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Multiscale causal networks identify VGF as a key
regulator of Alzheimer's disease
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Though discovered over 100 years ago, the molecular foundation of sporadic Alzheimer's
disease (AD) remains elusive. To better characterize the complex nature of AD, we constructed
multiscale causal networks on a large human AD multi-omics dataset, integrating clinical
features of AD, DNA variation, and gene- and protein-expression. These probabilistic causal
models enabled detection, prioritization and replication of high-confidence master regulators of
AD-associated networks, including the top predicted regulator, VGF. Overexpression of neu-
ropeptide precursor VGF in 5xFAD mice partially rescued beta-amyloid-mediated memory
impairment and neuropathology. Molecular validation of network predictions downstream of
VGF was also achieved in this AD model, with significant enrichment for homologous genes
identified as differentially expressed in 5xFAD brains overexpressing VGF. Our findings support
a causal role for VGF in protecting against AD pathogenesis and progression.
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ate-onset Alzheimer’s disease (AD) results in progressive

loss of cognitive function and memory, affects more than 5.8

million Americans, and its incidence is projected to double
in the next 20 years!. The brains of AD patients have hallmark
senile plaques in the neuropil and around brain blood vessels,
composed of accumulated amyloid beta (AP) and neurofibrillary
tangles (NFT) inside neurons, which comprises microtubule-
associated hyperphosphorylated Tau protein®. While therapeutic
strategies targeting AP and Tau pathologies have been aggres-
sively pursued, failure to deliver efficacious treatments has
increased the urgency to identify different mechanisms under-
lying AD, including a focus on the immune system, through
microglial cells, that has been shown to play a key role in AD3-°.

Genome-wide association studies (GWAS) have identified over
20 AD risk loci falling mainly in noncoding regions of the gen-
omel0-13, revealing a complex neurobiology with no single
genetic cause. For most AD risk loci, target gene(s) and their
pathways are difficult to identify and validate, and the broader
networks they form remain largely uncharacterized. Integrative
biology approaches, combining large-scale, high-dimensional
data (e.g, DNA variation, and gene and protein expression)
generated in disease and control cohorts, complement GWAS-
like approaches by employing advanced computational modeling
techniques that incorporate multiple levels of data into prob-
abilistic causal models of disease (or wellness). These enable
molecular traits correlated with disease to be distinguished from
those that are causally related (Supplementary Table 1). These
causal relationships can be inferred with enhanced power by
incorporating DNA-based variations (expression quantitative
trait loci, eQTL) as a systematic perturbation source (Supple-
mentary Table 1). By integrating DNA variation with additional
types of molecular and clinical data, more complex, holistic
models of disease can be constructed and mined to elucidate
regulatory and mechanistic drivers of disease and points of
therapeutic intervention.

Here, we employed probabilistic causal reasoning to organize
different scales of data (DNA, RNA, protein, and clinical data)
generated as part of the Accelerating Medicines Partnership-AD
(AMP-AD; https://www.synapse.org/#!Synapse:syn2580853/wiki/
409840) on a population of late-onset AD individuals and con-
trols, to construct a predictive “multiscale” network model of AD
that provides a comprehensive characterization of the complex
architecture of AD in the human brain. Causal links among nodes
comprising these multiscale networks can be mined to identify
gene- or protein-expression traits whose changes in expression
are predicted to modulate network states driving AD. Identifi-
cation of these causal regulators of disease networks provides an
objective, data-driven way to uncover novel key drivers (KDs) of
disease. Strikingly, among the KDs we identified was VGF, a
nerve growth factor (NGF) and a brain-derived neurotrophic
factor (BDNF)-inducible gene encoding a protein and neuro-
peptide precursor, the actions of which are in part BDNF/TrkB
dependent!415, Although VGF has been reported to regulate fear
and spatial memories in mouse models!41¢17, and has previously
been shown to correlate with AD (VGF-derived peptides are
reduced in cerebral spinal fluid (CSF) of AD patients)!8-22, VGF
has not previously been causally associated with AD. We deter-
mined through our network models that VGF was the only
downregulated KD for AD that was conserved across the RNA,
protein, and combined RNA and protein networks we con-
structed. We replicated these findings in other brain regions?3
and in an independent dataset?»2, and observed association of
VGF expression to the genome-wide risk for AD in the I-GAP
(The International Genomics of Alzheimer’s Project) AD
GWAS!0, Utilizing three independent models of VGF over-
expression in the 5XFAD mouse model of familial AD (FAD), we

provide molecular and functional validation of our multiscale
causal network analyses, and conclude that VGF is a KD of AD
pathophysiology, and that VGF-linked genes and clinical features
provide novel insights into the mechanisms underlying AD risk
and pathogenesis.

Results

Overview of strategy. Our overall strategy for elucidating the
complexity of AD is depicted in Fig. 1 (and in Supplementary
Fig. 1) and is centered on the objective, data-driven construction
of causal network models of AD that can be queried to identify
components associated with AD. The causal regulators mod-
ulating the state of these AD-associated network components can
be readily identified from the network model. We previously
developed and applied network reconstruction algorithm, RIM-
BANET, which statistically infers causal relationships between
DNA variation, gene expression, protein expression, and clinical
features scored in hundreds of individuals (Supplementary
Table 1). The inputs required for these analyses are molecular
(i.e., genotype and gene or protein expression) and clinical data,
and direct relationships between them, such as QTLs and causal
relationships among traits inferred by causal mediation analysis
that uses mapped QTL as a source of perturbation. These rela-
tionships are input to the network construction algorithm as
constraints on the network topology (referred to as structure
priors), boosting the power to infer causal relationships at the
network level (Supplementary Table 1).

The Mount Sinai Brain Bank (MSBB) Study population and
data quality control. AD and control populations profiled in this
study are part of the MSBB23. From the >2000 participants within
MSBB, 143 definitive AD cases were selected, along with 135
possible and probable AD cases, and 86 non-demented controls?3
(Supplementary Data 1). The selection criteria were neuro-
pathological evidence of AD by CERAD (Consortium to Establish
a Registry for Alzheimer’s Disease)?¢ classification or no neuro-
pathological evidence of AD. Donors with neuropsychiatric dis-
ease and/or comorbid neurodegenerative diseases, and/or
neuropathologically significant cerebrovascular disease, were
excluded. DNA, RNA, and protein were isolated from BM10 for
molecular profiling (Fig. 1b). The DNA- and RNA-sequencing
(RNA-seq) data were processed using standard pipelines,
including quantification of gene expression, variant detection,
and quality control (QC) for the RNA-seq data?’ (“Methods”).

