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A short treatise concerning 
a musical approach for the 
interpretation of gene expression 
data
Martin S. Staege

Recent technical developments allow the genome-wide and near-complete analysis of gene 
expression in a given sample, e.g. by usage of high-density DNA microarrays or next generation 
sequencing. The generated data structure is usually multi-dimensional and requires extensive 
processing not only for analysis but also for presentation of the results. Today, such data are usually 
presented graphically, e.g. in the form of heat maps. In the present paper, we propose an alternative 
form of analysis and presentation which is based on the transformation of gene expression data into 
sounds that are characterized by their frequency (pitch) and tone duration. Using DNA microarray 
data from a panel of neuroblastoma and Ewing sarcoma cell lines as well as from Hodgkin’s 
lymphoma cell lines and normal B cells, we demonstrate that this Gene Expression Music Algorithm 
(GEMusicA) can be used for discrimination between samples with different biology and for the 
characterization of differentially expressed genes.

Gene expression data can be used (i) for classification of biological samples, e.g. for classification of 
tumours, (ii) for the identification of target structures, e.g. for the identification of tumour-specific tran-
scripts, and (iii) for biological studies, e.g. for the identification of pathways that drive tumour cell pro-
liferation or cell death1. Today, the genome wide analysis of the complete transcriptome of individual 
samples is possible, e.g. by usage of DNA microarrays. A common part for all these applications is the 
identification of differentially expressed genes, i.e. the identification of gene specific probes or probe sets 
that show different signal intensities in different samples. Independent of the algorithms used for the 
identification of these probe sets, the result is a list of probes or probe sets that have some information 
content and that need further interpretation.

Frequently, microarray data are presented by graphical methods, e.g. in the form of two-dimensional 
heat-maps. Heat-maps transform the signal intensities into different colours whereby different colour 
schemes can be used. People with dyschromatopsia might have difficulties to interpret such heat-maps 
if red and green are used for presentation of high and low signal intensities. Similarly, black-and-white 
prints from originally coloured heat-maps can completely lose the validity. These examples demonstrate 
that the visual presentation of microarray data has some limits.

Here, we describe an alternative way for data presentation that is based on the transformation of sig-
nal intensities into sounds. At first, the developed algorithm was tested on a data set (Gene Expression 
Omnibus accession number GSE1824) consisting of microarray data from four cell lines that were ini-
tially established as neuroblastoma cell lines2. This data set was used because the gene expression profile 
of all samples is well characterized and the cell lines have a similar phenotype but significant differ-
ences in their gene expression profile. One of these cell lines (SK-N-MC) was identified as being not 
derived from neuroblastoma. In contrast, this cell line clearly belongs to the Ewing sarcoma family2. 
Neuroblastomas and Ewing sarcomas are both members of the family of so-called small round blue cell 
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tumours. These tumours have a similar histological appearance but require different treatment. At the 
molecular level, neuroblastoma cells and Ewing sarcoma cells show several specific alterations. For exam-
ple, Ewing sarcomas express tumour-specific TET-ETS fusion transcripts3. In addition, the gene expres-
sion profile of these tumours is highly different and microarray analysis can be used for identification 
of Ewing sarcoma samples2,4. The second data set that was used in the present investigation was derived 
from Hodgkin’s lymphoma (HL) cell lines. Despite the proposed origin of HL cells from lymphocytes, the 
gene expression profile of HL cells is characterized by absence of typical lineage markers. Nevertheless, 
the gene expression profile discriminates HL cells from other normal and hematopoietic cells5,6. The HL 
data set was based on Affymetrix Human Exon arrays with several hundreds of thousands of probe sets 
and was used for the evaluation of the Gene Expression Music Algorithm (see below) on such large data 
sets (the used data set contains 1,411,399 probe sets).

