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Abstract: Emerging two-dimensional (2D) materialsm, such as molybdenum disulfide (MoS2), offer
opportunities to tailor the mechanical and gas barrier properties of polymeric materials. In this
study, MoS2 was exfoliated to monolayers by modification with ethanethiol and nonanethiol.
The thicknesses of resulting MoS2 monolayers were 0.7 nm for MoS2-ethanethiol and 1.1 nm for
MoS2-nonanethiol. MoS2 monolayers were added to chlorobutyl rubber to prepare MoS2-butyl
rubber nanocomposites at concentrations of 0.5, 1, 3, and 5 phr. The tensile stress showed
a maximum enhancement of about 30.7% for MoS2-ethanethiol-butyl rubber and 34.8% for
MoS2-nonanethiol-butyl rubber when compared to pure chlorobutyl rubber. In addition, the
gas barrier properties were increased by 53.5% in MoS2-ethanethiol-butyl rubber and 49.6% in
MoS2-nonanethiol-butyl rubber. MoS2 nanosheets thus enhanced the mechanical and gas barrier
properties of chlorobutyl rubber. The nanocomposites that are presented here may be used to
manufacture pharmaceutical stoppers with high mechanical and gas barrier properties.

Keywords: layered structures; polymer-matrix composites; mechanical properties; gas
barrier properties

1. Introduction

Since the discovery of graphene, two-dimensional inorganic materials, such as MoS2, have
attracted great attention. MoS2 has a structure similar to that of graphite; two layers of sulfur and one
layer of molybdenum atoms in a sandwiched structure make up its hexagonal crystal lattice structure.
MoS2 is unreactive, unaffected by both acids and oxygen, and has a low coefficient of friction due
to weak van der Waals interactions between the layers. As such, it is widely used as a dry lubricant.
In addition, MoS2 can be exfoliated into nanolayers without the need for complex methods. MoS2

nanosheets have previously been utilized in transistors [1], biomaterials [2], and nanocomposites [3],
and can also be added to polymers as a filler material; because of the high band gap of MoS2, the
electronic properties of the polymer matrices are not changed. A common reason to add fillers to
polymers is to improve their mechanical properties. For example, polymer chains can interact with the
nanosheet surfaces, resulting in reinforcements in all directions from the nanosheets. For the latter, it is
important to fully exfoliate the two-dimensional inorganic materials to increase the surface area [4].

Many studies have reported the use of nanoscale fillers such as clay, reduced graphene oxide,
and MoS2 to improve the mechanical and gas barrier properties of polymer materials for a variety of
applications. For example, the optimal mechanical or barrier properties were observed for exfoliated
or intercalated polymer/clay nanocomposites, but using a high clay content of 5–10 wt % [5–7]. Clay
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is difficult to exfoliate due to the many cations in the spacing between the layers of the material.
In addition, clay is hydrophilic and cannot disperse well in hydrophobic polymers. However,
quaternary ammonium cation salt can usually act as modifiers to enable exfoliation and dispersion of
clay molecules in polymer matrices [8]. Graphene consists of two-dimensional sheets of sp2-bonded
carbon with a high specific surface area. Graphene-based nanocomposites play an important role
because of their favorable mechanical, electrical, and barrier properties. Their barrier properties, for
example, are much better than those of clay nanofillers [9–11]. Some applications require improvements
in the mechanical properties and thermal stability of a polymer matrix, while maintaining the polymer’s
electrical insulation properties. Graphene, as a highly conductive material, does not appear to be a
good filler material choice for such applications. In addition, fillers have to be uniformly dispersed
in a polymer matrix. However, exfoliation of graphene is still unpractical, with the most common
method involving the treatment of graphite with strong oxidizers to obtain exfoliated graphene oxide.
MoS2 exfoliation into nanosheets, on the other hand, can be achieved in a one-step, simple method
at low MoS2 loading rates, and is thus more economical. MoS2 nanosheets are therefore an excellent
alternative to clay and graphene-based materials for enhancing the properties of polymer matrices.
MoS2 has been reported as filler to manufacture photo-mechanical response material [12], gas selective
membranes [13], and supercapacitor [14].

