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Improving human cardiac organoid 
design using transcriptomics
Nathaniel A. Hyams 1, Charles M. Kerr 2, Dimitrios C. Arhontoulis 2, Jean Marie Ruddy 3 & 
Ying Mei 1,4*

Cardiovascular disease (CVD) is the leading cause of death worldwide. To this end, human cardiac 
organoids (hCOs) have been developed for improved organotypic CVD modeling over conventional 
in vivo animal models. Utilizing human cells, hCOs hold great promise to bridge key gaps in CVD 
research pertaining to human-specific conditions. hCOs are multicellular 3D models which resemble 
heart structure and function. Varying hCOs fabrication techniques leads to functional and phenotypic 
differences. To investigate heterogeneity across hCO platforms, we performed a transcriptomic 
analysis utilizing bulk RNA-sequencing from four previously published unique hCO studies. We further 
compared selected hCOs to 2D and 3D hiPSC-derived cardiomyocytes (hiPSC-CMs), as well as fetal 
and adult human myocardium bulk RNA-sequencing samples. Upon investigation utilizing Principal 
Component Analysis, K-means clustering analysis of key genes, and further downstream analyses 
such as Gene Set Enrichment (GSEA), Gene Set Variation (GSVA), and GO term enrichment, we found 
that hCO fabrication method influences maturity and cellular heterogeneity across models. Thus, 
we propose that adjustment of fabrication method will result in an hCO with a defined maturity and 
transcriptomic profile to facilitate its specified applications, in turn maximizing its modeling potential.
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Cardiovascular disease (CVD) is the leading cause of death  worldwide1–3. Additionally, cardiotoxicity is com-
monly implicated in novel drug development  failure4. To address these challenges, significant efforts have been 
devoted to developing in vitro systems for the modeling of adult human  hearts5–9. Animal models have limitations 
that hinder their ability to faithfully replicate  CVD10. Small animal models like mice and rats lack important 
biological features of human hearts, such as a high heart rate, which prevents the accurate modeling of conditions 
like arrhythmia. On the other hand, large animal models such as pigs and monkeys are more biologically similar 
to humans but are difficult to maintain within research contexts. Recent progress in cardiac differentiation of 
human induced pluripotent stem cells (hiPSCs) has allowed for functional, reproducible, and highly enriched 
populations of human cardiac cells for disease  modeling11–14. hiPSC-cardiomyocytes (hiPSC-CMs) cultured 
on 2D substrates have been used extensively to model both various forms of CVD as well as drug-induced 
 cardiotoxicity15–17. Despite progress, 2D hiPSC-CMs inadequately capture intricate cell–cell and cell–matrix 
interactions which occur in 3D within the  body18,19. 3D cell culture has allowed for improved replication of 
in vivo architectures, bolstering modeling  capabilities20,21. Specifically, 3D hiPSC-CM culture systems offer a 
higher level of cardiac lineage specification, and an upregulation in troponin  expression22. To this end, 3D human 
cardiac organoids (hCOs) have been developed to close the gap between 2D in vitro culture and the cardiac 
tissue subject to being  modeled23–26. While there is discourse over defining features, hCOs generally share a set 
of basic characteristics: (1) multiple cell types to mimic native myocardial cellular composition, (2) structural 
complexity resembling a tissue-level function, and (3) the ability to mature as culture duration increases. hCOs 
have enabled superior biomimicry of native cardiac tissue structure and function, more accurately recapitulating 
both cardiac development and various cardiac  pathologies27–32.

To date, there are three primary strategies for hCO fabrication: (1) hCOs which form through directed 
cardiac differentiation of 3D embryoid bodies (EBs), (2) engineered hCOs which utilize matured/differentiated 
cells and take advantage of 3D self-assembly mechanics, and (3) a hybrid between the  two23,29,31. This variety in 
approach results in heterogeneity between hCOs, providing a unique opportunity to tailor models towards a 
specific developmental mechanism or to target a disease of interest. Here, we leverage existing RNA sequencing 
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(RNA-seq) datasets from across four unique hCO studies to examine the effects of the aforementioned diversity 
of fabrication  methods27,29,30,33. We include both 2D and 3D hiPSC-CMs to account for 3D environment and 
multicellularity effects on the  transcriptome34,35. In addition, to compare each model’s similarity to human 
myocardium at both developing and mature stages, we include fetal and adult myocardial  samples30,36. This will 
enhance our understanding as to how hCOs relate to standard 2D in vitro modeling and to cardiac tissue itself. 
In this study, we aim to encapsulate the diversity of the hCO field within the unique datasets sampled with the 
goal of gaining transcriptomic insight into hCO application, and how to optimize hCO design for its intended 
use. Our results showed that transcriptomic proximity to native myocardium is proportional to model maturity, 
while also highlighting unique transcriptomic profiles between hCOs. Furthermore, we conclude that specific 
hCO application should drive fabrication methods in order to maximize potential.