Results and Discussion
As described in the Methods section, the Gene Expression Music Algorithm (GEMusicA) transforms 
signal intensities from DNA microarray data into sounds with a specific frequency and duration. The 
present implementation (see below) allows the choice of the number of transformed probe sets and the 
choice of the frequency range used for the transformation. In general, it is possible to transform com-
plete data sets into sounds. However, probe sets with low variability can be omitted in order to shorten 
the length of the melodies. We used 10% of the probe sets with highest variances and transformed these 
probe sets into sounds. The resulting frequencies are presented in Supplementary Table S1. The resulting 
melodies are available as MP3 audio files 1CHP2228, 2SHSY5Y2228, 3SIMA2228, 4SKNMC2228, and 
5MedSRBCT2228 from the International Music Score Library Project (IMSLP) “Tumour Music” (http://
imslp.org/). The frequency courses of the individual melodies are presented in Supplementary Fig. S1. 
Especially at the beginning of the melodies, the differences between the neuroblastoma cell lines and 
the Ewing sarcoma cell line SK-N-MC are obvious. Using the median of the frequencies for a probe set 
in all samples as a reference baseline, we combined the melodies individually with the melody from the 
median and displayed both melodies separately on two channels. The resulting stereo files are available as 
IMSLP MP3 files 6CHP2228st, 7SHSY5Y2228st, 8SIMA2228st, and 9SKNMC2228st. The simultaneous 
presence of the reference melody from the median and the individual melodies increases the audibility of 
differences between the true neuroblastoma cell lines and the outlier SK-N-MC. The highest differences 
between the melodies are clustered at the beginning of the melodies. Therefore, we further reduced the 
number of probe sets. We used the 192 (= 12 semitone steps ×  4 principal lengths ×  4 cell lines) probe 
sets with highest variance for the transformation of the neuroblastoma data set into sounds (Fig. 1). The 
corresponding probe sets are presented in Supplementary Table S2. The melodies are available as IMSLP 
MP3 files 10CHP192, 11SHSY5Y192, 12SIMA192, 13SKNMC192, and 14MedSRBCT192. Stereo versions 
with the median as reference base line are available as IMSLP MP3 files 15CHP192st, 16SHSY5Y192st, 
17SIMA192st, and 18SKNMC192st. All cell lines showed individual frequency peaks (Fig.  1A). Probe 
sets with high frequencies are perceived in the background of lower frequencies and can be used for 
the generation of separate melodies (see below). Only 18, 22, and 18 probe sets from CHP-126 cells, 
SH-SY5Y cells, and SiMa cells, respectively, have frequencies that are two times (one octave) higher than 
the median frequencies. In contrast, 52 probe sets from SK-N-MC cells have these high frequencies. The 
probe sets with high frequencies are marked in bold face in Supplementary Table S2. True neuroblas-
toma cell lines showed frequencies with an average increase over time whereas the Ewing sarcoma cell 
line SK-N-MC showed such increase only at the end of the melody (Fig.  1A). The difference between 
the median and SK-N-MC cells decreases over time (Fig. 1B). Whereas at the beginning of the melody 
the frequencies from SK-N-MC cells are higher than the median frequency, these frequencies are lower 
at the end of the melody. Importantly, the 192 variance-filtered probe sets include highly specific genes 
for the investigated samples (Fig. 2). For instance, the Ewing sarcoma specific genes2,7–9 cholecystokinin 
(CCK), integral membrane protein 2A (ITM2A), six transmembrane epithelial antigen of the prostate 
1 (STEAP1), Fc fragment of IgG receptor transporter alpha (FCGRT), caveolin 1 (CAV1), CD99, and 
NK2 homeobox 2 (NKX2-2) were represented by sounds with high frequencies in SK-N-MC cells and 
low frequencies in the true neuroblastoma cells (Fig.  2). Vice versa, the genes heart and neural crest 
derivatives expressed 1 (HAND1) and NBLA00301 (ref. 10) were represented by sounds with high fre-
quencies in neuroblastoma cells and low frequencies in SK-N-MC cells. The X inactive specific transcript 
XIST11 was represented by high frequencies only in the samples of female patients (SH-SY5Y cells and 
SK-N-MC cells). The mutually exclusive expression of the v-myc avian myelocytomatosis viral oncogene 
homolog (MYC) and the neuroblastoma derived v-myc avian myelocytomatosis viral oncogene homolog 
(MYCN) results in sounds with mutually exclusive high frequencies (Fig.  2). Individual differences in 
the expression pattern were also visible. Quantitative RT-PCR validated the differential expression of the 
analysed genes in the different cell lines (Supplementary Fig. S2). High expression of ITM2A seems to 
be a specific feature of Ewing sarcoma cells as indicated by conventional PCR in other cell lines from 
Ewing sarcoma (Supplementary Fig. S2).

