [6] is a systematic CNV detec-
tion package consisting of data preparation, normaliza-
tion, CNV region identification, and profile estimation.
Control-FREEC segments the whole reference genome
into equally sized, non-overlapping bins. It then com-
putes the RD of the tested sample in each bin. If a
control sample is not supplied, Control-FREEC uses the
GC content in each bin to achieve data normalization.
For CNV detection, Control-FREEC uses least absolute
shrinkage and selection operator (LASSO) regression.
CNVnator [1] also divides the whole reference genome
(hgl8 or hgl9) into continuous, non-overlapping equal-
sized bins. Normalization is achieved by averaging the
RD signal over each bin with respect to GC content,
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and CNV region identification is based on mean-shift
tracking.

Most of the earlier analysis in sequencing analysis
assumed that the RDs are following Gaussian distribution
[2, 24, 31] or Poisson distribution [1, 10, 14]. However,
experimental analysis in the absolute numbers of mRNA
molecules by single-cell sequencing manifested [12] that
the counts could be accurately characterized by negative
binomial distribution. To this aim, we firstly generated an
illustrative example to characterize the statistical distri-
bution of real RDs by single-cell sequencing technology.
Real sequencing data from a normal cell (accession num-
ber SRR052047) [21] were preprocessed to obtain RC
data with 50000 variable bins. The frequency histogram
of the RC data is shown in Fig. 1(a). The distribution
was approximated by the Poisson, Gaussian and negative
binomial probability density functions through maximum
likelihood estimation (MLE). The estimated mean value
of the Poisson distribution was A = 62. For the negative
binomial distribution, the estimated mean value and dis-
persion coefficient are © = 61.94 and o = 9.544, respec-
tively. For Gaussian distribution, the estimated mean value
was 4 = 61.950 and the estimated standard deviation
20.703. This figure clearly demonstrated that the
frequency histogram of the real RC data could be nicely
characterized by a negative binomial distribution. For
further comparison, we also measured the overlap ratio
between the real RC and its approximations with different
bin counts, ranging from 10000 to 210000. The overlap
ratio was calculated as,

o =

A N B(x)

= 1
A(x) JB(x) @

fx)

where A denotes the frequency of empirical RC x and B is
the approximated probability density function. The result
was shown in Fig. 1(b). The ratio between the empir-
ical RC and the one approximated by NB distribution
was dramatically higher than by the Poisson distribu-
tion. When the bin count was larger than 50000, the
ratio is more than 0.9 by the NB distribution. In com-
parison, the ratio was low to 0.4 by Poisson distribution.
For Gaussian distribution, the ratio was rising when the
bin count ranged from 10000 to 30000 and the ratio
under 30000 was as higher as the one by NB distribution.
However, it began dropping continuously with the bin
count rising continuously. Therefore, the RC distribution
could be accurately characterized by the negative binomial
distribution.

To this end, a novel model called nbCNV was proposed
in this paper to detect CN'Vs using SCS data. The nbCNV
model uses negative binomial distributions to approxi-
mate loci along the whole genome. We incorporate two
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Fig. 1 Modeling of single-cell sequencing RC data and selection of a suitable bin count for experiments. a Frequency histogram of RC data (accession
number SRR052047), shown in light green. For comparison, the frequencies of simulated RCs generated by Poisson , Gaussian and negative
binomial distributions are indicated by brown, yellow or dark green lines, respectively. The RCs of the SCS data can be accurately characterized by a
negative binomial distribution. The estimated parameters by MLE for each P.D.F are shown in parenthesis. b Relationship between bin count
(horizontal axis) and overlap ratio (vertical axis). The empirical sequencing data could be better approximated by a negative binomial distribution.
Such nice approximation was insensitive to the bin count. Therefore, the proposed nbCNV is hoping to be applied in various bin count setting
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constraints of sparsity and smoothness to fit the CNV pat-
terns. The CNV detection problem is then formulated by
a quadratic optimization model. The proposed nbCNV
uses an efficient numerical scheme based on the classi-
cal alternating direction minimization method (ADMM)
to achieve efficiency. Since SCS data analysis requires
carefully data preprocessing, a recently published SCS
protocol [3] was modified to fit with the proposed nbCNV
detection method. We have built a systematical pipeline
for single-cell sequencing analysis. Considering the inher-
ent contradiction between the quality [7] and resolution
of CNVs detected with RD-based methods, nbCNV can
adaptively select the most suitable total number of bins
according to user preference. Once ploidy information is
provided, the CNV regions detected by nbCNV can be
translated into a CN profile.