Identifying an AD-centered gene set to construct a causal
model of AD. To construct AD-centered causal network models,
we constrained the number of inputs into the reconstruction
process to those supported by the MSBB data as associating with
AD. This reduction in dimensionality also provided a computa-
tionally tractable path for the network constructions. We first
identified gene- and protein-expression traits associated with AD
(Fig. 1b). To cast the most comprehensive net for AD-associated
features, we examined the association between molecular-
expression traits and clinical/neuropathological features used to
characterize AD. Given the complexity of AD, six clinical and
neuropathologic characteristics were used to define the severity of
disease in patients, including clinical staging with clinical
dementia rating (CDR), pathological staging of NFTs or Braak
score (bbscore), clinical neuropathology diagnosis (PATH.Dx),
CERAD neuropath criteria (CER]J), neuropathology cate-
gory (NP-1), and mean cortical neuritic plaque density (Plaque-
Mean). We characterized differences and similarities specific to
each of these disease traits by examining their canonical corre-
lation structure with one another in the MSBB population
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Fig. 1 Pipeline overview. Large-scale, high-dimensional datasets generated in hundreds of subjects serve as the input into our integrative pipeline (a),
which comprises a series of steps that first generate the appropriate input features for causal network reconstructions (b, €), then network reconstruction
and identification of key driver genes (d), and finally validation via three independent paths: replication (e), human genetic association (f), and

experimental disease model (g).

(Fig. 2a). While they were highly correlated, visible variation
among them highlights their complementary nature, with non-
overlapping signals that may represent different aspects or sub-
types of AD (Fig. 2a). Thus, we constructed differential
expression (DE) signatures for each of these clinical AD features.

As defined in Supplementary Table 2, we computed DE
signatures for AD by comparing controls against individuals with
any level of dementia or pathology, and then controls against
individuals with neuropathologically proven AD (definite AD).
This way, we generated signatures across the range of disease. We
detected significant DE signatures at a false discovery rate (FDR)
<0.05 for most traits across the disease spectrum (Figs. 1b and
2b). The PlaqueMean disease trait generated the largest DE
signature (Fig. 2¢, d), with Gene Ontology (GO) term “respiratory
electron transport chain” (fold enrichment (FE) =4.9, FDR =
4.42e —5) as the most enriched pathway. From the log fold-
change (log(FC)) distribution (Fig. 2c) of PlaqueMean signature,
the gene VGF, NGF inducible, has the largest negative log(FC)
(more highly expressed in controls than cases). VGF was
previously shown to be downregulated in patients with FAD?8,
which is consistent with our findings here. DE signatures for
other disease traits (Supplementary Data 2) are depicted in
Supplementary Fig. 2a.

We also ran DE analysis to identify AD signatures from the
protein-expression data (Fig. 2e, Fig. 1b, Supplementary Fig. 2b)

and found that significant associations were identified for all AD
clinical features, with PlaqueMean giving rise to the most
significant signature (Fig. 2e). For each clinical and neuropatho-
logical trait, the protein with the highest log(FC) was A (mass
spectrometry measurement, referred throughout the paper as
Ap), followed by other known AD proteins such as MAPT,
GFAP, HSPB1, RPH3A, SYT1, and PADI2 (Supplementary
Table 3). Strikingly, as with the gene DE signature, the protein
with the lowest log(FC) was VGF, highlighting the strong
dysregulation of the gene/protein product in AD brains (Fig. 2f).
Several protein DE signatures were enriched for GO terms
(Fig. 2d), with “cellular respiration” as the most significant
one for the PlaqueMean protein DE signature (FDR = 8.3e — 15,
FE =2.4). Electron transport chain and AD KEGG (Kyoto
Encyclopedia of Genes and Genomes) pathways from MsigDB
(The Molecular Signatures Database) and KEGG databases,
respectively, were also significantly enriched for the PlaqueMean
protein DE signature (Fig. 2g, Supplementary Data 2).

To validate the AD signal contained within our data, we
compared our DE results to previously published AD gene- and
protein-expression signatures, assembling published study-
specific sets of DE for significantly up- and downregulated genes
and proteins (Supplementary Table 1). Supplementary Figure 2c
(genes) and 2d (proteins) shows the FEs of our DE products for
published AD signatures, readily recapitulating them and their
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directionality. Additionally, despite the low number of loci
associated with AD in the latest AD GWAS!3, DE signals for a
subset of our AD traits for both genes and proteins are enriched
for GWAS mapped genes and for all genes in topologically
associated domains that contain the genome-wide significant loci
(Supplementary Fig. 2c, d), thereby confirming the validity of our
signal.

The union of genes and of proteins across all DE signatures
(788 genes and 1016 proteins at FDR < 0.05, respectively) formed
preliminary sets of AD-associated input features for network
reconstructions. Only 55 features overlapped between these two
signatures, demonstrating the highly complementary nature of
gene- and protein-expression data. These resulting sets of 788
genes and 1016 proteins are referred to as the AD DE
signature sets.

DE analyses provide the most straightforward way to uncover
patterns of expression associating with AD; however, power is
limited with respect to small to moderate expression differences.
To complement DE analysis to identify AD-associated genes, we
clustered genes and proteins into data-driven, functional
biological groups by constructing gene and protein co-
expression networks (GCN and PCN), which have enhanced
power to detect co-regulated sets of genes (modules) likely to be
involved in common biological processes. Co-expression modules
enriched for genes associated with AD implicate all genes in said
module as potentially AD associated, even if they were not
identified as DE.
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The GCN was comprised of 24,865 genes and 29 modules
(Fig. 1b, Supplementary Data 3), while the PCN consisted of 2692
proteins organized into nine modules (Fig. 1b, Supplementary
Data 3), with most modules (26 and 8, respectively) having
significant GO term enrichments at a Bonferroni-adjusted p value
<0.05 (Fig. 3a, c). To assess which sets of modules were associated
with AD, we projected the DE signature sets onto the G/PCN
modules (Figs. 1b and 3b, d). We identified four modules from
the GCN with significant enrichment for the gene AD DE
signature set (Fig. 3b) and for GO terms “induction of positive
chemotaxis” (greenyellow, FDR = 3.0e — 2), “histone modifica-
tion” (peru, FDR=1.7e —3), “mitochondrion organization”
(pink, FDR=1.9e —5), and “synaptic transmission” (yellow,
FDR =1.6e — 5) (Supplementary Data 3). For the PCN, we
identified three modules enriched for the protein AD DE
signature set (Fig. 3d) and for “synaptic transmission” (blue,
FDR = 4.6e — 15), “response to molecule of bacterial origin”
(green, FDR = 5.9¢ — 3), and “energy derivation by oxidation of
organic compounds” (yellow, FDR = 2.8e — 14) (Supplementary
Data 3). We note that co-expression networks constructed by
combining gene and protein expression did not result in clear
connections between these data types (Supplementary
information).

To form the most comprehensive set of AD-associated genes
supported by our data, we expanded the DE signature set of input
genes for the predictive network constructions by taking its union
across all gene co-expression modules enriched for the DE
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signature sets, resulting in 3918 genes, referred to here as the
expanded DE signature set (Fig. 1b).

Genetic modulation of gene and protein expression in the
prefrontal cortex. Integration of QTLs as a systematic source of
perturbation to enhance causal inference among molecular traits,
an approach we and others have demonstrated across a broad
range of diseases and data types (Supplementary Table 1), is
central to our approach to construct predictive network models.
QTL mapping identifies DNA loci associating with quantitative
traits (i.e., gene- and protein-expression), enabling the identifi-
cation of regulatory and mechanistic relationships among genes
and proteins, and providing critical insights into biological pro-
cesses related to the functioning of cells and their association to
disease. Since gene- and protein-expression traits were scored in
this study, we mapped eQTL (N =188 samples) and protein
quantitative trait loci (pQTL) (N = 192 samples) for all molecular
traits to identify significant QTL as additional inputs into the
network reconstruction process.