In our original publication describing the gene expression in the 4 cells lines2 we demonstrated that 
SK-N-MC cells can be characterized as Ewing sarcoma cell line on the basis of Ewing sarcoma specific 
genes which were all expressed in this cell line. Figure 3 demonstrates similar results for the musically 
interpreted gene expression data. In this case we pre-filtered the data for probe sets with high signal 
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Figure 1. Frequency courses for the musically interpreted microarray data from “neuroblastoma” cell 
lines. DNA microarray data from 4 cell lines that were initially established as neuroblastoma cell lines 
(GSE1824) were transformed into melodies as described in the Methods section by using the following 
parameters: minimal frequency: 27.5; number of different frequencies: 88; number of tone steps per octave: 
12; minimal duration: 1/8; number of tones: 192. (A) Presented are frequencies of individual cell lines and 
the frequency of the median signal intensity as a function of time. (B) Presented are the absolute differences 
between the frequencies from individual samples and the frequency of the median of the signal intensities. 
The straight line represents the linear trend line.
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intensity in Ewing sarcoma samples in comparison to neuroblastoma samples2 by using MAFilter6. The 
probe sets filtered by MAFilter are presented as Supplementary Information. Again, we used the 192 
probe sets with highest variance for the transformation into sounds. The corresponding probe sets are 
presented in Supplementary Table S3. As expected, the frequencies of Ewing sarcoma specific genes in 
SK-N-MC cells were all above the median (Fig. 3). The frequency course for cell line SK-N-MC showed 
several peaks in contrast to the frequencies from true neuroblastoma cell lines that increased only at 
the end of the melody (Fig.  3A). The melodies are available as IMSLP MP3 files 19CHPEFTspec192, 
20SHSY5YEFTspec192, 21SIMAEFTspec192, 22SKNMCEFTspec192, and 23MedEFTspec192. Stereo 
versions with the median as reference base line are available as IMSLP MP3 files 24CHPEFTspec192st, 
25SHSY5YEFTspec192st, 26SIMAEFTspec192st, and 27SKNMCEFTspec192st. As described in detail 
in the Methods section, we used the keyboard of a standard piano-forte as basis for transformation. 
Therefore it is possible to present the corresponding melodies in the form of a musical score. Figure 4 
shows the scores of the Ewing sarcoma specific probe sets for one of the neuroblastoma cell lines  
(CHP-126) and the Ewing sarcoma cell line (SK-N-MC). The higher frequencies in the Ewing sarcoma 
cell line are clearly visible in the scores. An interesting feature of the used algorithm is the fact that this 

Figure 2. Examples of individual sounds representing probe sets with specificity for differentially 
expressed genes in the “neuroblastoma” data set. The transformation of the microarray data into sounds 
was performed as described in the legend to Fig. 1. Presented are frequencies of the musically interpreted 
signal intensities of the indicated genes (probe sets) in the individual cell lines.
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Figure 3. Musical interpretation of Ewing sarcoma-specific probe sets from “neuroblastoma” cell lines. 
DNA microarray data from a panel of Ewing sarcoma biopsies and neuroblastoma biopsies (GSE1825) were 
used for the identification of Ewing sarcoma specific probe sets. To this end, MAFilter was used for filtering 
probe sets with maximal ratios between the median in Ewing sarcomas and the 85th percentile in neuroblastoma 
samples. All probe sets with a fold change > 3 were considered Ewing sarcoma-specific. DNA microarray 
data from these 376 probe sets in an independent data set of 4 cell lines that were initially established as 
neuroblastoma cell lines (GSE1824) were transformed into melodies by using the same parameters as in Fig. 1. 
(A) Presented are frequencies of the individual cell lines and the frequency of the median signal intensity as a 
function of time. (B) Presented are absolute differences between the frequencies from individual samples and 
the frequency of the median of the signal intensities. The straight line represents the linear trend line.
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algorithm transforms the signal intensities, which are log-transformed, into keys which also represent 
log-transformed frequencies. By filtering probe sets with highest variance this algorithm over-represents 
probe sets with higher signal intensities. This effect is desired because prima facie genes with higher 
expression are more likely to have a high impact on the phenotype of a cell.