The rest of this article is organized as follows. The
underling mathematical models of nbCNV and its numer-
ical solution are described in section “Methods” We
then evaluate and demonstrate the efficiency of nbCNV
compared with several benchmark methods using both
simulated and real SCS datasets in section “Results and
discussion” Finally, we conclude the paper in section
“Conclusions”

Methods

Data preprocessing

To achieve data preparation and normalization, we mod-
ified a previously reported protocol for genome-wide
CN analysis of single cells [3]. The steps are briefly

summarized here. We first downloaded a sequencing file
from the National Center for Biotechnology Information
(NCBI) short read archive (SRA) and used the bowtie2
alignment tool [16] to map the millions of short reads
to the GRCh37 human reference genome. Bins of vari-
able sizes were used to segment the whole genome. Bin
boundaries were decided by the length of reads used in
the CNV analysis. For example, simulated reads of length
k are generated along the whole genome one base pair
at a time when the length of reads is k bp. Thus, the
total number of simulated reads is L — k + 1, where L is
the length of a chromosome. In our experiments, nearly
three billion simulated reads were aligned back to the ref-
erence genome and all unique mapping read positions
were retained. To divide the whole genome into variable-
sized segments, each segment except the last one in each
chromosome was possessed to have the same number of
uniquely mappable positions. To achieve uniform bins,
parameters for bowtie2 in each run were set to be equal.
The RD signal was further normalized by locally-weighted
polynomial regression (using LOWESS smoother, a func-
tion in the R language) and linear interpolation based on
the GC content in each bin [3].

One of the important issues rising in above procedures
is to decide the size of bin count. To investigate its
dynamic relationship with the quality of the RC data, a
quantitative measurement known as the multiple abso-
lute pairwise difference (MAPD) threshold [7] was used
to quantify the data quality. The MAPD is defined as
median(\logZ xiy1 — log, x;|), where x; denotes the RC
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signal at i-th position. A larger MAPD value implies of
lower quality of the real RC data and less credibility of the
following CNV detection. The relationship between data
quality and bin count is shown in Fig. 2. As is evident from
the figure, the quality of the RC data drops quickly when
the bin count increases. It is due to the RC data tends to
be more dispersed (of lower quality) if being preprocessed
under a larger bin count.

In analyzing read depth data, a larger bin count is
admired to achieve higher resolution. Provided with
enough sequencing depth, high resolution analysis makes
it accurate in CNV detection. However, if the sequenc-
ing depth is low, a larger bin count will deteriorate the
data quality and make the data analysis less reliable. In
order to find the accurate value in balancing the high
resolution versus good quality as well as large overlap
ratio f(x), a simple maximization scheme is defined as
following:

max {1 —a)gx) — ak(x)}

where g(-) is a polynomial functions aiming to fitting the
MPAD function. k(-) is the overlap ratio defined in Eq. (1).
The parameter of « is a trade-off parameter, ranging from
0.20 to 0.30. In our experiments, @ was set to be 0.208 and
it is corresponding to a bin count of 50000. When the bin
count is 50000, the ratio between the empirical RC and

MAPD
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Fig. 2 Relationship between bin count (horizontal axis) and MAPD
values (vertical axis). With increasing bin count, the quality of the data
drops rapidly. A suitable bin count should thus be carefully selected
by balancing the high resolution versus good quality as well as large
overlap ratio. In our experiments, the maximum tolerable MAPD was
set at 0.45 (stippled area) and the bin count was 50000
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the one approximated by NB distribution is higher than
90% and the MAPD value is closer to the maximum tol-
erable value (0.45). Therefore, the bin count of 50000 was
selected to achieve a nice balance between the data quality
and resolution of detection.

Problem formulation

Mathematically, let y = (y1,%2,...,¥s) be the observed
RD signal in a bin, with # = (x1,x2,...,%,) representing
the corresponding reconstructed CN. We wish to deter-
mine the CN x that is most likely given by RD y. By Bayes'’s
Law:

P(ylx)P(x)
Py

estimation of the CN «x could be derived by maximizing
the posterior probability P(y|x)P(x). Assuming a nega-
tive binomial distribution at each genome position ¢ with
mean parameter ¥ and over-dispersed parameter «, we

have:

F(yt + Ol) Xt )}’t o )0{

ye!lM(a) \x+a x+a)’
where « is an over-dispersed parameter that must be
estimated empirically. For ease of model derivation, we
temporarily assume that its value is known a priori and
elaborate its estimation later.