Due to weak van der Waals interactions between the layers of bulk MoS2, MoS2 nanosheets
can easily be prepared by ultrasonication. A common method for the exfoliation of MoS2 involves
the use of lithium ions to intercalate the MoS2 nanosheets. However, it is hard to disperse MoS2

nanosheets in nonpolar polymers without modifying their surfaces with organic ligands. In previous
works, ultrasonicating bulk MoS2 powder produced a number of sulfur vacancies on the surface
of a MoS2 nanosheet, which were reported to act as targets for surface modification [15,16]. Here,
thiol compounds were selected as modifiers of MoS2 nanosheets to increase the affinity between the
nanosheets and polymer matrix. With a greater degree of MoS2 nanosheet dispersion, a greater degree
of reinforcement would be expected in the nanocomposite.

Chlorobutyl rubber is often used in tires, gas masks, and chemical agent packaging because of its
good mechanical and gas barrier properties. Unlike conventional butyl rubber, with a lack of double
bond on the backbone of polymer chain, the vulcanization of chorobutyl rubber is more efficiently.
The aim of this study was to enhance the mechanical and gas barrier properties of chemical agent
packaging materials, which require enhanced gas barrier properties for the storage of chemical agents.
For this reason, chlorobutyl rubber with added MoS2 was studied as a suitable material. Exfoliated
MoS2 nanosheets surface-modified by ethanethiol and nonanethiol to enhance their affinity to polymers
were expected to disperse well in chlorobutyl rubber and result in improved mechanical and gas
barrier properties. Herein, the effects of ethanethiol- and nonanethiol-modified MoS2 nanosheets are
compared for various MoS2 concentrations.

2. Materials and Methods

2.1. Materials

Chlorobutyl rubber (Mooney viscosity [ML1+8 100 ◦C]: ~41–49) was obtain from ExxonMobil
Chemical (Houston, TX, USA); MoS2 from Alfa Aesar (Haverhill, MA, USA); hexane from Fisher
Chemical (Hampton, NH, USA); ethanethiol from Sigma-Aldrich (St. Louis, MO, USA); nonanethiol
from Acros (Hampton, NH, USA); ethylenethiourea(2-mercaptoimidazoline) from Kawaguchi
Chemical Industry (Kawaguchi, Japan); and silicon dioxide (TOKUSIL 255, with surface area BET
177 m2/g) was obtained from OSC Group (Miaoli, Taiwan).

2.2. Exfoliation of MoS2

For the exfoliation of MoS2, 400 mg MoS2 powder and 20 mL hexane were mixed in 20-mL vials
and ethanethiol and nonanethiol were added to each vial. Ultrasonication to exfoliate MoS2 was
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applied in a bath for 24 h. After ultrasonication, the contents of the vials were allowed to settle, and
exfoliated MoS2 was obtained as the suspension.

2.3. Preparation of MoS2-butyl Rubber Nanocomposites

MoS2-butyl rubber nanocomposites were prepared with various MoS2 concentrations 0.5, 1, 3,
and 5 parts per hundreds of rubber (phr). The previously obtained MoS2 nanosheets were mixed
with chlorobutyl rubber and were dissolved in hexane under mechanical stirring for 1 h to achieve a
homogenous mixture. The hexane was then evaporated and the samples thus obtained were dried at
100 ◦C in a vacuum oven for 12 h to completely remove the solvent. The samples were compounded by
two-roll-mill with 20 phr silicon dioxide as a widely used filler for rubber to improve the wear resistance
and also acts as a reinforcing agent and using 0.5 phr ethylenethiourea(2-mercaptoimidazoline) as
the curing reagent. After compression molding at 185 ◦C at a pressure of 50 kgf/cm2 for 10 min,
MoS2-butyl rubber nanocomposite samples with dimensions of 15 cm × 15 cm and a 1-mm thickness
were obtained.