We further tested GEMusicA with a larger dataset derived from Affymetrix Human Exon 1.0ST 
microarrays (extended exon level with 807,038 probe sets. For an analysis with the complete 1,411,399 
probe sets of this array type see the supplementary GEMusicAR.r script). For these experiments we com-
bined data from three Hodgkin’s lymphoma (HL) cell lines12 and three samples from normal CD19-positive 
B cells13. We used the 288 (= 12 semitone steps ×  4 principal lengths ×  6 samples) probe sets with highest 

Figure 4. Musical interpretation of Ewing sarcoma-specific probe sets from “neuroblastoma” cell lines. 
The transformation of the microarray data into sounds was performed as described in the legend to Fig. 3. 
Presented are the resulting musical scores from CHP-126 cells and SK-N-MC cells and the median signal 
intensity. Clefs were optimized for the score from the median and the same clefs were used in all other 
scores. Music scores were generated with capella studio version 5.1-06 (capella Software GmbH, Söhrewald, 
Germany).
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variance for the transformation of the HL data set into sounds (Fig. 5). The corresponding probe sets are 
presented in Supplementary Table S4. The melodies are available as IMSLP MP3 files 28CD19aEx288, 
29CD19bEx288, 30CD19cEx288, 31HDLM2Ex288, 32L428Ex288, 33L540Ex288, and 34MedHLEx288. 
Again, we generated stereo versions with the median as reference base line. These versions are avail-
able as IMSLP MP3 files 35CD19aEx288st, 36CD19bEx288st, 37CD19cEx288st, 38HDLM2Ex288st, 
39L428Ex288st, and 40L540Ex288st. The melodies of the CD19-positive B cells show several character-
istic motifs (marked with arrows in Fig. 5) which are absent in the HL samples. It is well-known that HL 
cells are characterized by the absence of typical B cell markers. In addition, the three HL cell lines are 
highly heterogeneous14,15. This heterogeneity is also present in the sound-transformed data. Nevertheless, 
the differences between the melodies from normal B cells and HL cell lines are obvious and especially 
pronounced at the beginning of the melodies (see Supplementary Fig. S3 for the first 8 seconds). The 
heterogeneity is not a consequence of the large number of probe sets used as evidenced by the fact that 
the same behaviour is present if the arrays were analysed at the core gene level (22,011 probe sets; see 
Supplementary Fig. S4, Supplementary Table S5, and the corresponding IMSLP MP3 files).

Despite filtering and re-sorting of the probe sets, the resulting melodies in the presented examples 
are quite abstract and the recall-value is difficult to predict. It seems likely that familiarity with such 

Figure 5. Musical interpretation of differentially expressed probe sets from Hodgkin’s lymphoma cell 
lines and normal B cells. Affymetrix Human Exon 1.0ST microarray data (extended exon level) from 3 
Hodgkin’s lymphoma cell lines12 and three CD19-positive B cell samples13 were transformed into melodies by 
using the following parameters: minimal frequency: 27.5; number of different frequencies: 88 (keys); number 
of tone steps per octave: 12; minimal duration: 1/8; number of tones: 288. Presented are the frequencies of 
the individual cell lines and the frequency of the median signal intensity as a function of time.
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melodies is achieved faster if dissonances from known melodies are heard. Therefore, we asked whether 
it is possible to use more conventional melodies for re-calibration of the transformed microarray data. 
As a first template, we used L. van Beethoven’s “Song of Joy” from the 9th symphony and rescaled the 
neuroblastoma cell line frequencies as described in the Methods section. The first 63 notes from the mel-
ody that include the complete theme were used. The corresponding probe set information is presented 
in Supplementary Table S6. The melodies are available as IMSLP MP3 files 54CHPSoJ, 55SIMASoJ, 
56SHSY5YSoJ, 57SKNMCSoJ, and 58MedSRBCTSoJ. Stereo files with the median (original melody) as 
reference baseline are available as IMSLP MP3 files 59CHPSoJst, 60SIMASoJst, 61SHSY5YSoJst, and 
62SKNMCSoJst. After this transformation the cell line-specific gene expression profiles were still pres-
ent and the higher divergence of SK-N-MC cells from the median was also evident (Fig.  6). Similar 
results were obtained with other templates, e.g. Wagner’s “Ride of the Valkyries” (Supplementary Fig. 5.  
The corresponding 86 probe set data from this theme are presented in Supplementary Table S7). The 
melodies are available as IMSLP MP3 files 63CHPValkyrie, 64SIMAValkyrie, 65SHSY5YValkyrie, 
66SKNMCValkyrie, and 67MedSRBCTValkyrie. Stereo files with the median (original melody) as reference 