Results
Select representative hCO models
We compiled bulk RNA-seq datasets from four unique hCOs to provide a wholistic overview of the current 
hCO  field27,29,30,33. These four studies were selected as they embody a range of fabrication methods, from 3D 
EB-based cardiac differentiation to engineered microtissue assembly. Lewis-Israeli et al. developed the herein 
termed EB hCO, which utilized 3D EBs as a base platform, then induced cardiac mesoderm via Wnt pathway 
activation/inhibition, supplemented with a second Wnt pathway activation step (Fig. S1A)27. As a result, EB 
hCOs profiled similarly to the developing fetal heart, with biomimetic cell lineage ratios and a robust cardiogenic 
progression. Ergir et al. extended a widely accepted 2D hiPSC cardiac differentiation protocol by resuspending 
cells after 2D differentiation into 3D microwells for hCO formation (Fig. S1B)29. The result was a promotion in 
cardiomyocyte (CM) survival during an extended culture period. Denoted as Primary Stroma hCO, Richards 
et al. took advantage of self-organizing principles to form their hCO model in agarose microwells (Fig. S1C)31. 
hiPSC-CMs acquired commercially along with a mixed population of human primary stromal cells provided 
robust maturity and a defined cellular makeup, which resulted in a reproducible modular system. The HeartDyno 
hCO, developed by Mills et al. used an in-house 2D cardiac differentiation protocol to induce a 70% hiPSC-CM 
to 30% CD90 + stromal cell ratio, followed by the seeding of differentiated cells into an engineered system in 
order to measure functional readouts such as contraction force (Fig. S1D)30. This increased hCO throughput 
for the testing and development of novel cardioactive drugs, as the scalability and ease of modulation in this 
system make it possible to determine numerous key drivers of CM maturation within their model. hCO samples 
were selected carefully, as all possessed bulk RNA-seq data while simultaneously representing a comprehensive 
range of hCO approaches. In addition, we included 2D and 3D hiPSC-CM samples in addition to human fetal 
and adult myocardial bulk RNA-seq data in our analysis to allow for hCOs to be compared to both the standard 
2D in vitro model as well as the myocardium (Figure S2A)35,37. This established a range of perceived maturity in 
order to assess how hCOs fit. This provided a scaled platform with which to identify genes of interest that were 
significantly changed for further analysis of transcriptomic divergence which could be explored via Principal 
Component Analysis, Gene Set Enrichment Analysis, K-Means clustering analysis, and GO term enrichment 
analysis (Fig. 2B&C)38.

hCOs improve modeling potential, boosting transcriptomic proximity to human cardiac tissue
Principal component analysis (PCA) was performed to identify transcriptomic influences toward variation 
across the hCO systems investigated, 2D and 3D hiPSC-CMs, and in vivo fetal and adult myocardium data 
(Fig. 1A). The PC1 and PC2 axes of the PCA plot, accounting for 36.9% and 28.2% of total variation between 
samples, respectively, reveal distinct separation of hCO samples from CM-only samples, replicating previously 
reported  trends34. Based on the relative positions of 2D and 3D hiPSC-CMs in addition to human fetal and 
adult myocardial samples, we reasoned PC1 to be an index for maturation. Fetal myocardial samples cluster 
lower on PC1 than their adult counterparts, indicative that maturity increases alongside PC1. Supporting this, 
hiPSC-CM samples, known to be immature, group lower than both hCO and in vivo samples, supporting our 
hypothesized PC  index39,40. hCO samples grouping between hiPSC-CM samples and in vivo tissue across PC1 
supports findings which implicate 3D hCO models promoting cellular maturity and the subsequent ability to 
form organotypic structures.