2.4. Characterization

The morphologies of the MoS2 nanosheets modified by ethanethiol and nonanethiol were
observed using a Tecnai™ G2 F-20 (Philips, Amsterdam, Netherlands) transmission electron
microscope (TEM). Raman spectra and Raman maps were obtained using an NRS5100 (JASCO,
Tokyo, Japan) spectrometer. Cross-sectional images were obtained using a JSM-6500F (JEOL, Tokyo,
Japan) scanning electron microscope (SEM); and, composite samples were cooled in liquid nitrogen
and cut by a scalpel to prepare the samples for backscattered electron (BSE) imaging. Atomic force
microscopy (AFM) was performed using a NX10 system (Park, Suwon, Korea). X-ray diffraction (XRD)
was performed using a D8 SSS (Bruker, Billerica, MA, USA). UV-Vis spectra were obtained using a
V-730 spectrometer (JASCO, Tokyo, Japan). Dynamic mechanical analysis was performed using a Q800
(TA Instruments, New Castle, DE, USA), while stress-strain curves were measured using a TS-2000
with a crosshead speed of 500 mm/min. The oxygen transmission rates were measured according to
the ASTM D3985 standard using the OX-TRAN 2/61 (Mocon Inc., Minneapolis, MN, USA) at 23 ◦C
and a relative humidity of 0%; film specimens of 5 cm in diameter and 1 mm in thickness were fixed
between two chambers, and oxygen filled the upper chamber while nitrogen filled the lower chamber.

3. Results and Discussion

3.1. Exfoliation of MoS2

Scheme 1 outlines the overall procedure for the preparation of the MoS2 nanosheets and the
production of MoS2-butyl rubber nanocomposites. The exfoliation of MoS2 was achieved by bath
ultrasonication of bulk MoS2 powder in hexane. It has previously been reported that this exfoliation
process can produce a number of structural defects, such as S vacancy defects [17,18]. Then, MoS2

nanosheets can be modified with thiol ligands. Ethanethiol and nonanethiol were used as the surface
modifiers in this study. The carbon chains of these two thiols were hypothesized to modify the surface
of MoS2 to enhance its compatibility with chlorobutyl rubber. The organic modification of the surface
and robust nature of the modifiers ensured good dispersion and a dramatically enhanced properties of
the polymer materials.
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nonanethiol was clearly visible in high-resolution TEM images (Figure 1c,d). It can be inferred that 
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indicate that the surface of MoS2 was successfully modified by ethanethiol and nonanethiol. 

Scheme 1. Schematic illustration for exfoliation modification of MoS2 and corresponding production
of chlorobutyl rubber-based nanocomposites.

The morphologies of MoS2 nanosheets modified by ethanethiol and nonanethiol are presented in
TEM images (Figure 1a,b). The hexagonal structure of MoS2 modified by ethanethiol and nonanethiol
was clearly visible in high-resolution TEM images (Figure 1c,d). It can be inferred that these
MoS2 nanosheets were either several layers thick or monolayers, because the hexagonal lattice
structure of MoS2 was visible. The latter indicates that the crystal structures of MoS2-ethanethiol and
MoS2-nonanethiol were retained during ultrasonication [19]. Raman spectra were used to confirm
the modification of the MoS2 nanosheet surfaces by ethanethiol and nonanethiol (Figure 2). Peaks
were seen at ~380 cm−1 (E1

2g, in-plane vibrations) and ~410 cm−1 (A1g, out-of-plane vibrations),
characteristic of the MoS2 trigonal structure. Peaks at ~680 and ~1100 cm−1, which indicate
carbon-sulfur (νcs) [20] and carbon-carbon bonds (νcc) [21], respectively, were noted for the modified
MoS2. These results indicate that the surface of MoS2 was successfully modified by ethanethiol
and nonanethiol.
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The thicknesses of the exfoliated nanosheets were monitored through AFM examination of the 
exfoliated samples. The thickness of bulk MoS2 was ~90–120 nm (Figure 3a), while that of MoS2-
ethanethiol was ~0.7 nm (Figure 3b) and that of MoS2-nonanethiol was ~1.1 nm (Figure 3c), values 
that correspond to that of ~0.65 nm in previous reports on the thickness of MoS2 monolayers [1]. The 
thicknesses obtained here being greater than the typical thickness of a single-layer MoS2 sheet may 
be attributed to thiol conjugation on the surface of MoS2 [22]. Blue-shifts of UV-Vis spectra are 
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Figure 2. Raman spectra of MoS2 and thiol-modified MoS2.