Figure 6. Musical interpretation of top differentially expressed probe sets from “neuroblastoma” cell 
lines (Song of Joy). DNA microarray data from 4 cell lines that were initially established as neuroblastoma 
cell lines (GSE1824) were transformed into melodies by using the following parameters: minimal frequency: 
27.5; number of different frequencies: 88; number of tone steps per octave: 12; minimal duration: 1/8; 
number of tones: 63. Probe sets were sorted ascending according to the calculated frequencies from the 
median signal intensities. Thereafter, Beethoven’s “Song of Joy” from the 9th Symphony was used for re-
calibration of the frequencies. Presented are the frequencies of the individual cell lines and the frequency of 
the median signal intensity as a function of time.
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baseline are available as IMSLP MP3 files 68CHPValkyriest, 69SIMAValkyriest, 70SHSY5YValkyriest, 
and 71SKNMCValkyriest. The GEMusicAR.r script (see Supplementary Information) includes additional 
melody models.

The presented algorithm allows the transformation of gene expression data into sounds. In the present 
paper we demonstrated only one principle transformation code. This code can easily be changed, e.g. by 
using alternative scales (quarter-tone scale, whole-tone scale) or changing the tune of the “instrument” 
(i.e. by changing the frequency range). In addition, it is not necessary that high differences in the signal 
intensity are transformed into high differences in the frequency. One alternative possibility might be 
based on the clock of keys that takes into account that the human ear perceives some intervals as dis-
sonant intervals and others as not. Furthermore, it is possible to play different melodies from different 
samples at the same time point. In some of the supplementary audio files, the median is played together 
with one melody. The median can be exchanged by one single sample or a set of other samples. Especially 
in this case, dissonances are more interesting than simple frequency differences. The Supplementary 
audio files can be used for the free combination of the included samples, e.g. by using ACID Xpress (see 
Methods section).

What is the practical use of GEMusicA? Aside from the fact that GEMusicA can be considered as 
a new tool for the composition of musical pieces (in principle it is possible to generate an individual 
melody from each person who donated some RNA for the generation of a microarray data set) and in 
addition to the possibility that people with visual impairments can “hear” gene expression, GEMusicA 
can be used for the analysis of differential gene expression. All probe sets of the 192 variance filtered 
probe sets form the neuroblastoma/Ewing sarcoma data set (Fig. 1) have frequencies above 987 Hz in at 
least one sample (see Supplementary Table S2). 85, 48, 32, and 27 of these probe sets have frequencies 
above 987 Hz in exactly one, two, three, or four cell lines, respectively. From the 32 probe sets that have 
high pitches in three samples, only 5 have high pitches in SK-N-MC cells (Supplementary Fig. S6). The 
remaining 27 probe sets represent a neuroblastoma specific signature (in this data set). Interestingly, only 
20 probe sets of the 192 variance filtered probe sets have a duration of 0.25 or longer. Seven of these 
20 probe sets are high pitched (with a frequency above 987 Hz) only in SK-N-MC cells and 2 only in 
SiMa cells. All other probe sets are high pitched in at least two samples (see Supplementary Table S2). 
Obviously, the specific gene expression signature of the SK-N-MC sample is present in the high-pitched 
notes with long duration which are likely to be noticed by the human ear more easily.

We interviewed 23 scientists (master students, PhD students, Postdocs) and asked them to identify the 
outlier in the neuroblastoma/Ewing sarcoma derived diagrams (Figs 1A, 3A and 6) or the corresponding 
melodies (these melodies are included in the Supplementary Information). The results are presented 
in Fig.  7. Using the 192 probe sets with highest variance from Fig.  1A, most individuals recognized 
SK-N-MC cells as outlier on the basis of the diagrams (Fig.  7A) whereas only half of them were able 
to identify the outlier on the basis of the sounds (Fig.  7B). However, this difference is statistically not 
significant (p >  0.2; McNemar test) and the difference is not visible after pre-filtering the data (Fig. 7C 
versus Fig. 7D) or after re-calibrating the data by using Beethoven’s “Song of Joy” (Fig. 7E versus Fig. 7F). 
In these cases the graphical versions (Fig. 7C,E) and the sound versions (Fig. 7D,F) allowed identifica-
tion of the outlier with similar precision. In the past, DNA and protein sequence information has been 
successfully converted into music with the idea of identifying audible patterns16,17. In contrast to linear 
sequence data that can be transformed into melodies, GEMusicA was developed for the comparative 
analysis of multidimensional gene expression data from multiple samples. The example of the neuroblas-
toma data set demonstrates that it is possible to use the transformed data for filtering of differentially 
expressed genes without prior knowledge of a possible classification. Similarly, the probe sets displayed 
in the melodies from the HL data set contain several cell line or cell type-specific probe sets that are 
re-transformed in cell type specific frequency courses. The addition of the graphical presentation of the 
frequencies or the music scores to the sounds can further increase the perceptibility of the specific fea-
tures of the melodies/gene expression profiles. The normalization by using well-known model melodies 
(e.g. the “Song of Joy” or the “Ride of the Valkyries”) can probably facilitate the audibility of differential 
gene expression even for investigators with “low musicality”. Finding the optimal model melody that 
gives the best results requires further investigations and might be individually different. The musical 
approach to discriminate gene expression patterns is not necessarily better than the visual approach. 
However, music may have recreational or educational values that appeal also to the non-specialist and 
might complement more formal presentations.