We found 4224 genes with at least one eQTL (eGenes) and 158
proteins with at least one pQTL (eProteins), at FDR <0.05
(Supplementary Data 4). To assess their degree of conservation
across RNA and protein domains and to help illuminate AD
genetics, we characterized the number of QTLs overlapping the
expanded AD DE signatures (Fig. 1c, Supplementary Fig. 3a). Of
these, we identified 83 proteins with pQTLs and 683 genes with
eQTLs, including seven genes and proteins with both eQTL and
pQTL. Supplementary Figure 3b exemplifies GSTM3, whose
cortical gene- and protein-expression levels are associated with a
shared single-nucleotide polymorphism (SNP), rs1332018%°.
Given the relationship between transcripts and the proteins they
encode, we applied a causal mediation test3%31 to assess whether
changes in gene expression induced by eQTLs were causal for the
corresponding changes in protein expression for the 33 product
pairs under control of the same SNPs. Interestingly, causal
mediation supported 26 products of gene and protein expressions
as being independently regulated by cis variation (Supplementary
Data 4), suggesting that translational events may be influenced by
the same cis variation impacting transcription, albeit in an
independent fashion, perhaps partially explaining the low
correlation we and others have observed between gene and
protein expressions (Supplementary information).

Of the ¢/pQTLs identified, 766 corresponded to genes and
proteins overlapping the expanded AD DE signature and were
included as inputs into the network constructions.

Identification and prioritization of KD genes identified from
predictive network models of AD. To elucidate the structure of
the complex interactions represented in the expanded AD DE
signature set and associated QTL, we employed a Bayesian net-
work (BN) modeling approach (Fig. 1d). BNs are graphical
models that capture relationships (depicted as edges)
among nodes (gene- or protein-expression traits) systematically
across high-dimensional datasets. BNs not only capture linear
correlations and higher-order correlations among nodes (like co-
expression networks), but can also capture nonlinear relation-
ships and infer causal links that define information flow, thereby
providing a richer, more informative context for discovery
(Supplementary Table 1). Because the number of possible net-
works to search through to identify the best data fit grows
exponentially with the number of nodes included, a brute
force search of all networks is not feasible32. Heuristics are used
to constrain the size of the search space and to efficiently search
it33, Thus, we constructed an AD-focused seeding gene set
to reduce search space, with the core of this set comprised of the

AD DE signatures (Supplementary Data 1) expanded to include
all genes in the co-expression network modules significantly
enriched for these core AD signature genes (Supplementary
Data 3).

A limitation of this empirically determined gene set is that it may
miss important genes due to nonlinear interactions not captured by
co-expression networks, a lack of power to detect all relevant
genes in the gene expression data, or genes active in tissues or stages
of disease that were not as well captured in the MSBB
population. To account for this, we further expanded the seeding
gene set (3918 genes) with previously published knowledge using
the PEXA algorithm3, which enables inclusion of genes from
literature-derived pathways linked to the core genes or genes
interacting with coding products of the core gene set in
protein—protein interaction (PPI) networks. Application of PEXA
resulted in the identification of 1796 additional genes, bringing our
final list of genes for BN reconstructions to 5714 genes (Fig. 1b,
Supplementary Data 3), compared to 24,865 transcripts expressed
in the dataset. This final gene list included previously identified AD
GWAS genes (six genes and five protein products)!?, thereby
integrating AD genetics into our causal network models that further
implicate causal genes for AD. From the seeding gene set we
constructed three BNs, one for each data type and one multiscale
BN combining gene and protein expressions (Figs. 1d and 4a,
Supplementary Data 3). Figure 4a illustrates subnetwork structure
around AD risk factor apolipoprotein E (APOE), in addition to
other AD genes.

Since the resulting BNs infer the causal flow of information,
they can be queried to find major points of regulatory control
(Supplementary Table 1). We analyzed each BN to catalog master
causal regulators (referred to as key driver genes/proteins, or
KDs) predicted by the network to modulate its state. Key driver
analysis (KDA)3® was developed to identify network nodes
predicted to either modulate a significantly enriched proportion
of nodes comprising a subnetwork of interest (local KD), or a
larger number of downstream targets outside the local network
neighborhood (global KD). To ascertain the global structure of
the networks with respect to their predicted global KD, we
assessed whether network structures were validated by known
biology. We consider a KD as molecularly validated if network
genes predicted to change in response to changes in the KD
significantly overlap genes observed to change in an experimental
perturbation carried out on the KD. For this, we used published
and curated single-gene perturbation experiments from the
Enrichr database®, extracting 341 unique single-gene perturba-
tions from 420 gene expression signatures in tissues relevant to
AD (central nervous system (CNS) and immune system). While
these perturbations were performed in several models and under
different conditions, we found that up to 40% of KDs had
predicted gene perturbation signatures that were significantly
overlapping (FDR <0.05) with the corresponding perturbation
signatures (Supplementary Fig. 3c, e), validating the predictive
power of our network. Interestingly, protein network KDs were
not validated by gene expression signatures represented in
the Enrichr database, potentially reflecting the differences
described earlier between gene and protein expressions. As
previously shown37, we observed that expression states of genes
closely connected to KDs were more accurately predicted to
change in response to changes in KDs, when compared to non-
KD genes (Supplementary Fig. 3d, f). Finally, we observed that
while taking edge direction into account in validating KDs
decrease the network neighborhood size, and therefore
the percentage of nodes with significant enrichment given
the subsequent decrease in power (Supplementary Fig. 3c, e),
edge direction enables more accurate predictions for KDs
(Supplementary Fig. 3d, f). This demonstrates the importance
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Fig. 4 Bayesian causal networks and key drivers. a Full Bayesian network and an APOE subnetwork. Background visualization of the multiscale AD
network described in the main text using an edge-weighted spring embedded layout. The red nodes are proteins and the blue nodes genes. Key driver (KD)
genes and proteins are highlighted in yellow. Foreground multiscale subnetwork comprised of genes within a path length of 3 to APOE. Node names and
properties are defined in the panel legend. b Density plots of the distribution of pLI scores for genes and proteins by the number of times they appear as
global KDs across the three discovery and four replication networks. The yellow dashed line represents the median pLl score for that category.

¢ Distribution of the number of times genes and proteins across all three discovery networks were identified as KDs across all DE signatures. The x- and y-
axis depict the different KDs appearing in at least two networks and the number of times they are identified as KDs for DE signatures across all three
networks. The colors of the bars are indicative of the network of origin of the KDs. d KD of DE signatures in the multiscale network, as described for (b).
The color of the bars is indicative of KDs presence only in the gene expression, protein expression, or in both.
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of edge directionality in increasing the specificity of our networks’
predictions.

In the AD context, local KDs of interest are those predicted to
modulate components of the network enriched for gene and
protein AD DE signatures. Thus, to predict AD KDs, we
projected the DE signatures for each AD clinical and neuro-
pathological trait onto each of the three BNs. Each network
projection consisted of overlapping gene and protein nodes from
the DE signatures with all nodes in their respective BNs. We then
extracted all nodes in each network within a path length of 6
(layers) in this overlap, and identified the largest connected
subgraph in the network from this set of nodes and associated
edges. KDA was carried out on each subnetwork resulting from
these projections, resulting in a list of 499 unique KDs at FDR <
0.05 across the three networks (Fig. 1d, Supplementary Data 3).