The thicknesses of the exfoliated nanosheets were monitored through AFM examination of
the exfoliated samples. The thickness of bulk MoS2 was ~90–120 nm (Figure 3a), while that of
MoS2-ethanethiol was ~0.7 nm (Figure 3b) and that of MoS2-nonanethiol was ~1.1 nm (Figure 3c),
values that correspond to that of ~0.65 nm in previous reports on the thickness of MoS2 monolayers [1].
The thicknesses obtained here being greater than the typical thickness of a single-layer MoS2 sheet
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may be attributed to thiol conjugation on the surface of MoS2 [22]. Blue-shifts of UV-Vis spectra are
dependent on changes in the band gap energy, which can be obtained from the wavelengths in UV-Vis
spectra from the following equation:

Band gap energy (E) = (hc)/λ (1)

where hc is Planck’s constant and λ is the wavelength. Bulk MoS2 is an indirect semiconductor with a
band gap of ~1.2 eV, which increases to ~1.8 and ~1.9 eV for monolayers of MoS2 [23,24]. To obtain the
optimum parameters for exfoliation, the number of MoS2 nanosheet layers was measured for various
concentrations of ethanethiol and nonanethiol by UV-Vis spectra (Figure 4). The MoS2-ethanethiol
sample in Figure 4a shows a blue-shift from 697 to 688 nm. The latter wavelength of 688 nm corresponds
to a band gap value of 1.80 eV. For MoS2-nonanethiol in Figure 4b, a blue-shift from 697 to 685 nm
can be observed. The latter wavelength of 685 nm corresponds to a band gap value of 1.81 eV. The
conditions to exfoliate MoS2 into monolayer involved the addition of 0.5 mL of either ethanethiol or
nonanethiol with 400 mg bulk MoS2 powder into 20 mL hexane. The exfoliation efficiency for MoS2

that was treated with nonanethiol was greater than that of MoS2 treated with ethanethiol.
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3.2. Characterization of MoS2-butyl rubber Nanocomposites

XRD was performed to characterize the obtained layered-structure materials and partially evaluate
the dispersion state of layered nanofillers in the polymer composites. XRD scans of the polymer
nanocomposites showed a nanofiller peak and a shift to a lower 2θ or larger d-spacing value when
compared to bulk MoS2. The peak shift indicates an expansion of the d-spacing of MoS2 nanosheets;
it was inferred that polymer chains had been intercalated in the MoS2 nanosheets. For completely
exfoliated layered nanofillers, no XRD peaks were expected for the nanocomposites, since they should
not show regular spacing of the sheets [25].

The XRD patterns (Figure 5) of the MoS2-butyl rubber nanocomposites confirm the intercalation
of chlorobutyl rubber in the MoS2 nanosheet interlayers by showing a decrease in 2θ value as the
concentration of MoS2 increased. The (002) peak of pure MoS2 was at 2θ = 14.44◦, corresponding
to a d-spacing value of 0.3088 nm. After adding MoS2 to chlorobutyl rubber, the 2θ peak of
the (002) plane shifted to lower angles, associated with intercalation in nanocomposites. For
MoS2-ethanethiol-butyl rubber, the peak at 2θ = 14.44◦ (d = 0.3088 nm) for 0 phr shifted to 2θ = 14.40◦

(d = 0.3097 nm), and 2θ = 14.38◦ (d = 0.3102 nm) for the samples with 3 and 5 phr MoS2, respectively.
For MoS2-nonanethiol-butyl rubber, the peak was at 2θ = 14.36◦ for the 0.5-phr sample, which indicates
that the d-spacing of MoS2 increased when MoS2 nanosheets were inserted into the chlorobutyl rubber
chains. The latter illustrates that, between the exfoliation and intercalation, the nanocomposites can
be driven toward full exfoliation by decreasing the content of MoS2 nanosheets. The greater shift
at low concentrations indicates that nonanethiol is a more suitable modifier for MoS2 exfoliation
than ethanethiol.
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Figure 5. X-ray diffraction (XRD) patterns of MoS2-butyl rubber nanocomposites: (a) MoS2-ethanethiol-
butyl rubber and (b) MoS2-nonanethiol-butyl rubber.