If we assume that the values of y at position ¢ are
independent, then:

F(yt + Ol) Xt ye o o
¥ T () (xt + Ot) (xt + oz) '

Considering the characteristics of CNVs, we further
require that the prior distribution on CN (after standard-
ization by subtracting its mean value) satisfies assump-
tions related to two characteristics:

Smoothness: CNs at contiguous chromosome positions
are similar except for abrupt changes between different
segments;

Sparsity: CN variants are less common than invariants.

Mathematically, the above two characteristics can be
penalized by:

P(xly) =

P(yy) =

Pl =[]

t

P(x) = exp {— /(A1|Vx| + )\2|x|)dsz} )

where A; and X, are trade-off parameters for respec-
tively controlling the sparsity and smoothness of the CN
function. The integration operation takes value along the
genome on each bin .
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Fig. 3 Heatmap of Euclidean distance between the fitter signals and
the real copy number signals with respect to the two parameters
used by nbCNV. The horizontal axis stands for A, and the vertical axis
stands for A,. A smaller Euclidean distance implies a better detection
performance

Finally, we minimize — log(P(y|x)P(x)) to seek the max-
imum posterior probability on x:

min
X,0

+ (y+a)logx + a)T — ylogx™ + A1| Vx| +A2|x|} ,

{— logT'(y + &) + log I' (@) — a log(w) 2)

where xt = max{0,x}. However, minimization of this
problem to have optimal x and « is infeasible because of
the presence of the hyperbolic function I'. If one uses the
gradient descent method, the computation time needed
to approximate the optimal solution will be very large.
To alleviate this problem, we use a simple MLE-based
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method to estimate the value of «; thus, Eq. (2) can be
simplified as

mxin {Z {r + @) loglx: + )™ — y; logx}+
g ®3)

+ /()»1|Vxl + Azlxl)dQ},

where x™ = max{0, x}. Once we have obtained the legit-
imate CN signal, its variants can be easily derived using
simple thresholds.

Numerical solution
The minimization problem (3) is actually a quadratic opti-
mization constrained both by a total variational norm
and a /; norm. Such minimization problems are widely
encountered in various areas, including signal processing
and image recovery [23]. Because the optimization prob-
lem (3) is convex, multiple standard optimization methods
are available for its solution, such as majority minimiza-
tion [33, 34] and the Lasso approach [11, 35]. Because of
the high volume of the sequencing data, however, an effi-
cient numerical solution is desirable for practical usage.
This paper proposes to solve Eq. (3) within the frame-
work of the Alternating Direction Method of Multipliers
(ADMM) method [23, 35]. The most attractive charac-
teristic of ADMM is its ability to decompose a complex
problem into favorably separable subproblems that can
then be efficiently solved individually.

Let g1(x) = (v + o) log(x + o) — ylogx, g2 = 14(),
g3 = Ml - l1, @& = A2l - —c|l1, where 1 is the indicator
function for positive real numbers:

1o(x) = 0, x>0

T 400, otherwise.

Let G =[L;I; V;I] T withI being the identity matrix and
V the usual difference matrix. The minimization Eq. (3)
can then be accordingly rewritten as:
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Fig. 4 Frequency histograms of contaminated RCs for the SRR052047 in chromosome-21 with implanted CNV sequences. The distribution of
contaminated RCs can be better fitted by a negative binomial distribution than a Poisson distribution and is closer to that of empirical data
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Table 1 Quantitative evaluation of the four tested methods in 100 simulation datasets. The best performance was highlighted in bold

Measurements
Methods
Accuracy Precision Sensitivity Specificity
CNVnator 85.55+6.56% 88.66 £ 6.69 % 74.98 £ 15.96 % 9224 +539%
nbCNV 9183 +098% 9485+ 1.05% 8478 +217% 96.77 £+ 0.69 %
control-FREEC 87.59+2.10% 9443 +1.13% 7332+£6.15% 96.88 + 093 %
PoICNV 8941 £177% 92.76 £ 0.89% 80.61 +4.89% 9558 £0.72%

m
Lx) = chin Z {0 + o) log(x: + &)™ — y;logx;
t

+ 1)) + A1l Vet
+ Xalla, —cli1}

where fi(x) = 0,fo(x) = Z;Lzl gj(x). After introducing a
slack variable # = Gu, the augmented Lagrange function
for L(x) is:

L = min oy (®) + f3.() + %ncv'x —ull3, (4)

where pu is the Lagrange multiplier. The above minimiza-
tion problem can be now fitted into the ADMM frame-
work and subsequently decoupled into the following two
subproblems:

Subproblem 1: x; 1 = argmin f (x) + 51/Gx — uy
—dill3

Subproblem 2: u,; = argmin ,f5 () + 51| Gxrqy
—u — dill3

Updating: dy 1 < di — (Gxgy1 — tier1)-

All that remains are to solving the two subproblems, for
which we demonstrate that they can be elegantly solved
using standard methods after simple algebraic transfor-
mation in Additional file 1: S.2. For the clarity of the
numerical scheme, a short introduction of ADMM is also
provided in Additional file 1: S.1.

Parameter pruning

The dispersion parameter « is associated with the negative
binomial distributions of the different CN states. In our
experiments, the dispersion parameter was estimated by
MLE. In simulation experiments, the RDs from simulated
reads of the chromosome-21 sequence without implanted
CNVs were used for the MLE estimation of «. In empiri-
cal experiments, the RD signals from a normal single cell
under accession number SRR052047 were employed for
estimation of «. The parameter A; is used to penalize the
total variational term, and A is used to control the sparsity
of the recovered signal. Both of the two parameters were
estimated by trials on preliminary experiments. The copy
number duplications were implanted artificially in the RD

data of SRR052047 by adding one CN to any bins with the
duplications. The copy number deletions were generated
similarly by subtracting one to any bins overlapped the
deletions. It should be noted that SRR052047 was consid-
ered as a clean sample (CN=2) and thus its copy number
status was known. We run the simluation experiments
for different values of A1 and Ay. The Euclidean distance
between the fitter signals and the real copy number signals
was calculated for evaluating the CNV detection perfor-
mance. As shown in Fig. 3, one may observe that when the
A1 was set as 1 and Ay was set as 1 the Euclidean distance
achieved the minimum. For real data experiments, the two
parameters of A; and Ay were pruned around 1.

Results and discussion

Simulation experiments

To evaluate the performance of nbCNV, experiments on
a simulation dataset from a chromosome sequence with

I control-FREEC
[ ICNVnator

Il nbCNY

I poiCNV

Precision

Accuracy

Sensitivity Specificity

Fig. 5 The performance of implanted CNVs detection after four
methods of control-FREEC, CNVnator, nbCNV and poiCNV at
chromosome-21. Each bar in the plot represents the mean based on
100 simulations of the corresponding measurement as determined
by each method. In addition to the error bars, the nbCNV method can
clearly be seen to have achieved superior performance in terms of
accuracy, precision and sensitivity
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implanted CNVs were conducted. The chromosome 21
of GRCh37 was used as a template. Variants including
duplications and deletions were randomly implanted into
it. Our experiments considered only duplications (CN
= 3) and deletions (CN = 1) since these two types of
CNVs are typically the most challenging problem in dis-
tinguishing them from normal CNs. We first doubled
the chromosome-21 sequence (CN = 1) to generate the
diploid sequence (CN = 2). The length of chromosome
21 without unknown sequences is 35106692 bp and the
size of CNVs ranged from 300000 bp to 2000000 bp.
For each simulation, 10 CN'Vs were artificially implanted
into the chromosome, from which simulated single-end
sequencing reads were created by WgSim [18]. WgSim
is a simulation tool to create NGS reads, including sin-
gle nucleotide polymorphisms, insertion-deletions and
sequencing errors from a reference sequence. The sim-
ulated reads by WgSim were further contaminated by
noises following negative binomial distribution to mimic
the technical noises introduced by amplification and
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sequencing [12]. A total number of 160452 reads with
coverage of 0.22x were generated. Each single-end reads
is in 50-bp, similar to the Illumina sequencing platform.
As shown in Fig. 4, the frequency histogram of the sim-
ulated RCs was approximated by negative binomial and
Poisson distribution. One may note that the frequency
of the simulated reads was nicely characterized by the
negative binomial distribution.

