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A B S T R A C T   

Nicotinic acetylcholine receptors (nAChRs) play an important role in homeostasis and respiratory diseases. 
Controversies regarding the association between COVID-19 hospitalizations and smoking suggest that nAChRs 
may contribute to SARS-CoV-2 respiratory syndrome. We recently detailed the expression and localization of all 
nAChR subunits in the human lung. Since virus association with nAChRs has been shown in the past, we hy-
pothesize that nAChR subunits act as SARS-CoV-2 Spike co-receptors. Based on sequence alignment analysis, we 
report domains of high molecular similarities in nAChRs with the binding domain of hACE2 for SARS-CoV-2 
Spike protein. This hypothesis supported by in silico pilot data provides a rational for the modelling and the in 
vitro experimental validation of the interaction between SARS-CoV-2 and the nAChRs.   

Background 

Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is 
responsible for the global pandemic of coronavirus disease 2019 
(COVID-19) [1,2]. Understanding its structure and molecular interactors 
are crucial to explain the transmission, viral infection, and replication 
[3]. Recent controversies regarding the impact of smoking on COVID-19 
pointed to the potential role of nicotinic acetylcholine receptors 
(nAChRs) in human angiotensin converting enzyme-2 (hACE2) inter-
action with SARS-CoV-2 [4,5]. A similar convergence was established 
regarding the association of nAChRs with rabies virus where the binding 
was ultimately experimentally demonstrated a few decades ago [6–10]. 

Since it has been proposed that nAChRs may play a key role in the 
SARS-CoV-2-mediated inflammatory syndrome [11,12], additional av-
enues are currently explored considering that: (i) nAChRs are widely 
expressed in organs targeted by the virus including lung, nose, brain, 
gastrointestinal tract, liver, and smooth muscles [13,14]; (ii) nAChRs are 
also present on endothelial and platelet cells [15] while altered endo-
thelial function induces vascular thrombosis and microangiopathy in 

COVID-19 [16,17]; (iii) nAChRs are involved in angiogenesis and arte-
rial diseases [18], while significant vascular angiogenesis was found in 
lungs from patients who died from COVID-19 [19]. 

The hypothesis 

It was recently suggested that smoking may promote cellular uptake 
mechanisms of SARS-CoV-2 through CHRNA7 signalling [20], and 
subsequently, CHRNA7 transcripts were correlated with hACE2 levels 
[21], feeding the possible connections between hACE2 and nAChR lo-
calizations in airway epithelial cells. In addition, in silico analysis of 
nAChR ligands suggested an interaction between SARS-CoV-2 and 
nAChRs [22–24], while nicotine exposure may facilitate SARS-CoV-2 
infection in vitro [25]. Nicotinic receptors are ligand-gated ion chan-
nels consisting of 5 membrane-spanning subunits selected from 16 
proteins (CHRNA1-A7, A9-A10, B1-B4, D, E, G) that all harbour at least 
one extracellular domain of approximately 200 residues. Going one step 
further, we suggest that nAChRs may bind to SARS-CoV-2-RBD (Re-
ceptor Binding Domain) similar to hACE2 and potentially act as co- 
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receptors for SARS-CoV-2-RBD at least in the airways where we docu-
mented the complete atlas of pulmonary nAChR subunits in terms of 
transcript expression and protein localization [26]. Transcripts of all 16 
subunits were detected in airway epithelial cells or whole lung tissues 
and only subunits α1/α2/α4/β3/γ were not observed via immunofluo-
rescent stainings performed on formalin-fixed paraffin-embedded lung 
tissues. 

Empirical data 

The N-terminal domain of hACE2 binding to the spike (S) glyco-
protein SARS-CoV-2-RBD and SARS-CoV-1-RBD has been characterized 
recently [27–30]. Twenty-four hACE2 residues were shown to interact 
with 21 SARS-CoV-2-RBD residues (region K417 to Y505) and 18 SARS- 
CoV-1-RBD residues (region R426 to Y491) organized in 4 motifs on 
hACE2 (Fig. 1A and B). 

Postulating that nAChRs may contain extracellular hACE2-like re-
gions mimicking their interactions with SARS-CoV-2, and since struc-
tural data of the 16 nAChR subunits are incomplete, we performed 
bioinformatics analysis using the Clustal Omega program (Uniprot) to 
align each of the 16 nAChR subunits’ extracellular topological domain 
protein sequences with the 4 motifs containing the binding residues of 
hACE2 with SARS-CoV-1 and 2. We identified identical residues in the 4 
regions of interests (ROI) as well as conservations between groups of 
similar properties with a particular focus on residues located within van 
der Waals (vdw) contact distance between the viral ligand and the re-
ceptor (24 red residues, Figs. 1 and 2). 