PC2 was interpreted as a measure of cellular heterogeneity for samples. At the bottom of PC2 were homo-
geneous populations of 2D and 3D hiPSC-CMs. Meanwhile, Embryoid Body (EB) hCOs, which reported a 
high number of endo-, myo- and epicardial lineages, represent the most varied samples. Supporting this, we 
identified Primary Stroma hCOs, which possess four defined cell types, to be lower than Extended Culture and 
HeartDyno hCOs. Extended Culture and HeartDyno hCOs report more diverse cell populations than Primary 
Stroma hCO, as both models used less defined cell populations. This reiterates PC2 to be a measure of cellular 
heterogeneity within a sample.

GSEA establishes maturity and heterogeneity as key factors in hCO diversity
To reveal key biological processes underpinning PC1 and PC2 as indices for maturation and cellular hetero-
geneity, respectively, we conducted Gene Set Enrichment Analysis (GSEA) across both PC1 and PC2. GSEA 
was utilized to determine significantly enriched biological pathways within sample  groups41. Only significant 
(FDR < 0.25) and relevant pathways were included in our analysis. To provide a concise depiction of GSEA 
trends, the normalized enrichment score (NES) of key significant pathways were displayed in Fig. 1B&C. This 
provides an unbiased approach to uncover biological pathways which drive sample placement within our PCA 
at the extreme ends of PC1 and PC2.
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Figure 1.  PCA encompassing the whole study, along with GSEA interpretation of each axis. (A) Principal 
component analysis (PCA) detailing representative hCO models: Embryoid Body hCO (n = 9), Extended 
Culture hCO (n = 6), HeartDyno hCO (n = 4), and Primary Stroma hCO (n = 3). These were included in relation 
to both adult (n = 3) and fetal (n = 4) human myocardial RNA-seq samples as well as cardiomyocyte samples 
in both 2D (n = 3) and 3D (n = 3). (B) Gene set enrichment analysis (GSEA) across the PC1 axis, displaying 
significant, selected GO terms pathways of interest. Across PC1, immune-centric pathways were positively 
enriched, while pathways indicating cell–cell crosstalk were negative enriched. (C) Gene set enrichment analysis 
(GSEA) across the PC2 axis. Selected, significant pathways indicated that cell morphogenic pathways were 
positively enriched, while cardiac-specific pathways were negatively enriched.
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Figure 2.  (A) K-means clustering heatmap of the top 100 genes driving variability across all samples reveals 
distinct expression profiles between different hCO samples and human myocardial samples. Vertical groups 
represent sample sets, while horizontal groups represent the four cluster groups which K-means analysis divided 
these 100 genes. Scale is Z-score. (B) Metascape pathway analysis of Cluster 1 indicates strong ECM capability, 
structure, and function within samples with high relative expression. (C) Metascape pathway analysis of Cluster 
2 indicates presence of a matured myocardium within samples with high relative expression. (D) Metascape 
pathway analysis of Cluster 3 indicates presence of a matured metabolic response, particularly in the production 
of ATP and oxidative phosphorylation within samples with high relative expression. (E) Metascape pathway 
analysis of Cluster 4 indicates an enrichment towards cardiac developmental pathways.
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GSEA showed that PC1 is positively enriched in gene ontology (GO) pathways associated with inflammatory 
response, cytokine production, and membrane organization (Fig. 1B). Due to in vivo samples grouping at the 
upper extreme of PC1, we speculated that the presence of resident immune cell populations found within in vivo 
cardiac tissues is responsible for immune-centric GO pathway enrichment. Conversely, GSEA indicated nega-
tive enrichment across PC1 in GO pathways associated with development and cell plasticity, including embryo 
development and signal release (Fig. 1B). hip SC-CM and EB hCO samples clustered as the bottom of PC1, 
pointing towards an immature profile in relation to other hCO and myocardial samples. GO pathways enriched 
across PC1 via GSEA contextualize and support our prior assertion that PC1 represents maturity across samples.