To have quantitative comparison on CNV detection,
the sampled short reads were aligned back to the refer-
ence sequence by bowtie2 [16]. Its output sam files were
used as the input for control-FREEC [6], CNVnator [1],
nbCNV and our earlier work based on Poisson model
named by poiCNV) [32] for performance comparison. As
for control-FREEC, the chromosome-21 sequence with
implanted CNVs were served as the control sequence.
The bin size used in control-FREEC and CNVnator anal-
yses was 50000. The above simulation was run 100 times
independently. For quantitative comparison, four mea-
surements including accuracy, precision, sensitivity and
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oo
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Fig. 6 Multidimensional scaling of 100 single cells. Diploid (2N), hypodiploid (1.7N) and aneuploid (3N or 3.3N) fractions are shown in green, yellow
and red, respectively. Clustering results after nbCNV were better than those after CNVnator, when comparing the number of covered dots.
Compared with the other three methods, control-FREEC resulted in a smaller inter-cluster distance between diploid and hypodiploid fractions, and
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specificity were recorded and calculated. Their definitions
are as follows:

A TP + TN
ccuracy =
)T TP IN+FP+EN
iy P
Precision = TP + EP
L P
Sensitivity = TP EN
s IN
Specificity = TN £ P

where true positive (TP) is the total number of instances
when the CNV regions are correctly identified and true
negative (TN) is the number of instances when the nor-
mal regions (CN = 2) are detected properly. False positive
(FP) and false negative (FN) are defined similarly. The
experimental results are summarized in Table 1, in which
the best value was highlighted in bold. For visual com-
parison, a bar graph was also drawn in Fig. 5. Among
the 100 simulations, the nbCNV performed superior to
poiCNYV and its peers by achieving the highest measure-
ments of accuracy, precision and sensitivity. Moreover,
nbCNV also resulted in a smaller standard deviations
than by control-FREEC and CNVnaotr. Compared with
control-FREEC and CNVnaotr, the superior performance

Page 8 of 10

of nbCNV is attributed to its effective data preprocess-
ing and robustness in parameter pruning. Compared with
poiCNYV, the nice performance of nbCNYV is attributed to
its appropriate noise modelling.

Application to SCS data from 100 single cells

To further assess the performance of nbCNV in real
applications, a SCS dataset from 100 single cells was
downloaded from the NCBI SRA under accession num-
ber SRP002535 and tested. The original samples were
selected from high-grade (III) triple-negative (ER™, PR™,
HER27™) ductal carcinomas (T10) [21]. They were pre-
processed by flow sorting of single nuclei, whole genome
amplification, library construction, and finally sequenced
on an Illumina Genome Analyzer [3]. The 100 Illumina
runs generated a total of 1.1 x 10” reads, 5.8 x 10'° base
calls (33.3 Gb downloads in sra format) and were thus of
low coverage. The data has been used to study the evo-
lutionary dynamics and population structure of tumors
in order to have a comprehensive view of the evolution-
ary process occurring in individual tumor cells [21]. They
have been analyzed by fluorescence-activated cell sorting
and therefore their ploidy levels were known, includ-
ing 47 diploids or pseudodiploids (2N), 24 hypodiploids
(1.7N) and 29 aneuploids (3N or 3.3N). The diploids or

(c) nbCNV

detection methods based on the clustering results is given in Table 2

Fig. 7 Results of hierarchical clustering and heat map of copy number profiles of 100 single cells after a control-FREEC, b CNVnator, € nbCNV and d
poiCNV analysis. Different colors are used to distinguish the generated clusters. A comparative evaluation of the performance of the different

(d) poiCNV
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pseudodiploids part consists of cells which have a small
number of CNVs as a whole, while the hypodiploids
part shows narrow deletions and the aneuploids part
shows numerous copy number duplications [21]. The
ploidy information could serve as benchmark informa-
tion for evaluating the clustering performance in these
100 cells.