Key residues to form a solid network between hACE2 and SARS-CoV- 
2-RBD are localized in the motif-1 (S19-Q42) and the motif-4 (K355- 
R357). The last residue (R393) was not included in the analysis since it 
was not in the proximity of other key residues involved in complex 
formation (Fig. 1). Interestingly, CHRNA2/A4/A6/A7/A10/B1 pre-
sented no overlaps for the 4 motifs (Fig. 2 and Table 1). 

We established a score based on the percentage of matching residues 
either in the entire proposed binding region or solely considering the 
residues involved in vdw contacts (Table 1). Each of the nAChR subunits 
presented on average 68.5% ([59.1–81.8]) of resemblance with hACE2 
binding regions to SARS-CoV-2-RBD and 64.4% ([47.8–73.9]) solely 
taking into account vdw contacts. The best scores for the 2 parameters 
were obtained by CHRNA6 (61.4%/73.9%), and CHRNB1 (81.8%/ 
69.5%) (Fig. 2 and Table 1). Most of nAChRs possessed mutations in the 
possible binding domains where a loss or a strong inhibition of the 
interaction with SARS-CoV-1 and 2 was reported (Table 1, [31]). 
Mutagenesis might favour a beneficial role of nAChRs if they were found 
to bind SARS-CoV-2 but their levels of expression and specific locali-
zations in various tissues weigh up the pros and cons in a complex and 
not fully elucidated biological scale. 

Consequences of the hypothesis and discussion 

Although these findings do not demonstrate that nAChRs can func-
tion as co-receptors for the ligand SARS-CoV-2-RBD, here we report a 
significant molecular similarity between hACE2 binding sites and 
extracellular domains of nAChRs. Structural biology to match protein 
structures in 3D would ideally complement this bioinformatics analysis 
but crystallized structures of all human nAChR subunits are currently 
not fully resolved. Notably, the protein folding of nAChRs subunit 
should reveal the critical residues to allow the interaction with SARS- 
CoV-2-RBD. In addition, nAChRs function as pentamers, the 
complexity of the composition of the channel may also contribute to the 
potential interaction between SARS-CoV-2 and one of the subunits 
where binding would be possible. Interestingly, CHRNA6 and CHRNB1 
transcripts were highly expressed in lung tissues and small airway 
epithelial cells, and the proteins were strongly detected in bronchi 
strengthening the possibility of the direct interaction between nAChR 
subunits and SARS-CoV-2 [26]. 

Although we focus here on similarities of a potential binding domain 
with hACE2, we do not exclude the possibility that SARS-CoV-2 may 
interact with alternative domains on nAChRs. The hypothesis of SARS- 
CoV-2 binding to nAChRs was originally based on the identification of 
similar known nAChR antagonist/agonist motif sequences on SARS- 
CoV-2 spike protein. This possible interaction has been sparsely dis-
cussed in silico [22,23,32]. Finally, although several pentamers are 
functionally characterized in the nervous system or muscles, the asso-
ciation of subunits in the airways is only partially elucidated and re-
quires further investigations in the context of COVID-19 [26]. 
Conversely, nAChRs may play a role in COVID-19 progression beyond 
the respiratory system including systemic inflammation and the nervous 
system. 

The modulation of nAChRs in the lung may increase pro- 
inflammatory cytokine production, a process potentially leading to the 
“cytokine storm” during infection [33,34]. Moreover, α7 nAChR has 
been involved in the control of inflammation associated with influenza 
virus infection [35]. nAChR can also control COVID-19 physiopathology 
by modulating the Renin-Angiotensin System (RAS) [36]. This nicotine- 
induced imbalance of the two arms of the RAS is likely responsible for 
cardio-vascular dysfunction, and acute/chronic lung diseases associated 
with severe forms of COVID-19. 