Across PC2, GSEA supported our proposed index of cellular heterogeneity, as pathways such as cell mor-
phogenesis, embryo development, and cell junction assembly were significantly positively enriched (Fig. 1C). 
Highlighted pathways implicated samples on the extreme upper end of PC2 possessed developmental, and thus 
diverse, cell lineages. Heterogeneous samples such as EB hCOs grouped on the upper end of PC2, reinforcing 
the variable nature of 3D differentiation  methods42. Conversely, muscle contraction and striated muscle tissue 
development pathways were enriched along the negative end of PC2, influenced by homogeneous hiPSC-CM 
samples. GSEA provided biological context for PCA sample placement and confirmed our PC axis assumptions 
of maturity and heterogeneity, clarifying the understanding of how hCOs improve modeling capabilities.

k-means analysis infers specific hCO strengths and potential niches
GSEA, while informative of general trends, does not identify specific genes associated with key cardiac biological 
functions. To address this, we sought to holistically investigate expression of genes within our dataset which could 
reveal further differences between hCOs. To achieve this, we implemented K-means clustering, an unsupervised 
machine learning algorithm which clusters data points based on  similarity43. In our study, we pursued the 100 
most variable genes between samples and applied K-means clustering to this gene set. Upon analysis, the data 
separated into four distinct clusters, illustrating strengths of analyzed hCO models (Fig. 2A). Additionally, we 
generated a heatmap, highlighting biological processes of interest across samples (Fig. S3). This provided us with 
a targeted view of key cardiac process expression profiles for each sample set.

Cluster 1 (Fig. 2A) consisted of 21 genes and was associated with Primary Stroma and HeartDyno hCOs 
showcasing a high expression of extracellular matrix (ECM) encoding genes, including COL1A1, COL4A1, and 
FN1. These genes play an integral role in ECM formation, particularly in collagen and fibronectin synthesis, and 
are vital to cell adhesion, migration, and  maturation44. The cardiac fibroblast population is vital for ECM secretion 
in the cardiac microenvironment, particularly in pathological conditions; thus, we propose hCOs expressing a 
robust ECM transcriptomic profile are suitable for modeling disease and drug-induced cardiotoxicity affecting 
the cardiac  stroma45. To support the claim of an ECM-enriched profile of Cluster 1 genes, we used Metascape, 
an online tool which uses a gene list input to generate relevant biological  pathways46. We prepared the 21 genes 
contained in Cluster 1 as a gene set for use in this enrichment analysis. We found that cell–cell interaction, 
angiogenic, and connective tissue developmental pathways were enriched within the Cluster 1 gene set, bolster-
ing HeartDyno and Primary Stroma hCOs as improved ECM-centric disease models within the heart (Fig. 2B).

Cluster 2 (Fig. 2A) highlighted 50 genes highly expressed in in vivo adult myocardial samples. Genes encod-
ing for myosin heavy chain 7 (MYH7), myosin light chain 2 (MYL2), and cardiac troponin 3 (TNNI3) were 
identified in this cluster, all indicative of a matured myocardial transcriptomic  profile16. We confirmed this via 
enrichment analysis in Metascape, as the Cluster 2 gene set suggests myofibril assembly as well as contraction 
and adaptation of striated muscle are key biological processes, emphasizing a mature, dynamic cardiac profile 
(Fig. 2C). This finding substantiates a consensus shortcoming within the hCO field, which is the lack of maturity 
of hiPSC-CMs in  hCOs47.

Cluster 3 (Fig. 2A) accentuated an upregulated transcriptomic profile unique to Extended Culture hCO 
samples, which we reasoned to be indicative of metabolic maturation. COX3 encodes for a subunit within the 
cytochrome-c oxidase subunit, which plays an integral role in the termination of oxidative  phosphorylation48. 
Likewise, ND4 and ATP6 encode for electron transport chain (ETC) components and functions, including 
adenosine triphosphate (ATP) synthase machinery or promotion of intermediate energy substrate activity such 
as  NADH49. These are all hallmarks of a robust transition from fetal glycolytic to adult oxidative means of energy 
production in the  heart50. This is further exemplified within enrichment analysis, as metabolic pathways such 
as ETC, ion transport across membranes, and response to oxidative stress are all implicated within Cluster 3 
(Fig. 2D). It can be reasoned that Extended Culture hCO samples possess an enhanced metabolic activity level 
in relation to other hCO models. Thus, Extended Culture hCOs may be a suitable model for assessing metabolic 
mechanisms of CVD.