Methods
Gene expression analysis. Microarray data from Hodgkin’s lymphoma, neuroblastoma and Ewing 
sarcoma cell lines as well as biopsies were generated as described2,12. CEL files are available at the Gene 
Expression Omnibus (GEO) data base (neuroblastoma/Ewing sarcoma data: accession numbers GSE1824 
and GSE1825; Hodgkin’s lymphoma cell lines: accession number: GSE47686). Additional CEL files from 
CD19-positive B cells13 were down-loaded from GSE20200. Primary microarray data were analysed 
by using Expression Console 1.3.1.187 (Affymetrix, Santa Clara, CA, USA) and Microarray Suite 5.0 
algorithm (neuroblastoma/Ewing sarcoma data) or Robust Microarray Algorithm (RMA; Hodgkin’s 
lymphoma/B cell data). All primary data were log2 transformed with Expression Console. If data were 
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pre-filtered for differentially expressed genes, MAFilter was used6. Details about polymerase chain reac-
tion (RT-PCR) and quantitative18–21 RT-PCR are provided in the Supplementary Information.

Gene Expression Music Algorithm (GEMusicA). Supplementary Fig. S7 gives a short overview on 
the complete procedure. For each probe set of a sample GEMusicA transforms the signal intensity into a 
single tone with a specific frequency. High frequencies represent high signal intensities and vice versa. The 
algorithm was initially developed using Microsoft Excel 2010 in combination with a PERL (ArrayMusic.
pl) script for transformation of text files into sounds. An Open Office template including the data from 
Fig.  3 is included in the Supplementary Information. In addition, the ArrayMusic.pl script is included 
in the Supplementary Information. All IMSLP audio files were generated with this script. An R script 
(GEMusicAR.r) for the GEMusicA algorithm is included (together with sample data) as Supplementary 
Information. This script can be used for the automatic generation of (i) audio examples and (ii) TeX tem-
plate files for music scores. The R script includes instructions for usage (see Supplementary Information).

In general, signal intensities form microarray experiments can be transformed into several different 
sounds. For simplicity, we used the frequencies produced by conventional key-board instruments as basis 

Figure 7. Comparison between the visual and auditory identification of outliers in the “neuroblastoma” 
data set. Transformation of microarray data into sounds was performed as described in the legends to 
Figs 1,3 and 6. 23 scientists were asked to identify the outlier among the 4 samples. The following material 
was presented to the individuals: (A) The cell line specific time courses from Fig. 1A; (B) The melodies 
13SKNMC192, 10CHP192, 11SHSY5Y192, and 12SIMA192 that are based on the frequencies from Fig. 1A; 
(C) The cell line specific time courses from Fig. 3A; (D) The melodies 19CHPEFTspec, 20SHSY5YEFTspec, 
21SIMAEFTspec, and 22SKNMCEFTspec that are based on the frequencies from Fig. 3A. (E) The cell 
line specific time courses from Fig. 6; (F) The melodies 55SHSY5YSoJ, 56SIMASoJ, 57SKNMCSoJ, 
54CHPEFTSoJ that are based on the frequencies from Fig. 6. For A, B, and C the individuals had to draw 
the decision after approximately 2 minutes. For D, E, and F each melody was presented one times and, if 
requested, one second time. If no cell line was identified, “no answer” could be chosen by the interviewed 
persons. Presented are the numbers of interviewed persons that voted for the indicated cell lines. The 
original answers are presented as Supplementary Table S8. The melodies are presented as Supplementary 
Audio Files.