To assess the importance of KD genes (versus genes not
predicted as KDs by our models) complementarily to perturba-
tions in experimental systems, we examined the tolerance to
genetic variations in KD versus non-KD genes. We hypothesized
that, given the causal regulatory role KD genes play, they would
be less tolerant to genetic variation, leading to functional changes.
We therefore asked whether KD genes were more intolerant to
loss-of-function (LoF) variation than other genes. Using the
probability of being LoF intolerant (pLI) score>®, we found that
global KD genes identified in at least one of our discovery or
replication networks (Fig. 1e) had a significantly higher pLI score
than non-KD genes (one-sided Wilcoxon’s test p value = 2.73e —
113). We also observed that pLI score increased with the number
of times a gene was identified as a KD across all networks
(Fig. 4b). Thus, the number of times a gene is observed as a KD in
our models is an important metric for prioritizing KDs (Fig. 4b).

Given the large number of KDs identified, we sought to
prioritize KDs for further exploration. As stated above, the
number of networks in which KDs appear is significantly
associated with higher pLI score. Additionally, AD DE signatures
enable us to define centrality to AD processes. Finally, AD
discriminatory power of KDs allows one to directly assess
importance to disease. We therefore prioritized AD KDs
according to these metrics: their conservation across multiple
networks, the number of times they were identified as KD across
all networks and AD DE signatures, and their ability to
distinguish AD cases from controls.

We first characterized the distribution of the number of times a
gene or protein was identified as a KD across all projections (Figs.
1d and 4b). The multiscale network was of particular interest, as
it integrated gene- and protein-expression data in the MSBB
population (Fig. 4a). KDs identified from this single coherent
network structure are depicted in Fig. 4d. Only one KD, VGF, was
conserved across all three networks, supporting its potential
importance in AD. Other KDs that appeared in multiple
networks included genes known to be important for AD,
including GFAP, MAOB, and GSN (Supplementary Table 3)
serving as internal positive controls for our modeling approach.

To complement prioritizing KDs by their replication across
multiple networks, we rank ordered them by their influence in
classifying AD cases and controls (“Methods”). VGF was
consistently identified in the top-ranked KDs not previously
causally implicated in AD (gene network rank: 6, top KD KCNN2;
protein network rank: 2, top KD HSPB1; multiscale network rank:
2, top KD HSPB1) (Supplementary Data 3).

VGF was the only KD identified across all AD networks and
the top-ranked KD not previously causally associated with AD in
the AD classifiers (ranked second overall after HSPB139). We
therefore pursued VGF for extensive experimental validation
(Fig. 1g). Given the causal role of VGF in our AD-associated
networks, and given it was the top upregulated KD gene in

controls, our validation hypothesis was that overexpression of
VGF would not only significantly alter the state of AD associated
network components it was predicted to regulate, but that it
would protect against AD.

Replication and validation of VGF as a KD in AD. To validate
our prediction of VGF’s role as a KD of AD with protective
effects, we pursued three independent validation paths: (1)
replication of our results in different brain regions and inde-
pendent datasets; (2) association of human genetic variation
derived risk for AD with VGF expression; and (3) prospective
validation of VGF in an experimental model of AD.

VGEF replicates across different brain regions and in indepen-
dent datasets. To further support VGF as a KD for AD and assess
its regulatory role across brain regions, we applied the same
analysis pipeline (Fig. la-d), allowing for slight variations
required for these data, to multiple brain regions in the AMP-
AD MSBB dataset. We identified VGF as a KD in two of the three
additional brain regions in the MSBB dataset, the superior
temporal gyrus (BM22, Supplementary Data 5) and the pars
opercularis (BM44, Supplementary Data 5). VGF did not
reproduce as a KD in the brain region most affected by the
disease (highest number of DE genes), the ectorhinal area (BM36,
Supplementary Data 5), potentially reflecting a complete disrup-
tion of regulatory networks in brain regions badly damaged by
AD. We applied this analysis pipeline (Fig. la-d) on an
independent dataset, the Religious Order Study and Memory
Aging Project (ROSMAP) dataset?»2>, using DNA and RNA data
generated in the same brain region as our original result, the
dorsolateral prefrontal cortex (PFC). In the ROSMAP PFC
network that resulted, VGF was identified as a KD (ROSMAP,
Supplementary Data 5).

Genetic support for VGF association to AD. DNA variations in
and around VGF have not been associated with AD. As depicted
in Fig. 4b, KD genes like VGF are much less tolerant to genetic
variations leading to a functional change. Potentially related to
this, we did not identify any eQTL or pQTL for VGF,
although one strength of an integrative, causal network-based
approach is the ability to infer causality complementarily to
direct methods such as GWAS. We assessed the relationship
between VGF expression in BM10 and the genome-wide risk for
AD. We computed an AD polygenic risk score (PRS) for
the European subset of our cohort?3 (N=177) from 13,704
linkage disequilibrium (LD)-independent SNPs with a p value for
AD association below 0.0293 in I-GAP!0 (optimal threshold
determined by PRSice240). These AD PRS were significantly
associated with VGF expression in a direction consistent
with our network model prediction: lower VGF expression
associated with higher AD PRS (p value = 1.9¢ — 4, Nagelkerke’s
R%2=10.076).