The SEM-BSE images (Figure 6) of MoS2-butyl rubber nanocomposite cross-sections demonstrate
the dispersion of MoS2 nanosheets in chlorobutyl rubber obtained at different concentrations. These
micrographs confirm that, at higher concentrations, i.e., 3 and 5 phr, big clusters of agglomerated
ethanethiol- and nonanethiol-modified MoS2 were present. At lower concentrations, i.e., 0.5 and 1 phr,
on the other hand, MoS2 was homogeneously dispersed in chlorobutyl rubber.
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Figure 6. Scanning electron microscope backscattered electrons (SEM-BSE) cross-sectional images
for MoS2-butyl rubber with different concentrations of MoS2 with either ethanethiol or nonanethiol:
(a) 0.5 phr, ethanethiol; (b) 1 phr, ethanethiol; (c) 3 phr, ethanethiol; (d) 5 phr, ethanethiol; (e) 0.5 phr,
nonanethiol; (f) 1 phr, nonanethiol; (g) 3 phr, nonanethiol; and, (h) 5 phr, nonanethiol.

The typical Raman peaks for MoS2-butyl rubber nanocomposites are shown in Figure 7. The
peaks at ~380 and ~410 cm−1 correspond to MoS2, while the peaks at ~720, ~820, ~910, and
~1080 cm−1 correspond to chlorobutyl rubber. Raman mapping (Figure 8) was used to further
confirm the dispersion state of MoS2 nanosheets at different MoS2 concentrations. Figure 8 shows the
intensity maps of the A1g peak (~410 cm−1) of MoS2 for nanocomposites with different concentrations
of modified MoS2 nanosheets. The Raman mapping images correspond well with the SEM-BSE
images (Figure 6). At low concentrations of MoS2 nanosheets, their distribution was uniform,
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which implies homogeneous dispersion in chlorobutyl rubber. As the MoS2 loading increased,
however, agglomeration and clustering behavior of the MoS2 was visible, illustrating poor dispersion.
Nonetheless, due to their conjugation with ethanethiol or nonanethiol, MoS2 nanosheets could
disperse homogeneously in chlorobutyl rubber at low concentrations. As shown in Figure 6,
MoS2-nonanethiol-butyl rubber had a more uniform appearance than MoS2-ethanethiol-butyl rubber;
at 5 phr MoS2, in particular, the clustering for MoS2-ethanethiol-butyl rubber was more pronounced
than for MoS2-nonanethiol-butyl rubber.
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(d) 5 phr, ethanethiol; (e) 0.5 phr, nonanethiol; (f) 1 phr, nonanethiol; (g) 3 phr, nonanethiol; and,
(h) 5 phr, nonanethiol.

3.3. Tensile Properties of MoS2-butyl Rubber Nanocomposites

The stress-strain curves (Figure 9) for neat chlorobutyl rubber and MoS2-butyl rubber
nanocomposites show that the tensile strength of the chlorobutyl rubber matrix increased upon MoS2

nanosheet loading. Furthermore, the elongation at break of MoS2-nonanethiol-butyl rubber was about
14.4% higher than that of MoS2-ethanethiol-butyl rubber. The maximum increase in tensile strength for
MoS2-ethanethiol-butyl rubber was about 30.7% for a MoS2 content of 3 phr. In MoS2-nonanethiol-butyl
rubber, likewise, the tensile strength was increased by about 34.8% for 1 phr MoS2 as compared to
that of the control sample. Therefore, the maximum increase in tensile strength was obtained for
MoS2-nonanethiol-butyl rubber instead of MoS2-ethanethiol-butyl rubber. The significant increase
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in tensile strength reached a peak at a loading of 3 phr for MoS2-ethanethiol-butyl rubber and of
1 phr for MoS2-nonanethiol-butyl rubber. At higher MoS2 nanosheet contents, the tensile strength
decreased again. The latter observations may be ascribed to the aggregation of MoS2 nanosheets in the
chlorobutyl rubber matrix, which is known to cause a decrease in tensile strength for rubber [26]. It is
obvious from these results that MoS2 nanosheets can significantly improve the strength of chlorobutyl
rubber, possibly due to the high strength of MoS2 nanosheets, better interactions between MoS2

nanosheets and the polymer matrix, and/or a more uniform dispersion of MoS2 nanosheets in the
chlorobutyl rubber matrix due to abundant thiol groups on the MoS2 nanosheet surfaces.
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3.4. Dynamic Mechanical Analysis of MoS2-butyl Rubber Nanocomposites