The proposed nbCNV as well as the other three meth-
ods of poiCNV, CNVnator and control-FREEC were
applied on the sequence data to have their CN pro-
files. For visual comparison, multidimensional scaling
(MDS) was performed by mapping each sample from the
high-dimensional space to a visually acceptable one (i.e.,
two dimensions). The diploid (2N), hypodiploid (1.7N)
and aneuploid (3N or 3.3N) fractions are highlighted in
Fig. 6. Five diploid cells were mistakenly classified into
the hypodiploid fraction by nbCNV and poiCNV. How-
ever, when we retrospectively examined the five diploid
cells, we found that they possess abundant CNVs com-
pared with other diploid cells and thus making it difficult
to be merged with others. The clustering result on the CN
profiles after nbCNV was better than the one by CNVna-
tor by covering most of the sample dots. The one after
control-FREEC method resulted in a smaller inter-cluster
distance between diploid and hypodiploid fractions. To
further visualize the evolutionary history of the 100 sin-
gle cells, hierarchical clustering was computed and shown
in Fig. 7. The misclassified cell number after each method
was summarized in Table 2. The proposed nbCNV and
poiCNV achieved superior performance by only misclas-
sifying five cells. In comparison, CN'Vnator misclassified
6 cells and control-FREEC misclassified 10 cells. It should
be noted that although ploidy information could serve
as benchmark information for evaluating the clustering
results. However, using clustering accuracy to evaluate the
performance of methods was coarse-grained. For exam-
ple, nbCNV and poiCNV were shown to perform equally
well in term of MDS and clustering accuracy. Since the
real copy number profiles of these sequence data were
unknown, we pictured the number of detected CNVs after
nbCNV and poiCNV by Wayne chart at two typical cells
(SRR053670, SRR053675). As shown in Fig. 8, nbCNV

Table 2 Quantitative evaluation of the four copy number variant
detection methods based on clustering of single-cell sequencing
data from 100 cells

Classification error count

Methods

cluster 1 cluster 2 cluster 3
CNVnator 0 6 0
nbCNV 0 5 0
control-FREEC 0 10 0
poiCNV 0 5 0
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(a) SRR053670

Fig. 8 Wayne comparison on detected CNVs by nbCNV and poiCNV
on two samples. The pink part measures the number of CNVs
detected by nbCNV while the purple represents poiCNV and the
overlay region represents both. It implies of a possibly better
coverage yet higher false positive by nbCNV

(b) SRR053675

can detect more CNVs than by poiCNV. It implies a pos-
sible good coverage yet higher false positive. We also
reported the detection results on other cells by nbCNV
and poiCNYV in Additional file 1: S.3.

Conclusions

We have presented a RD-based method to detect CNVs
from over-dispersed sequencing data such as SCS data.
Taking into account the over-dispersed noise in the SCS
data and the characteristics of CNV patterns, the method
uses negative binomial distributions to model the RD
signal and imposes sparsity and smoothness constraints
to transform CNV detection into a quadratic optimiza-
tion problem. Comparative experiments with other CNV
detection methods on simulated data and an empirical
SCS dataset demonstrated that our method is superior
in terms of accuracy, precision and sensitivity for CNV
detection. Compared with other methods, the robust-
ness in parameter pruning in our CNV detection method
contributes to a more steady performance.

Additional file

Additional file 1: Contains a formal description of the ADMM algorithm
and the CNV detection results on SCS ductal carcinomas (T10) data by
nbCNV and poiCNV. (PDF 166 kb)

Abbreviations

CNVs: Copy number variants; CN: Copy number; SCS: Single-cell sequencing;
WGA: Whole-genome amplification; RD: Read depth; GC: Guanine-cytosine;
CBS: Circular binary segmentation; ADMM: Alternating direction minimization
method; MAPD: Multiple absolute pairwise difference

Funding

This work was partially supported by the National Natural Science Foundation
of China (61372141), Special Program for Applied Research on Super
Computation of the NSFC-Guangdong Joint Fund (the second phase), Science
and Technology Planning Project of Guangdong Province, Open Funds of
State Key Laboratory of Oncology in South China, and the Fundamental
Research Fund for the Central Universities (201527025).


http://dx.doi.org/10.1186/s12859-016-1239-7

Zhang et al. BMC Bioinformatics (2016) 17:384

Availability of data and materials

The datasets supporting the conclusions of this article are available in the NCBI
Sequence Read Archive (SRA) repository [accession number SRP002535 and
http://www.ncbi.nlm.nih.gov/sra/SRX021401[accn] ]. The relevant code can be
downloaded from https://github.com/zcszcstl/nbCNV.