Cluster 4 (Fig. 2A) paralleled between Primary Stroma hCO and fetal atrial samples. Both groups have a 
moderately upregulated expression within this cluster, which is implicated in both cardiac muscle development 
and muscle contraction in enrichment analysis (Fig. 2E). While mild, myosin heavy chain-α (MYH6) and atrial 
light chain-2 (MYL7) upregulation is of particular interest, as these are present in the fetal heart and precursors 
to Myosin-α isoforms within mature  atria16,51,52. This provides the basis for Primary Stroma hCOs as an enhanced 
model for fetal or atrial specific conditions, related to myosin isoform fate. Ultimately, K-means supplemented 
with enrichment analysis via Metascape identified underlying pathway-based strengths for hCO models.

Gene set variation analysis emphasizes hCO specification while pointing out shortcomings
To gain further insight into the cellular composition of each hCO model, we used gene set variation analysis 
(GSVA) to investigate the differing expression levels of key genes within specific cell types of  interest53. GSVA 
scores represent the presence of a cell type based upon their transcriptomic hallmarks, such as TNNI3, MYL2, 
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and ACTN2 for ventricular CMs, for example. To this end, we utilized the Human Heart Cell Atlas to construct 
gene sets consisting of the top 50 genes expressed in cardiac specific cell types (Supp. Table 1)54.

Stromal populations investigated via GSVA pointed toward hCOs mirroring strengths displayed within GSEA 
and K-means analysis. Cardiac fibroblast GSVA scores of Primary Stroma and HeartDyno hCO samples were 
similar to that of in vivo myocardium samples, inferring robust cardiac fibroblast presence and activity (Fig. 3A). 
Endothelial cell presence was comparable across hCO groups yet was notably lower than in vivo samples (Fig. 3B). 
This finding prompts a universal shortcoming in current hCO CVD modeling: the lack of a robust, perfusable 
vascular network. Notably, advances in endothelial cell incorporation and formation of vascular networks have 
the promise to bolster hCO development in maximizing model size and  complexity55,56. Interestingly, in both 
atrial and ventricular CM populations, Primary Stroma hCOs were comparable to both 2D and 3D CM samples 
in addition to all in vivo myocardial samples (Fig. 3C&D). We have attributed this to the use of hiPSC-CMs after 
prolonged culture, rather than the utilization of a freshly differentiated hiPSC-CM population. Lastly, immune 
cell marker GSVA scores for all four hCO models sat directly in between CM-only and in vivo samples (Fig. 3E). 
While no current hCO incorporates dedicated immune cells to the best of our knowledge, GSVA indicates that 
immune marker expression is increased from CM-only models. This could be the result of immunoregulatory 
effects of which some stromal cells within hCOs, such as endothelial cells and  fibroblasts57. GSVA aided in our 
understanding of hCO composition, underscoring the need for further advancement in both vascularization 
and immune cell incorporation to better understand and model CVD. While GSVA provides only a picture of 
highly expressed genes and is not fully comprehensive, a window into the composition of each hCO was explored, 
providing information key to the understanding of how to improve models further.

Investigation of hCO-only data bolsters previous findings
To further investigate heterogeneity between hCO models, we conducted a directed PCA including hCO samples 
only (Fig. 4A). PC1, accounting for 48% of variance between samples, grouped HeartDyno, Extended Culture, 
and Primary Stroma hCOs tightly, while EB hCOs separated out to the left. PC2 accounted for 41% of sample 
variance, showing EB hCO samples grouping in between HeartDyno and Primary Stroma hCOs at the top, while 
Extended Culture hCOs clustered at the bottom. The manner in which hCOs separated from one another in 
this PCA shows similar trends to the original PCA conducted. Primary Stroma and HeartDyno hCOs grouped 