www.nature.com/scientificreports/

1 1Scientific RepoRts | 5:15281 | DOi: 10.1038/srep15281

for the transformation process in the present paper. Pressing a key on a keyboard instrument produces a 
tone with a certain frequency. This frequency can vary on different music instruments according to the 
tuning of the individual instrument. For instance, the 49th key on a standard piano-forte produces a tone 
with the frequency of 440 Hz but especially on historical instruments frequencies between approximately 
415 Hz and 445 Hz can be heard after pressing this key (which is not necessarily the 44th key on all instru-
ments: for small harpsichords the corresponding key is usually the 34th key). On a standard piano-forte 
the 37th key produces a tone with the frequency of 220 Hz and the 61st key produces a tone with the 
frequency 880 Hz. The ratio between 220 and 440 as well as the ratio between 440 and 880 is 1:2. With 
the exception of these simple intervals (octaves) all other frequencies have to be calculated by approxi-
mation. If not otherwise stated, the lowest frequency was set to 27.5 Hz (which represents the lowest key 
on a standard piano-forte). In classical European music, the octave is divided into 12 semi-tone steps but 
other divisions are also possible (e.g. quarter-tone music or whole-tone scales). If not stated otherwise, 
the octave was divided into 12 identical semi-tone steps. In GEMusicA, for the calculation of the virtual 
key key(psi,sk) for a given probe set psi from a sample sk, the maximal signal intensity SImax(sk) of the 
probe sets from this sample was determined and the number N of desired different frequencies (the 
number of virtual keys) was set arbitrarily. For a full standard piano-forte keyboard N is 88. Thereafter, 
key(psi,sk) was calculated by dividing the signal intensity by (SImax(sk)/N) and rounding up to the next 
whole number. With fmin =  minimal frequency and step =  number of tone steps per octave, the frequen-
cies f(key(psi, sk)) of all probe sets psi and all samples sk were calculated as

( ( , )) = ∗ ( )





( , )− 


f key ps s f min2 1i k

key ps s
step

1i k

In principle, all probe sets from a given microarray experiment can be transformed into frequencies/
keys by GEMusicA. For the intended acoustical presentation the following points have to be considered: 
1) the minimal duration of a single tone has to be long enough to allow perception. On the other hand, 
modern microarrays contain thousands to millions of probe sets; e.g., the neuroblastoma data set that 
was used in the present paper consists of 22,283 probe sets. With duration of a single tone of 1/10 second, 
the resulting melody would have a length of approx. 37 minutes. It seems unlikely that differences in the 
gene expression between different samples can be perceived under these conditions. 2) The informative 
value is not the same for all probe sets. Probe sets with low variability of the signal intensities are less 
informative than probe sets with higher variable signal intensities. Therefore, it is reasonable to filter 
only probe sets with some variability for the transformation into music. Based on these considerations, 
it seems desirable to adjust the length of the generated tones to the information content. In the present 
paper, GEMusicA was used to adjust the length of a tone to the variance of the corresponding probe set. 
For length adaptation, we applied a metrical system that is also used in classical European music. This 
system is based on the division of a semibreve (whole note) into 2 minims (half notes), 4 crotchets (quar-
ter notes), 8 quavers (eight notes), 16 semiquavers (sixteenth note), 32 demisemiquavers (thirty-second 
notes) or 64 hemidemisemiquavers (sixty-fourth notes). In the present paper only these notes and dotted 
version of these notes (one or two dots, increasing the length of a tone by 50% and 75%, respectively) 
were used. The basic unit for all calculations is the whole note which is transformed into a sound with 
a length of one second. For calculation of the lengths of the N sounds with maximal variance, the vari-
ance s2(psi) of the frequency for each of the N+ 1 probe set with highest variance, the maximal variance 
s2max, and the minimal variance s2min for the analysed probe sets were calculated. Thereafter, s2(psi) was 
divided by the product of (s2max-s2min) and the chosen minimal length. This value was rounded up to 
the next whole number in order to obtain val(psi) and the number of minimal-length-units unit(psi) (e.g. 
hemidemisemiquavers) was calculated as

( ) = ( )( )−unit ps 2 2i
val ps 1i

For calculation of dots, s2(psi) was divided by the product of s2max/3 and the chosen minimal length. 
This value was rounded up to the next whole number in order to obtain da(psi). Thereafter, dot.a(psi) 
and dot.b(psi) were calculated as