Authors’ contributions

HMC provided method, design, development and authorship. CSZ designed
the experiment and evaluated the performance and drafted the manuscript.
JYH provided advisement on experiments. YS provided the data preparation
and manuscript editing. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
The authors declare that ethics approval and consent to participate are not
applicable to this study.

Received: 3 March 2016 Accepted: 4 September 2016
Published online: 17 September 2016

References

1. Abyzov A, Urban AE, Snyder M, Gerstein M. Cnvnator: an approach to
discover, genotype, and characterize typical and atypical cnvs from family
and population genome sequencing. Genome Res. 2011;21(6):974-84.

2. Amarasinghe KC, LiJ, Halgamuge SK. Convex: copy number variation
estimation in exome sequencing data using hmm. BMC Bioinformatics.
2013;14(Suppl 2):52.

3. BaslanT, Kendall J, Rodgers L, Cox H, Riggs M, Stepansky A, Troge J,
Ravi K, Esposito D, Lakshmi B, Wigler M, Navin N, Hicks J. Genome-wide
copy number analysis of single cells. Nat Protoc. 2012;7(6):1024-41.

4. BaslanT, Kendall J, Ward B, Cox H, Leotta A, Rodgers L, Riggs M, D'ltalia
S, Sun G, Yong M, et al. Optimizing sparse sequencing of single cells for
highly multiplex copy number profiling. Genome Res. 2015;25(5):714-24.

5. Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko
AY, Sboner A, Esgueva R, Pflueger D, Sougnez C, et al. The genomic
complexity of primary human prostate cancer. Nature. 2011;470(7333):
214-20.

6. BoevaV, PopovaT, Bleakley K, Chiche P, Cappo J, Schleiermacher G,
Janoueix-Lerosey |, Delattre O, Barillot E. Control-freec: a tool for
assessing copy number and allelic content using next-generation
sequencing data. Bioinformatics. 2012;28(3):423-5.

7. Cai X, Evrony GD, Lehmann HS, Elhosary PC, Mehta BK, Poduri A,
Walsh CA. Single-cell, genome-wide sequencing identifies clonal somatic
copy-number variation in the human brain. Cell Rep. 2014;8(5):1280-9.

8. CarénH, Kryh H, Nethander M, Sjéberg R-M, Trager C, Nilsson S,
Abrahamsson J, Kogner P, Martinsson T. High-risk neuroblastoma tumors
with 11g-deletion display a poor prognostic, chromosome instability
phenotype with later onset. Proc Natl Acad Sci. 2010;107(9):4323-8.

9. Chiang DY, Getz G, Jaffe DB, O'Kelly MJ, Zhao X, Carter SL, Russ C,
Nusbaum C, Meyerson M, Lander ES. High-resolution mapping of
copy-number alterations with massively parallel sequencing. Nat
Methods. 2009;6(1):99-103.

10. DuanJ, Zhang J-G, Deng H-W, Wang Y-P. Cnv-tv: A robust method to
discover copy number variation from short sequencing reads. BMC
Bioinformatics. 2013;14(1):150.

11. Glessner JT, Wang K, Cai G, Korvatska O, Kim CE, Wood S, Zhang H,
Estes A, Brune CW, Bradfield JP, et al. Autism genome-wide copy
number variation reveals ubiquitin and neuronal genes. Nature.
2009;459(7246):569-73.

12. Grun D, Kester L, van Oudenaarden A. Validation of noise models for
single-cell transcriptomics. Nat Methods. 2014;11(6):637-40.

13. Handyside AH, Robinson MD, Simpson RJ, Omar MB, Shaw M-A,
Grudzinskas JG, Rutherford A. Isothermal whole genome amplification
from single and small numbers of cells: a new era for preimplantation
genetic diagnosis of inherited disease. Mol Hum Reproduction.
2004;10(10):767-72.

20.

21

22.
23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33

34

35.

36.

Page 10 of 10

Klambauer G, Schwarzbauer K, Mayr A, Clevert D, Mitterecker A,
Bodenhofer U, Hochreiter S. cn.mops: mixture of poissons for discovering
copy number variations in next-generation sequencing data with a low
false discovery rate. Nucleic Acids Res. 2012;40(9):e69.

Krepischi A, Achatz M, Santos E, Costa SS, Lisboa B, BrentaniH,

Santos TM, Goncalves A, Nébrega AF, Pearson PL, et al. Germline dna
copy number variation in familial and early-onset breast cancer. Breast
Cancer Res. 2012;14(1):R24.

Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2.
Nat Methods. 2012;9(4):357-59.

Lasken RS. Single-cell genomic sequencing using multiple displacement
amplification. Curr Opin Microbiol. 2007;10(5):510-6.

Li H. wgsim-read simulator for next generation sequencing. 2013. https.//
github.com/Ih3/wgsim.

Magi A, Tattini L, Pippucci T, Torricelli F, Benelli M. Read count approach
for dna copy number variants detection. Bioinformatics. 2012;28(4):470-8.
Medvedev P, Stanciu M, Brudno M. Computational methods for
discovering structural variation with next-generation sequencing. Nat
Methods. 2009;6(11):513-20.

Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, Cook K,
Stepansky A, Levy D, Esposito D, Muthuswanmy L, Kransnitz A,
McCombie W, Hicks J, Wigler M. Tumour evolution inferred by single-cell
sequencing. Nature. 2011;472(7341):90-4.

Navin NE. Cancer genomics: one cell at a time. Genome Biol. 2014;15:452.
Ng MK, Weiss P, Yuan X. Solving constrained total-variation image
restoration and reconstruction problems via alternating direction
methods. SIAM J Sci Comput. 2010;32(5):2710-36.

Nilsen G, Liestal K, Van Loo P, Vollan HKM, Eide MB, Rueda OM,

Chin S-F, Russell R, Baumbusch LO, Caldas C, et al. Copynumber:
Efficient algorithms for single-and multi-track copy number
segmentation. BMC Genomics. 2012;13(1):591.

Olshen AB, Venkatraman E, Lucito R, Wigler M. Circular binary
segmentation for the analysis of array-based dna copy number data.
Biostatistics. 2004;5(4):557-72.

Pinkel D, Albertson DG. Array comparative genomic hybridization and its
applications in cancer. Nat Genet. 2005;37:511-S17.

Seshan VE, Olshen A. Dnacopy: Dna copy number data analysis. 2011.
http://www.bioconductor.org/packages/.

Silander K, Saarela J. Whole genome amplification with phi29 dna
polymerase to enable genetic or genomic analysis of samples of low dna
yield. In: Genomics Protocols. Springer; 2008. p. 1-18.

Steinberg S, de Jong S, Mattheisen M, Costas J, Demontis D, Jamain S,
Pietildinen OP, Lin K, Papiol S, Huttenlocher J, et al. Common variant at
16p11. 2 conferring risk of psychosis. Mol Psychiatry. 2014;19(1):108-14.
Wells D, Sherlock JK, Delhanty JD, Handyside AH. Detailed chromosomal
and molecular genetic analysis of single cells by whole genome
amplification and comparative genomic hybridisation. Nucleic Acids Res.
1999,27(4):1214-8.

Xie C, Tammi MT. Cnv-seq, a new method to detect copy number
variation using high-throughput sequencing. BMC Bioinformatics.
2009;10(1):80.

Xu B, CaiH, Zhang C, Yang X, Han G. Copy number variants calling for
single cell sequencing data by multi-constrained optimization. Comput
Biol Chem. 2016.

Zhang Z, Lange K, Ophoff R, Sabatti C. Reconstructing dna copy number
by penalized estimation and imputation. Ann Appl Stat. 2010;4(4):1749.
Zhang Z, Lange K, Sabatti C. Reconstructing dna copy number by joint
segmentation of multiple sequences. BMC Bioinformatics. 2012;13(1):205.
Zhou X, Yang C, Wan X, Zhao H, Yu W. Multisample acgh data analysis
via total variation and spectral regularization. IEEE/ACM Trans Computat
Biol Bioinform. 2013;10(1):230-5.

Zong C, Lu'S, Chapman AR, Xie XS. Genome-wide detection of
single-nucleotide and copy-number variations of a single human cell.
Science. 2012,338(6114):1622-6.


http://www.ncbi.nlm.nih.gov/sra/SRX021401[accn]
https://github.com/zcszcstl/nbCNV
https://github.com/lh3/wgsim
https://github.com/lh3/wgsim
http://www.bioconductor.org/packages/

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Data preprocessing
	 Problem formulation
	Numerical solution
	Parameter pruning

	Results and discussion
	Simulation experiments
	Application to SCS data from 100 single cells

	Conclusions
	Additional file
	Additional file 1

	Abbreviations
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	References