Figure 3.  (A) Gene Set Variation Analysis (GSVA) of the top 50 expressed Cardiac Fibroblast genes according 
to the Human Heart Atlas. Primary Stroma and HeartDyno hCOs mirrored adult myocardial samples well, 
indicating robust cardiac fibroblast activity. (B) Gene Set Variation Analysis (GSVA) of the top 50 expressed 
endothelial cell genes according to the Human Heart Atlas. Primary Stroma and HeartDyno hCOs scored the 
highest out of any hCO sample set. (C) Gene Set Variation Analysis (GSVA) of the top 50 expressed Atrial 
Cardiomyocyte genes according to the Human Heart Atlas. Primary Stroma hCOs and 3D CMs, along with fetal 
atrial samples score the highest. (D) Gene Set Variation Analysis (GSVA) of the top 50 expressed Ventricular 
Cardiomyocyte genes according to the Human Heart Atlas. 3D CMs, adult heart samples, and Primary Stroma 
hCOs score the highest, indicating an abundance of ventricular-type CMs. (E) Gene Set Variation Analysis 
(GSVA) of the top 50 expressed Immune Cell genes according to the Human Heart Atlas. In vivo samples score 
higher than in vitro samples, highlighting the lack of incorporated immune cells within in vitro CVD modeling.
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together on both PC1 and PC2, meanwhile EB hCOs and Extended Culture hCOs are distinct along PC1 and 
PC2, respectively.

K-means analysis was then repeated to attain a higher resolution of discrepancy between hCOs (Fig. 4B). In 
this study, the 100 most variable genes were used, separating into two clusters. Cluster 1 (Fig. 4B) indicated high 
relative expression in both HeartDyno and Primary Stroma hCOs, including increased expression in genes such 
as CM markers MYL2 and MYL9 as well as basement membrane component COL4A1. Enrichment analysis 
via Metascape reiterates our previous findings, as cellular communication, ECM hallmarks, and muscle tissue 
development are all enriched within Cluster 1 (Fig. 4C). This finding supports the inclusion of a dedicated 
cardiac fibroblast population if the goal is to model CVD within the cardiac stroma. Cluster 2, consisting of 43 
genes, indicated increased metabolic activity within Extended Culture hCOs, as expression of markers such as 
COX3, ND4, and ATP8 all increased in these samples (Fig. 4B). Enrichment analysis reinforces this, as enriched 
pathways include ETC and oxidative phosphorylation, proton membrane transport, and mitochondrial electron 
transport pathways (Fig. 4D). K-means and enrichment analyses between hCO samples supports previous find-
ings while bringing further depth of understanding to how fabrication impacts specific hCO strengths.

Discussion
hCOs have revolutionized the way in which cardiac development and conditions can be modeled, providing 
scalable studies which mimic the cardiac environment in a manner superior to their 2D counterparts. Through a 
comprehensive investigation of bulk RNA-seq expression of carefully selected representative hCOs, we elucidated 
that alterations in fabrication results in heterogeneity between hCO models. Transcriptomic analyses provide 
vital insight into particular model strengths. We have identified an abundance of studies utilizing hCOs in a 

Figure 4.  (A) Principal component analysis (PCA) detailing representative hCO models investigated 
(Embryoid Body hCO (n = 9), Extended Culture hCO (n = 6), HeartDyno hCO (n = 4), and Primary Stroma 
hCO (n = 3)). (B) K-means clustering (n = 2 clusters) heatmap of the top 100 genes driving variability across all 
samples reveals distinct expression profiles between hCO samples. (C) Metascape enrichment analysis of Cluster 
1 indicates strong ECM capability, structure, and function within samples with high relative expression. (D) 
Metascape enrichment analysis of Cluster 2 indicates presence of a matured myocardium within samples with 
high relative expression.
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multitude of applications, highlighting the numerous cardiac conditions, developmental pathways, and effects 
of cardioactive drugs to be modeled and better understood. This study presents a dedicated investigation using 
bulk RNA-seq, introducing an objective, data-driven relationship between hCO design and application.

Through PCA and clustering analysis, we found that hCOs profile similarly to one another in relation to CM-
only and in vivo samples, replicating our previous findings in prior  publications34. On the other hand, we found 
it compelling that as studies diverged from one another via differentiation protocol, means of tissue formation, 
and scale of time spent in culture, enrichment patterns also diverged. Upon investigating these divergences using 
GSEA, we found that a key indicator of how hCOs profiled in our analysis was the maturity of hCO components. 
Directed EB maturation drove hCO samples towards pathways of morphogenesis and embryonic development, 
showcasing a rapid hCO formation process. Meanwhile, using human primary cells increased hCO similarity to 
in vivo cardiac samples. We propose that this heterogeneity between means of hCO fabrication and subsequent 
transcriptomic phenotypes can be leveraged to tailor studies towards a suitable application. For instance, Drakhlis 
et al. describe a model intended to closely mimic fetal heart development, utilizing directed EB  maturation24. 
Meanwhile, Ghosheh et al. develop an hCO model aiming to study electro-metabolic coupling of CMs, thus 
necessitating mature  CMs58. This resulted in a fabrication with pre-differentiated cells rather than building an EB 
model, as a defined, mature population of cells was paramount. The complexities of the heart call for a multitude 
of models which have the potential to iteratively fill niches as advances in stem cell differentiation and tissue 
complexity capabilities are made.