In vivo molecular and physiologic validation of VGF as an AD
KD. To validate the KD role of VGF in AD pathogenesis and
progression (Fig. 1f), we modulated VGF levels in the transgenic
5xFAD amyloidopathy mouse model (expressing human Pre-
senilinl (PS1) and APP containing five FAD mutations)4l.
5xFAD mice were crossbred to a VGF germline homozygous
knock-in mouse model (VGFA/4)14, in which insertion of a pgk-
neo selection cassette into the Vgf 3’-untranslated region (3'-
UTR) leads to a VGF messenger RNA (mRNA) truncation in the
3’-UTR region (A3/-UTR), resulting in increased protein trans-
lation and elevated VGF protein levels in mouse brain (Supple-
mentary Fig. 4a).
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Fig. 5 Characterization of AD pathophysiology in wild-type, 5xFAD, and 5xFAD mice overexpressing VGF. a Immunohistochemical staining of Ap
amyloid plaques and microglial cells in the male mouse cortex of 5xFAD mice overexpressing VGF in the germline. Left panel, green: Ap (6E10), red: Iba-1,
blue: DAPI; right panel, quantification of percent area of Ap and Iba-1 staining in male and female mice. Quantification of percent area of Ap and Iba-1
staining in the cerebral cortex, hippocampal CA3, and hilus; data are presented as mean percentage + SEM of the control group. One-way ANOVA with
Newman-Keuls post hoc analysis, cortex (anti-Ap): F(3 g6y = 30.84, p<0.0001, CA3 (anti-Ap): F(3,8¢) = 12.44, p <0.0001, cortex (anti-lba-1): F356y =
7.307, p=0.0003,n=9, 8, 7, 6 mice per group, 2-3 slices analyzed per animal, *p < 0.05, **p < 0.01, ***p < 0.001; female: n= "7, 6 mice per group, two-
sided Student's t test, p = 0.031 (AB), p = 0.0454 (Iba-1). b Doublecortin staining (DCX) of the subgranular zone (5GZ) in the dentate/hilus area of male
5xFAD brains. Upper panel, red: DCX, blue: DAPI; lower panel, average number of DCX-positive cells per subgranular zone. One-way ANOVA with
Newman-Keuls post hoc analysis, male: F,, 21y = 6.652, p=0.0058, n =4, 4, 4 mice per group, 2 slices analyzed per animal; female: F(,, 1y =7.008, p=
0.0047,n=10, 9, 5 mice per group. **p < 0.01 ¢ Reduced staining of phosphor-Tau and dystrophic neurite clusters in 5xFAD brains with germline VGF
overexpression. Upper panel: phosphor-Tau staining; lower panel: quantification results of dystrophic neurite clusters in the hippocampus and cortical area.
One-way ANOVA with Newman-Keuls post hoc analysis, cortex: Fe, 15y =10.92, p = 0.0012, hippocampus: F(3, 15y =5.549, p=0.0157, n=7, 7, 4 male
mice/per group. *p < 0.05, ***p < 0.001. d Barnes maze test. Mice were trained daily and WT mice learned the target quarter (TQ) of the hiding zone by
increased distance traveled in the TQ (left panel) and increased time spent in the TQ (right panel). 5xFAD mice showed impaired spatial learning on day 4,
while germline VGF overexpression (5xFAD,VGF + /A) partially restored memory performance. N =12-14 mice (male + female) per group. Data were
analyzed by two-way repeated-measures ANOVA. % of distance spent in TQ: Days (F(z108y = 3.215, p < 0.05) and Groups (F2,36) = 8.77, p < 0.001), and
Days x Groups interaction (F¢g 108y = 1.9, p = 0.0873). % time spent in TQ: Days (F3105) = 2.422, p = 0.07) and Groups (F(; 35y = 20.01, p < 0.0001), and
Days x Groups interaction (Fg 105, = 4.501, p < 0.001). Tukey's post hoc test. #p < 0.05, **p < 0.01, ****p < 0.0001. All data in b-d are presented as mean
percentage * SEM.

Levels of VGE protein in VGFA/A hippocampus are
modulated in a similar “physiological range” (increased to
~150-200% control) as VGF protein levels are altered in male
mice following chronic social defeat stress (decreased to ~50%
control in the hippocampus and increased to ~140% control in
the nucleus accumbens). VGF mRNA levels are similarly
regulated in human control subjects and patients with
major depressive disorder (MDD), being reduced in the
hippocampus to ~50% control in male and female MDD

patients and increased in male MDD nucleus accumbens to
~150% control42.

Using VGFA/2 mice to increase germline VGF expression in
this physiological range, we quantified AP deposition in brains of
10-month-old 5xFAD mouse by immunohistochemistry using
6E10 antibody. We found a dramatic decrease in 6E10-
immunoreactive plaques in both cortical and hippocampal
regions of 5xFAD,VGFA/A compared to 5xFAD, while total brain
transgenic APP protein levels remained unchanged (Fig. 5a,
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Supplementary Fig. 4d). Microglial activation in AD patients*3-40
and increased microglial number and sometimes activation in
5xFAD#1:4>47 have been reported, suggesting a pathological
connection between amyloid deposition and neuroinflammation.
The number of Iba-1-positive cells, a microglial marker, was
significantly reduced in the cortex of 5xFAD,VGFA/A compared
to 5xFAD with normal levels of VGF (Fig. 5a). In addition, adult
hippocampal neurogenesis is impaired in human subjects with
AD*8, and rapid and aggressive amyloid pathology in 5XxFAD was
associated with reduced neuron numbers and neurogenesis in the
subgranular zone of the hippocampus*®, which was fully rescued
by VGF germline overexpression in male and female 5xFAD
(Fig. 5b). Increased levels of Tau phosphorylation, observed in the
clusters formed by dystrophic neurites around amyloid plaques in
brains of human patients and mouse AD models®*! including
5xFAD, were reduced by germline VGF overexpression in
5xFAD,VGFAA mice (Fig. 5¢c), while reduced levels of post-
synaptic density (PSD)-associated protein PSD-95 in 5xFAD
hippocampus (CA1) were significantly increased (Supplementary
Fig. 5). Importantly, impaired spatial learning and memory of
5xFAD mice in the Barnes maze was partially restored by
germline VGF overexpression (Fig. 5d).

To examine whether VGF overexpression in adult 5xFAD
brain also reduces neuropathology resulting from AP over-
expression, adeno-associated virus (AAV)-VGF and AAV-GFP
(control) were injected into adult 5xFAD dorsal hippocampus
(dHC) mice at 2-3 months of age. We chose dHc because: (i)
VGF peptide administration to dHC of wild-type (WT) mice has
pro-cognitive efficacy!?; (ii) local VGF ablation in mouse dHC
results in memory deficits!4; (iii) dHc has proximity to the
ectorhinal area, which sustains the most damage in AD and
where VGF is significantly downregulated for multiple AD
features. Mice were sacrificed for histological analysis at 7 or
10 months of age following behavioral testing. Robust VGF
overexpression was transduced by AAV-VGF administration to
the 5xFAD dHC (Fig. 6a). Reduced 6E10-immunoreactive plaque
levels were found in the hippocampal dentate gyrus and nearby
cortical regions (Fig. 6a), while overall levels of transgenic APP
protein were not significantly different in AAV-VGF compared to
AAV-GFP-infused 5xFAD hippocampus (Supplementary Fig. 4c).
Similar to germline VGF overexpression, dHC AAV-VGF
administration also restored neurogenesis in 5xFAD hippocam-
pus to WT control levels, and significantly reduced the number of
dystrophic neurite clusters in the hippocampus (Fig. 6b, c). At
10 months of age, AAV-VGF-administered 5xFAD had sig-
nificantly improved spatial learning and memory performance in
the Barnes maze compared to those administered AAV-GFP,
while VGF overexpression in non-transgenic WT mice did not
enhance memory, indicating a critical role for VGF in the
pathological progression and behavioral impairment of the
5xFAD mouse model (Fig. 6d).

Impaired synaptic plasticity has been linked to hippocampus-
dependent spatial memory deficits in animal models of AD>2->4,
We found that hippocampal slices from 5xFAD mice failed to
produce mGluR1/5-mediated long-term depression (mGluR-
LTD) (Fig. 6e, f). Importantly, hippocampal LTD has been
implicated in the consolidation of long-term spatial memory>,
and deficits in mGIuR-LTD have been reported in the APP/PS1
mouse AD model’%. Hippocampal AAV-VGF overexpression
partially rescued mGIuR-LTD deficits in 5xFAD hippocampal
slices compared to AAV-GFP-injected mice, but had no effect on
WT slice mGIluR-LTD (Fig. 6e, f), while baseline synaptic
function was not significantly affected (Supplementary Fig. 4f),
suggesting VGF-mediated restoration of mGluR1/5-dependent
synaptic plasticity may contribute to the partial rescue of spatial
memory deficits in AAV-VGF-infused 5xFAD mice.