. ( ) =






, ( ( ) + ) =

, ( ( ) + ) ≠ ( )
dot a ps

da ps mod
da ps mod

1 1 3 0
0 1 3 0 3

i
i

i

and

. ( ) =






, ( ) =

, ( ) ≠ ( )
dot b ps

da ps mod
da ps mod

1 3 0
0 3 0 4

i
i

i

Finally, the complete length of the tone was calculated as
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( ) =
( )

+
( ) . ( )

+
∗ ( ) . ( )

( )l ps
unit ps unit ps dot a ps unit ps dot b ps

1 2
3

4 5i
i i i i i

The order of the probe sets in the original data table is not (or not stringently) based on biological 
or physical parameters. Therefore, after transformation into sounds, differentially expressed genes can 
be expected to be still arbitrarily spread over the total length of the resulting melody. A universal sort 
criterion that is independent of knowledge about the data structure is the median. Therefore, the median 
was used in this paper as the single sort criterion. We calculated the median of the signal intensities of 
each probe set and transformed these medians into frequencies as described above. Thereafter, we used 
these new values and sorted all probe sets ascending according to this parameter. With this algorithm 
probe sets with high expression in outliers compared to the median are preferentially placed on top of 
the list, and probe sets with low expression in outliers compared to the median are preferentially placed 
on the bottom of the list.

Despite the adaptation of the length of single tones to the variability, the length of the complete 
melodies is still high if microarrays with high numbers of probe sets were used. As indicated above, the 
number of probe sets with high information content can be reduced by filtering for probe sets with high 
variability. In the present paper we used the variances of the calculated frequencies for selecting probe 
sets with highest variance.

In some experiments, the frequency-transformed data were re-normalized by using a known melody 
as reference. For fitting melodies to the reference melody, the number of used probe sets was adjusted 
to the number of tones in the model. The required number of tones with highest variances was filtered. 
The signal intensities of these probe sets were transformed into frequencies as described above. After 
sorting the calculated frequencies ascending according to the median, the new frequencies f(psi,med)new 
for the median were set according to the reference melody. Thereafter, the new frequencies f(psi,sk)new for 
the individual samples were calculated from the old f(psi,sk)old as

( , ) =
( , ) ∗ ( , )

( , ) ( )
f ps s

f ps s f ps med

f ps med 6
i k new

i k old i new

i old

In the present paper L. van Beethoven’s “Song of Joy” from Op. 125 and R. Wagner’s “Ride of the 
Valkyries” were used as models. The tones for the “Song of Joy” were abstracted from the transcription 
for piano solo by F. Liszt, Kalmus K09228 edition, Belwin Mills Publishing Corp., Miami, FL, USA, page 
196, bars 5–20. The tones for the “Ride of the Valkyries” were abstracted from the trombone part of the 
Philharmonia pocket score edition No. 123, Wiener Philharmonischer Verlag, Vienna, Austria, pages 
25–34, bars 58–75. The duration of the tones was set according to the original reference melody. A PERL 
script (see below) was used for generation of sounds where a sound of length-unit one has approximately 
a length of one second. For the model-fitted melodies, the lengths of crotchets were set as one and the 
other values were calculated accordingly. The R script GEMusicAR.r contains additional melody models.

Example music scores were generated with capella studio version 5.1–06 (capella Software GmbH, 
Söhrewald, Germany). A short PERL script (compiled with ActivePerl 5.16.3; ActiveState Software Inc., 
Vancouver, BC, Canada) was used for generation of wavesound files (see Supplementary Information). 
Stereo files were generated with Acid Xpress 7 (Sony Creative Software Inc., Mittleton, WI). In this case, 
wavesound files were loaded into an ACID Xpress project and the median was displayed only on one 
channel whereas the individual samples were displayed only on the other channel. Finally, MP3 stereo files 
were transformed into wavesound files by using Free Audio Converter 5.0.54 (DVDVideoSoft Ltd, UK). 
The same software was used for generation of supplementary audio files (see supplementary zip archive). 
Active Perl, Free Audio Converter as well as ACID Xpress are available from the internet. MP3 versions of 
all music examples in this manuscript have been submitted to the International Music Score Library Project 
(IMSLP, “Tumour Music”) http://imslp.org/wiki/Tumour_Music_%28Staege,_Martin_Sebastian%29.
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