Recent progress in hCO technology and understanding of cardiac developmental cues has improved bio-
mimicry of the heart. Works from Giacomelli et al. have used hCOs to aid in understanding mechanisms of 
stromal populations that contribute to  CVD28. Voges et al. provide insight into the vascular cell impact on CM 
maturation, building upon the HeartDyno hCO and emphasizing the importance of a comprehensive  model55. 
While Schmidt et al. developed a multichambered fetal heart hCO model which closely mimics neonatal car-
diogenesis, providing a platform to deepen our knowledge on how genetic mutations affect congenital heart 
 disease59. Despite these breakthroughs, there remains a transcriptomic gap between hCOs and human tissue, 
highlighted in our GSVA analysis.

We acknowledge the technical limitations that our study imposes, from inclusion of a limited pool of rep-
resentative studies, to the use of bulk RNA-seq samples. This study is not a comprehensive review of all hCO 
studies, but rather a snapshot of schools of thought within the field and how hCOs are to be approached. hCOs 
used in this study are at differing stages of development, which incurs inherent transcriptomic variability. How-
ever, we aim to highlight these differences as beneficial factors in the modeling of specific CVDs. Acquiring data 
publicly subsequently means that samples are not processed identically. To address this, we implemented batch 
correction between samples via normalization of counts before data analysis, but we do acknowledge potential 
differences between groups. Additionally, this study includes the use of solely bulk RNA-seq datasets, despite 
there being a wide range of -omics data publicly available. While bulk RNA-seq data is informative of the gen-
eral transcriptomic profile of hCO models and cardiac tissue, it lacks the high resolution attainable with single 
cell RNA sequencing (scRNA-seq) and other forms of Next-Generation Sequencing (NGS) data. Using bulk 
RNA-seq data, we are only able to investigate tissue-level trends and are unable to delve into specific popula-
tions encapsulated within an hCO. This limits our ability to investigate some of the complexities and cell–cell 
crosstalk pathways within hCOs.

In summary, we selected four representative hCO studies, each focusing on distinct cardiac conditions and 
developmental aspects of the heart. Through clustering and enrichment analyses, we found that means of fab-
rication modulates hCO bulk RNA-seq profile, thus model development should be informed with application 
in mind. While the maturity of hCOs still lags behind that of human myocardium, ongoing research aims to 
enhance biomimicry by improving vascular networks, integrating immune cells, and refining hiPSC differentia-
tion protocols. Our study suggests that a key component to maximize hCO effectiveness as a model for CVD is 
to utilize the proper fabrication method for its intended use.

Materials and methods
Sourcing publicly available FASTQ data
We compiled bulk RNA-seq datasets from four unique hCOs to provide a wholistic overview of the current 
hCO  field27,29,30,33. These four studies were selected as they embody a range of fabrication methods, from 3D 
EB-based cardiac differentiation to engineered microtissue assembly. Publicly available bulk RNA FASTQ files 
were acquired from both Gene Expression Omnibus (GEO) as well as the European Nucleotide Archive (ENA) 
databases. 2D hiPSC-CM (GSE91383), along with 3D hiPSC-CM samples (GSE181397) were obtained to serve 
as mono-cellular benchmarks. Following this, four hCO models possessing publicly available bulk RNA sequenc-
ing data were identified via literature review (GSE209997, GSE93841, GSE113871, GSE153185). As the aim 
of many of these hCOs is to provide a platform to better model various aspects and pathologies of the heart, 
human fetal (GSE62913) and adult cardiac tissue (GSE62913, GSE93841). Total FASTQ files from each study 
were downloaded and catalogued in Microsoft Excel for recordkeeping. All schematics of representative studies 
and experimental workflow were drawn with BioRender.