VGF is processed into bioactive peptides, including the C-
terminal peptide TLQP-62 (named by the N-terminal 4 amino
acids and length)>°. TLQP-62 has pro-cognitive and antidepres-
sant efficacy and regulates neurogenesis, both BDNF dependent
when the peptide is administered intracerebroventricular (i.c.v.)
or directly to rodent hippocampus!1>174257 We investigated
whether chronic 28-day i.c.v. administration of TLQP-62 to adult
3-4-month-old 5xFAD reduced neuropathology at ~4.5 months
of age. Significantly reduced levels of 6E10-immunoreactive
plaques and Iba-1 immunostaining were found in hippocampal
dentate gyrus and cortex from TLQP-62-treated male and female
5xFAD (Fig. 7a, b), accompanied by significantly reduced
numbers of Lampl-immunoreactive dystrophic neurite clusters
in the hippocampus (Fig. 7¢).

Pathophysiological validation of VGF establishes that it can
induce and protect against AD-related pathologies, as predicted
from our network models, but does not on its own confirm their
molecular regulatory architecture. The causal networks identify-
ing VGF provide a context that can aid in understanding
mechanisms of action for genes such as VGF. When identifying
subnetworks across all three MSBB AD BNs comprised of nodes
within a path length of 2 of VGF (Fig. 8a), we note that AB and
other AD genes, such as HSPBI, CLU, MAOB, RPH3A, FOSB, and
BDNF (Supplementary Tables 3 and 4), are either directly
connected to VGF or only one path length away. Additionally,
other AD GWAS genes were either further downstream of
VGF (PTK2B) or in its undirected vicinity (APOE, 3 path length
away)!3. To validate the molecular network, the brain gene
expression signature induced by directly perturbing VGF in
5xFAD can be compared to that predicted by the network to
change (Supplementary Table 1). We sequenced RNA isolated
from the hippocampus of 45 mice with AAV-mediated VGF
overexpression and corresponding controls, and from the
prefrontal cortex of 89 mice with germline overexpression of
VGF and corresponding controls. We found that genes down-
stream of VGF in the gene BN (predicted perturbation) were
enriched for the AAV-mediated VGF overexpression DE
signature (Supplementary Data 6) at a threshold of FDR < 0.05
(Fig. 8b, ¢, one-sided Fisher’s exact test odds ratio (OR) =14.1,
p value = 3.1e — 6). We also found that while the germline VGF
overexpression DE signature (Supplementary Data 6) did not
achieve significance at FDR < 0.05, DE genes at p value < 0.1 were
enriched downstream of VGF in the gene BN (Supplementary
Fig. 8, one-sided Fisher’s exact test OR = 3.9, p value = 2.6e — 3).
Lastly, because BDNF is directly connected to VGF in our causal
network, we assessed the impact of VGF overexpression on
BDNF signaling. VGF overexpression increased BDNF receptor
activation (pTrkB levels) and rescued decreased levels of pTrkB in
5xFAD brain, finding increased pTrkB levels in VGFA/A mice
(Supplementary Fig. 4a) and in AAV-VGF-infused 5xFAD
(Supplementary Fig. 4c), compared to WT or AAV-GFP-
infused 5xFAD mice, respectively. Taken together, these results
validate the molecular structure of the subnetwork around VGF.

Discussion

Our primary aim was to discover novel critical genes and path-
ways central to AD that could be pursued as therapeutic
targets. To this end, we applied a multiscale causal network
modeling approach on the AMP-AD dataset in BMI10
that enabled distinguishing simple DE genes from their master
regulators, whose expression changes are predicted to be
causal to regulatory changes, impacting susceptibility to or
protection against AD. We identified VGF (chromosome 7:
100,805,790-100,808,874 (GRCh37/hg19)), as a novel KD of AD.
VGF was the most significantly downregulated gene in the protein
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Fig. 6 Characterization of AD pathophysiology in 5xFAD mice with and without AAV5-VGF-driven overexpression of VGF. a Immunohistochemical
staining of AB amyloid plagues and VGF in the 5xFAD mouse brain 4 months after AAV5-VGF or AAV5-GFP infusion into the dorsal hippocampus. Left
panel, red: VGF, cyan: A, green: GFP; right panel, quantification of percent area of Ap amyloid plague in different brain areas. N = 4, 5 male mice per group.
Data are presented as mean percentage + SEM (of the control group, two-sided Student'’s t test. **p = 0.004, *p = 0.0121. b Doublecortin staining (DCX) in
the dentate/hilus area. Upper panel, red: DCX, blue: DAPI; lower panel, average number of DCX-positive cells per subgranular zone. N = 4-5 male mice per
group. Data were analyzed by one-way ANOVA with Newman-Keuls post hoc analysis, Fe, 23y =6.574, p=0.0055, n=4, 4, 5 male mice per group,
2 slices analyzed per animal. *p < 0.05, **p < 0.01. ¢ Reduced staining of phosphor-Tau and reduction of dystrophic neurite cluster number and diameter in
5XFAD brains with AAV5-VGF overexpression. Upper panel, phosphor-Tau staining; lower panel, quantification results of dystrophic neurite cluster
number and diameter in the dorsal hippocampus. N =4, 5 male mice per group. Data were analyzed by two-sided Student’s t test. *p =0.0162, **p =
0.0021. d Barnes maze test. Mice were trained daily and on Day 4 WT mice learned the target quarter (TQ) of the hiding zone, as revealed by increased
distance traveled in the TQ (left panel), and increased time spent in the TQ (right panel). 5xFAD mice with AAV5-GFP showed impaired spatial learning on
day 4, while in 5xFAD with AAV5-VGF overexpression, memory performance was significantly rescued. N=12, 9, 10, 7 mice (male + female) per group.
Data were analyzed by two-way repeated-measures ANOVA. % of distance spent in TQ: Days (F(z102) = 5.000, p <0.01) and Groups (F(z334y=5.997,
p <0.01), and Days x Groups interaction (F(g102y =2.371, p<0.05). % time spent in TQ: Days (Fz102) =11.39, p <0.0001) and Groups (F(334y =13.62,
p<0.0001), and Days x Groups interaction (Feo102) = 3.824, p<0.001). Tukey's post hoc test. #p<0.05, **p<0.01, $¥¥p < 0.001, ****$%$%p < 0.0001.

e Impaired DHPG-mediated long-term depression (LTD) in 5xFAD mice is partially restored by AAV-VGF expression in the dHc. N: WT (AAV-GFP) =
8 slices from seven mice; 5xFAD (AAV-GFP) =12 slices from six mice; WT (AAV-VGF) = 8 slices from six mice; 5xFAD (AAV-VGF) = 9 slices from five
mice. f Summary graph of data from e indicating the average fEPSP slope [mV/ms (% of baseline)] during the last 5 min of recording. Data were analyzed
by two-way ANOVA. Slope mV/ms (% of baseline): Genotype (F(134y = 9.396, p < 0.001) and Groups (AAV-VGF and AAV-GFP) (F134y=0.3282, p=
0.5705) and Genotype x Groups interaction (F¢; 34y = 5.045, p < 0.01). Newman-Keuls post hoc test. *p < 0.01, **p < 0.001. All data in b-f are presented as
mean + SEM.