The potential neurotropism of SARS-CoV-2 has been discussed 
extensively. SARS-CoV-2 has been identified in the brain of patients 
[37]. There is by now a substantial amount of literature, and cases, that 
link neurological and psychiatric sequelae of COVID-19 to an implica-
tion of the human brain. The current state of the discussion has been 
reviewed [38]. Of specific interest is a recent description of a case of 
Parkinson’s Disease directly linked to the infection [39]. The working 
hypothesis is that SARS-CoV-2 infection can be a trigger precipitating 
the onset of neuropathology. Nicotinic acetylcholine receptors (nAChRs) 

Fig. 1. hACE2 binding motifs to SARS-CoV-1 and 2 sequences. (A) Localizations of motifs 1 to 4 on hACE2 sequence (Q9BYF1) are highlighted in orange, blue, 
purple, and green respectively. Red residues are residues involved in van der Waals contact distance between hACE2 and SARS-CoV-1 and 2. Framed residues 
correspond to residues that are either interacting with SARS-CoV-2-RBD only (E35) or SARS-CoV-1-RBD only (Q325, E329). The residue highlighted in yellow 
corresponds to the 24th residue involved in van der Waals contact distance but not in the immediate proximity of other residues involved in the binding, therefore it 
was not included in the analysis. (B) The crystal structure (Protein Data Bank: 6M0J) shows the 4 motifs highlighted in (A) with similar colour codes. The crystal 
structure of SARS-CoV-2 spike receptor-binding domain bound with hACE2 (PDB ID: 6M0J [52]) was highlighted and exported from the viewer of the Research 
Collaboratory for Structural Bioinformatics (RCSB; www.rcsb.org). 

V. Dormoy et al.                                                                                                                                                                                                                                

http://www.rcsb.org


Medical Hypotheses 158 (2022) 110741

3

are important transmembrane neurotransmitter receptors for acetyl-
choline in the mammalian brain [40]. They modulate key neuronal 
functions such as excitability, synaptic transmission, and plasticity. They 
can change neuronal network states and consequently whole-brain re-
sponses to internal and external inputs and have been linked to disease 
[41]. They are also exogenously activated by nicotine and are respon-
sible for the events leading to nicotine addiction [42]. The predominant 
receptors in the brain are α4β2* containing hetero-, and (α7)5 homo- 
pentamers [43]. Being particularly expressed in the cortex, hippocam-
pus, and dopaminergic reward system [44], these receptors are 
considered to be important drug targets [45]. The α6 and α5-containing 
receptors are more restricted, but still very present in sub-cortical 

modulatory areas. The presence of SARS-CoV-2 in the brain paren-
chyma can therefore potentially interfere with higher cognitive func-
tion. nAChRs are potentially implicated in the penetration of SARS-CoV- 
2 into the central nervous system, as they are expressed in many nerve 
endings [46]. The olfactory route has been established in previous types 
of coronaviruses able to enter nerve endings and use retrograde axonal 
transport [47]. A possibility is also the vagus nerve. It is well established 
that it contains most nAChR subunits [48]. 

According to each individual clinical context including but not 
limited to respiratory diseases and smoking history [49,50], nAChR 
binding to SARS-CoV-2-RBD may facilitate virus attachment to cell 
surface before virus entry, or serve as a decoy either harmful as it would 

Fig. 2. Clustal alignment of nAChRs with hACE2 binding motifs. Data from the UniProt Knowledgebase (UniProtKB, [53]) were used to perform a sequence 
alignment study of matching residues between hACE2/SARS-CoV-2 binding sites and nAChR protein sequences. The UniProtKB/Swiss-Prot accession numbers of the 
sequences used for analyzing the similarities are the following: ACE2 (Q9BYF1), CHRNA1 (P02708), CHRNA2 (Q15822), CHRNA3 (P32297), CHRNA4 (P43681), 
CHRNA5 (P30532), CHRNA6 (Q15825), CHRNA7 (P36544), CHRNA9 (Q9UGM1), CHRNA10 (Q9GZZ6), CHRNB1 (P11230), CHRNB2 (P17787), CHRNB3 (Q05901), 
CHRNB4 (P30926), CHRNG (P07510), CHRNE (Q04844), CHRND (Q07001). Motifs 1 to 4 were aligned with the 16 nAChR sequences to identify molecular sim-
ilarities. The nAChR extracellular topological domains’ subunit sequences are represented with the partial alignment obtained with Clustal for the 4 motifs. *, 
position with a single fully conserved residue; :, position with a residue showing conservation between groups of strongly similar properties (scoring > 0.5 in the 
Gonnet PAM 250 matrix); ., position with a residue showing conservation between groups of weakly similar properties (scoring =<0.5 in the Gonnet PAM 
250 matrix). 
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prevent the binding of acetylcholine, or beneficial as it would dampen 
the virus load that may infect epithelial cells [51]. Structural biology 
and functional analysis on SARS-CoV-2-RBD in complex with nAChRs 
subunits alone or as pentamers is required to resolve the possible in-
teractions and unveil additional therapeutic strategies. 
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