Genome alignment and generation of gene counts files
Desired sample FASTQ files were loaded into the online Galaxy tool (v23.2.1). Before mapping to a human 
genome, the raw files were tested for quality and trimmed using the Trimmomatic tool within Galaxy (v0.38). To 
generate counts data, the RNA STAR function (v2.7.10b) was first used to map each sample to Human Genome 
38 (hg38), which generated a mapped .bam file. A function called featureCounts (v2.0.3) then utilized the .bam 
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file and translate it into a tabular raw gene counts file, which was downloaded and merged into an Excel (version 
2310) file containing gene counts for all samples.

Principal component analysis
Principal Component Analysis (PCA) was performed using the Bioconductor (v3.16) package within the RStudio 
(v2023.03.0) workspace. Desired sample gene matrices were loaded into the workspace. Geneids were mapped to 
gene symbols, for better understanding and ease of use. For PCA analysis, the Bioconductor package “DESeq2” 
(v1.38.3) was used to generate differentially expressed gene matrices for all samples. Any gene counts containing 
zero or one read across all samples were removed, and an rlog transformation was done to normalize data. The 
differentially expressed gene matrix was scaled by Z-score. Following this, the scaled matrix was subjected to a 
principal component computation. A PC plot utilized PC1 and PC2, the top two axes driving variation between 
samples, and plotted samples in a scatterplot format, visualized with the “ggplot2” package (v3.4.2). Additionally, 
a heatmap representing sample distances relative to each other based upon this principal component computa-
tion was generated.

Gene set enrichment analysis (GSEA)
Directly using the PC1 and PC2 readouts from PC computations, a gene set enrichment analysis (GSEA) was 
 executed41. The top 100 variable genes influencing sample differences are used in this analysis. From the PC 
computation, the first column of data (PC1 loadings) and the second column of data (PC2 loadings) for each of 
these 500 variable genes are isolated in RStudio and saved as a .rnk file. This .rnk file is then loaded into GSEA 
software (v 4.3.0) from the BROAD institute, and a GSEA Preranked analysis is executed. The scope of our study 
was to uncover biological processes and pathways which could contribute to specific diseases; therefore, we uti-
lized the GO term biological processes pathway dataset (c5.go.v2023.Hs.symbols.gmt) provided by the BROAD 
institute run our analysis through. Pathways containing less than 15 gene hits and more than 500 gene hits were 
excluded from the study. Pathways that were significant at FDR < 0.250 were included as viable pathways for this 
study. GraphPad (v.3.2) was then utilized to visualize GSEA results using normalized enrichment scores (NES) 
of each individual pathway.

K-means clustering analysis
K-means clustering analysis was conducted through RStudio, making use of the previously described differen-
tially expressed gene matrices via DESeq2 and rlog transformations. To identify which genes to use for K means 
analysis, the normalized counts are trimmed to counts with a variance and mean above 50, meaning only high 
gene counts that are of the most variance are used for this analysis. The top 100 genes influencing variability 
between samples are then used. Four clusters were determined to be the ideal number by which to sort the top 
100 genes, and the data was visualized in a heatmap. Metascape was also used as a tool to generate gene-related 
pathways for each cluster. Gene lists for each cluster consisting of only gene symbols were loaded into Metascape, 
which provided information about pathways and the relativity of genes within said cluster.

Gene set variation analysis (GSVA)
Cardiac cell gene sets were constructed from the publicly available Heart Cell Atlas  dataset54. Using their nomen-
clature, the 50 genes with the highest expression in each subcategory of cardiac cell were used to build these 
custom gene sets for Gene Set Variation Analysis (GSVA). The following cell groups were used to subcategorize 
cell gene sets: (1) ventricular cardiomyocytes, (2) atrial cardiomyocytes, (3) ventricular fibroblasts, (4) endothe-
lial cells, (5) immune cells. These subcategories are derived from supplementary tables 6 (cardiomyocytes), 11 
(fibroblasts), 14 (immune cells).

Data availability
Raw and normalized counts files are available in the NCBI GEO public repository with accession no. 
GSE24573816. The data acquired and analyzed within this manuscript can be found with the gene expres-
sion omnibus (GEO) under accession numbers GSE91383 (2D CMs), GSE181397 (3D CMs), GSE153185 (EB 
hCO), GSE209997 (Extended Culture hCO), GSE93841 (HeartDyno hCO), GSE113871 (Primary Stroma hCO), 
GSE62913 (Fetal and Adult Cardiac Tissue).
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