(DE FDR = 3.4e — 15) and gene (DE FDR = 5.0e — 4) expression power in distinguishing between AD cases and controls. We
data in cases versus controls, and it was the only gene identified as  replicated VGF as a KD in an independent dataset and in two
KD across all three Bayesian causal networks constructed. Fur- additional brain regions, demonstrated genetic support with the
ther, VGF ranked as the top KD having the most explanatory association of AD PRS to the levels of expression of VGF, and
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Fig. 7 Chronic i.c.v. administration of TLQP-62 peptide ameliorated pathophysiological changes in the 5XxFAD mouse brain. a Immunohistochemical
staining of Ap amyloid plaques and microglial cells in the male 5xFAD mouse cortex and dentate gyrus after 28-day i.c.v. administration of TLQP-62
peptide or vehicle control (aCSF). Red: Ap (6E10), green: Iba-1. b Quantification of percent area of Ap and Iba-1 staining in both peptide-treated male and
female 5xFAD mouse brains. Data are presented as mean percentage + SEM. Results of AB(6E10) staining were analyzed by two-sided Student's t test.
Male: cortex, p=0.0015; DG p = 0.0316; female: cortex, p = 0.0101; CA1, p = 0.022. Iba-1 staining were analyzed by one-way ANOVA with
Newman-Keuls post hoc analysis, male cortex: F(; 36y = 8.449, p=0.001, n=4, 5, 4 mice per group, 3 slices analyzed per animal; female cortex: 514y =
12.53, p=0.0008, n=5, 7, 5 mice per group, *p <0.05, **p < 0.01, ***p < 0.001. c Reduced staining of Lampl-immunoreactive dystrophic neurite cluster
number in 5xFAD brains after 28-day TLQP-62 i.c.v. infusion. Red: Lamp1, green: 6E10, blue: DAPI. N =6, 6 male mice per group. Data are presented as
mean + SEM and analyzed by two-sided Student's t test. *p = 0.024.
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Fig. 8 Molecular validation of VGF. a Consensus subnetwork within a path length of 2 of VGF. The consensus subnetworks around VGF, two steps away
from VGF, across all three networks are depicted. The blue and red nodes are genes and proteins, respectively. The blue edges originate from the gene-only
network, the red edges from the protein only network, and the purple edges from the multiscale network. VGF and its known partners are in bold in the
plot. b Density plot of the distribution of differential expression nominal p values for genes downstream and not downstream (causally independent of the
expression levels) of VGF in the gene-only network for mouse DE genes (5xFAD, AAV5-GFP versus 5xFAD, AAV5-VGF brains). The x-axis is the —log 10
(p value) for differential expression, and the y-axis represents the densities at the different —log10(p value). The red and blue curves are for genes
downstream and not downstream of VGF in the network, respectively. € Summary of DE results of VGF network genes in the 5xFAD, AAV5-GFP versus
5xFAD, AAV5-VGF brains overlaid on the VGF gene-only subnetwork. The nodes are colored by log fold change from green (negative) to orange
(positive). The size of the node represents the DE FDR. Gray genes names are not significantly DE and white nodes have no orthologous genes in mice.

validated Vgf in vivo at the physiologic and molecular levels as a
KD of AD.

The biological coherence of protein expression compared to
gene expression data, with respect to association with AD clinical
features, was noteworthy, suggesting proteomic data may be a
more informative measure for identifying important dysregulated
pathways. AB, a hallmark of ADS, was consistently the protein
with the highest expression in cases relative to controls, whereas
VGF was the most downregulated. DE proteins are annotated for
energy metabolism and immune and nervous system-related
processes, all previously implicated in AD3°8-%; our co-
expression network analyses based, in part, on these DE protein
studies have further identified novel, potentially druggable targets
within these pathways.

Modeling AD using BN and KDA assumes that complex
genetic diseases result from dysregulated molecular networks

where central hubs modulate the overall state. Here, we showed
molecular validation of a large proportion of subnetworks in our
models from a wide range of previously published single-gene
perturbation experiments, demonstrated the added predictive
value of KD nodes, and delineated the importance of edge
directionality to prediction specificity. Strikingly, KDs in our
networks were associated with higher intolerance to LoF variants,
supporting this analytical framework for identifying molecular
processes important to the health. This intolerance increased as a
KD was present in more networks, emphasizing the utility of
integrating multiple omics and datasets to prioritize hypotheses.
These results are consistent with the recently put forth omnigenic
model®%4, which could be tested by adapting our analytical
framework and proposes that risk loci for polygenic traits con-
verge on the regulatory networks of “core” genes. While this
modeling approach enables organization of large-scale molecular
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data into meaningful models that can inform on disease, one
limitation is that our data may not identify genes that are well
known to be involved in AD (e.g., APOE!3).

The VGF (vgf) gene we identified and validated is NGF and
BDNF inducible and expressed in neurons in many different
brain regions, encoding a 615-amino-acid (617 in mouse) pre-
cursor polypeptide that is processed into several bioactive pep-
tides, regulating neuronal activity and survival, neurogenesis,
energy balance and lipolysis, and behavior!415°6:65-68 VGF is
robustly regulated in the hippocampus by voluntary exercise®
and by BDNF/TrkB signaling’’, and in our studies, VGF over-
expression rescued cognitive deficits and neurogenesis in 5xFAD
mice (Figs. 5 and 6). The VGF-derived peptide TLQP-62 reg-
ulates neuronal activity, neural progenitor proliferation, memory
formation, and depression-like behavior!4-1742, via mechanisms
largely dependent on BDNF/TrkB signaling!41>6871 and was
never previously shown to be causal to AD. In addition, TLQP-
21, a sub-peptide of TLQP-62, activates the complement 3a
receptor (C3aR1)%; C3a activation of C3aR1 on microglia reg-
ulates amyloid uptake and microglial migration in primary
microglia and/or mouse AD models’2. Consistent with a role for
these VGF-derived peptides in regulation of hippocampal neu-
ronal plasticity and potentially AD pathogenesis, VGF C-terminal
peptides TLQP-62 and/or TLQP-21 regulate hippocampal den-
dritic length and branching, synapse number, and synaptic pro-
tein levels, in vitro and/or in vivo!%164273.74 T astly, the VGF,_g,;
proprotein, and secretogranin 2, identified in VGF gene and
protein networks, function in dense core vesicle (DCV) biogenesis
and exocytosis’>.

Trait studies have found VGF levels reduced in CSF of patients
with AD18-2276_ decreasing with disease progression, in agree-
ment with our findings that VGF is the gene and protein product
with the lowest expression in cases relative to controls. Interest-
ingly, reduced VGF levels were detected prospectively in CSF
from patients with mild cognitive impairment, selectively in those
who develop AD20:22, Although CSF levels of VGF, a neuronal
and neurosecretory protein, might be anticipated to decrease
coincident with neuronal loss as AD progresses, CSF levels of
several related neurosecretory and synaptic proteins, including
chromogranin A, secretogranin II, 7B2, proSAAS, clusterin,
neurexins 1, 2, and 3, and neuropentraxin 1, were either increased
or unchanged in patients with AD compared to controls, while
VGF levels were consistently reduced!®:20, While CSF biomarkers
including VGF have utility in the diagnosis of AD, comparison of
serum or plasma VGF levels in AD and control subjects has less
diagnostic specificity, as plasma VGF levels are reduced in Par-
kinson’s disease, amyotrophic lateral sclerosis (ALS), and MDD,
and are regulated by obesity and type 2 diabetes (Supplementary
Table 3).