For MoS2-ethanethiol-butyl rubber, the storage modulus (Figure 10a) is a measure of its stiffness
and the elastic of material that means the ability to recover pristine shape, and it a little increased for
all the MoS2-butyl rubber nanocomposites in rubbery region compared to pure chlorobutyl rubber but
no significant increment in glassy region. In rubbery region, the nanocomposite containing 0.5 phr
MoS2 nanosheets exhibited the highest modulus value. MoS2-nonanethiol-butyl rubber also showed
an increase in the storage modulus (Figure 10b), with an increase in the content of MoS2 nanosheets,
except for 0.5 phr, and reached the highest modulus value for 3 phr. These results indicate that MoS2
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The tan(δ) values of MoS2-ethanethiol-butyl rubber are shown in Figure 10a. For all of the samples
of MoS2-ethanethiol-butyl rubber, shifts to lower temperatures were observed when compared to the
0 phr sample. MoS2 intercalated in chlorobutyl rubber may act as a lubricant, which leads to lowering
of the glass transition temperature [27]. The tan(δ) values of MoS2-nonanethiol-butyl rubber are shown
in Figure 11b; similar shifts to lower temperatures can be seen, again indicating intercalation of MoS2

nanosheets in the chlorobutyl rubber. The barrier effect of the nano-flakes restricting the motion of the
polymer chains in the nanocomposites can be ascribed to the MoS2 nanosheets.
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3.5. Gas Barrier Properties of MoS2-butyl Rubber Nanocomposites

The barrier properties of polymers can be significantly altered by including sufficient inorganic
platelets to alter the path of gas molecules (Scheme 2) [4]. The oxygen transmission rate (OTR) (Table 1)
of each MoS2-butyl rubber nanocomposite was measured at 25 ◦C using the method outlined by
ASTM D3985. When compared to that of pure chlorobutyl rubber, the OTR of MoS2-ethanethiol-butyl
rubber decreased dramatically to 42.3 cc/m2-day at the MoS2 nanosheet concentration of 0.5 phr.
The OTR of MoS2-nonanethiol-butyl rubber decreased to 47.2 cc/m2-day at 0.5 phr, and thereafter
decreased slowly at higher concentrations. The barrier performance for all MoS2-butyl rubber
nanocomposites could be improved markedly by the application of a small amount of organic-modified
MoS2. Moreover, there was little difference between the gas barriers of MoS2-ethanethiol-butyl rubber
and MoS2-nonanethiol-butyl rubber, since the surface areas of MoS2-ethanethiol and MoS2-nonanethiol
nanosheets were too small to retard the pathway of gas molecules. There are two reasons behind
the enhancement of the gas barrier properties of the MoS2-butyl rubber nanocomposites. First, MoS2
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through the composite. Secondly, the diffusion coefficient of the gas molecules decreases because MoS2

nanosheets strongly restrict the motion of the polymer chains [7].
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Table 1. Oxygen transmission rates (OTRs) of MoS2-butyl rubber nanocomposites.

MoS2-ethanethiol-butyl rubber (cc/m2-day) MoS2-nonanethiol-butyl rubber (cc/m2-day)

0 phr 90.9 90.9
0.5 phr 42.3 47.2
1 phr 48.2 46.8
3 phr 44.6 45.8
5 phr 43.7 46.5

4. Conclusions

In conclusion, we have demonstrated that MoS2 nanosheets are an excellent filler material
to enhance the tensile properties of chlorobutyl rubber. Ethanethiol and nonanethiol played an
important role in modifying the surface of MoS2 nanosheets. Using thiol modification of nanosheets
helped to obtain MoS2 monolayers with a thickness of ~0.8–1 nm, a key feature of MoS2 nanosheets
intercalated in chlorobutyl rubber. The obtained MoS2 nanosheets were dispersed homogeneously
in chlorobutyl rubber due to the thiol ligands modifying MoS2 to enable greater affinity between
MoS2 and chlorobutyl rubber. Due to the high stiffness of the MoS2 nanosheets, MoS2 improved the
mechanical properties of chlorobutyl rubber in tensile test, but not significantly in storage modulus.
On the other hand, the gas barrier was improved dramatically, although similarly for MoS2-ethanethiol-
and MoS2-nonanethiol-butyl rubber. These results offer new opportunities utilizing nanocomposites of
polymers and MoS2. Controlling the dimensions of MoS2 nanosheets remains a challenge. Therefore,
improved techniques are necessary to produce MoS2 nanosheets of appropriate sizes, which can then
achieve their full potential in polymer nanocomposites.
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