Notably, many of the genes in the VGF RNA network (Fig. 8),
including VGF and BDNF, are CREB regulated’’, and the
encoded proteins modulate neuronal activity, synaptic function,
and memory, are neuroprotective, and levels are reduced in AD
brains (Supplementary Table 4). Moreover, VGF-derived peptide
TLQP-62 activates the CREB signaling pathway, supporting
VGF's role as a KD of these CREB-responsive network genes!71.
Nodes within the VGF-driven protein network regulate axonal
and dendritic structure, plasticity, and the trafficking and release
of synaptic and DCVs, reinforcing an important homeostatic role
for VGF levels in maintaining neuronal integrity (Supplementary
Table 3). Relevant to our analysis, protein crosslinking studies
identified a VGF interaction with amyloid precursor-like protein
178, which could impact VGF or -amyloid function in AD.

AAV-mediated VGF overexpression in 5xFAD dHc increased
expression of three VGF network genes (BDNF, MSKI, and
GNG4 (G protein subunit gamma 4), Fig. 8c) as our network

model predicted, all shown to play potential roles in AD?!. BDNF
in combination with increased adult hippocampal neurogenesis
and exercise’? improves cognition in 5xFAD mice, while the
BDNF Val66Met SNP modulates neuropathology and cognitive
decline in subjects with ADS30. Exercise plays a preventative role
in AD and increases neurogenesis in 5xFAD7%81:82 and VGF and
BDNF levels are upregulated by exercise in mouse models®®7.
Consistent with these studies and our network, VGF over-
expression increased levels of activated BDNF receptor (pTrkB)
and adult hippocampal neurogenesis, increased levels of the
BDNF/TrkB regulated postsynaptic protein PSD-9583-85 and
improved cognition in 5xFAD (Figs. 5 and 6, Supplementary
Figs. 5 and 6). Rescue of PSD-95 expression in 5xFAD would be
anticipated to restore BDNF-induced TrkB/PSD-95 complex
formation and TrkB signaling®®. Also in the VGF network,
mitogen- and stress-activated kinase (MSK1 or RPS6KA5) reg-
ulates BDNF signaling to CREB, hippocampal neurogenesis,
synaptic plasticity, and cognition (Supplementary Table 4). Lastly,
GNG4 has been implicated in cognitive decline during aging and
is downregulated in aged 5xFAD mice compared to age-matched
WT (Supplementary Table 4). Taken together, these studies
validate the contributions of several VGF network genes to AD,
and further suggest that a VGF/TLQP-62/BDNF/TrkB auto-
regulatory loop could function to slow or reverse neurodegen-
eration, much as it functions in cognition and depression!442:68,

Constructing and validating AD models, which serve as inte-
grated and comprehensive repositories of the regulatory frame-
works of AD, provide a more informative and accessible path for
others to leverage extensive sets of data from which they can
validate links between known disease targets, generate hypotheses
around novel targets, and derive mechanistic insights furthering
our understanding of AD. The focus of our work was to construct
a predictive model of AD and validate the top master regulator
identified by the networks. Indeed, the data presented here are
consistent with causal roles for TLQP-62 and the VGF proprotein
in AD pathogenesis and progression, but do not rule out con-
tributions of other VGF-derived peptides including TLQP-21, an
activator of the C3aR1 complement receptor®®. Of note, we and
others have recently shown that TLQP-21 reduces neuropathol-
ogy in male 5xFAD mice and increases amyloid uptake in
transformed BV2 mouse microglia and in primary cultured
mouse microglia via a C3aR1-dependent pathway3”-89, consistent
with the previous identification of a critical complement network
module in AD®.

Methods
Methods references. All references for the “Methods” can be found in Supple-
mentary Table 1.

Data description. All MSBB discovery and replication datasets were previously
described in Wang et al.?3. These consists of gene and protein expression and
whole-exosome sequencing (WES) for a cohort of individuals across the entire
spectrum of AD in the Mount Sinai Brain Bank. Four brain regions were assessed:
the anterior prefrontal cortex (BM10), the superior temporal gyrus (BM22), the
perirhinal cortex (BM36), and the pars opercularis (BM44). RNA-seq was per-
formed for 1096 samples from 315 individuals across all four brain regions, and
MS/MS for 266 samples from 266 individuals in BM10 to measure protein
expression. WES was performed for 309 individuals. All human research was
carried out in accordance with the policies and procedures of the Icahn School of
Medicine at Mount Sinai and its Institutional Review Board. For validation
experiments, RNA-seq was performed for 89 5xFAD mice with and without
germline overexpression of VGF and 45 5xFAD mice with and without AAV-VGF
injection. Sequencing was completed following the same procedure as the human
data (Wang et al.23) to achieve a mean coverage of 23 million reads using Illumina
HiSeq 2500 System with 100 nucleotide single end reads, according to the standard
manufacturer’s protocol (Illumina, San Diego, CA). The RNA for all samples was
treated with Ribo-Zero (Human/Mouse/Rat) (Illumina, San Diego, CA) to remove
ribosomal RNA (rRNA) and retain other transcripts. The disease was categorized
in six different ways, each representing different aspects of AD: CDR, clinical
neuropathology (Path Dx), CERAD neuropath criteria, neuropathology category
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(NP-1), mean neocortical plaque density (PlaqueMean, number of plaques/mm?),
and bbscore. The ROSMAP?42° validation set consists of gene expression from the
dorsolateral prefrontal cortex of 724 subjects and whole-genome sequencing
(WGS) data from 1200 subjects. The ROSMAP RNA-seq count matrix and asso-
ciated quality measurements were downloaded from https://www.synapse.org/#!
Synapse:syn9702085, where their generation is described. The ROSMAP WGS data
variant call format (VCF) file was downloaded from https://www.synapse.org/#!
Synapse:syn10901595, where its generation and quality control are described.

All data are available at https://www.synapse.org/#!Synapse:syn2580853/wiki/
409853.

RNA-seq processing. To ensure a reliable set of samples and genes for all analyses
in the MSBB datasets, we performed QC processing and filtering for lowly
expressed genes on the whole dataset across all four brain regions. Starting with the
raw RNA-seq reads, we aligned (using STAR alignment) to GRCh37 and counted
the reads mapping to each gene (featureCounts) as well as created QC matrices and
called variants (using GATK) on the RNA-seq with the RAPiD pipeline?’. For
RNA-seq samples sequenced multiple times, we selected the fastq file (raw reads),
which had the largest number of mapped reads and <5% rRNA mapped reads. We
then ran STAR alignment and featureCounts to generate a raw count matrix and
called RNA-seq variants using GATK. We also called variants on the WES using
GATK. We next imputed sex information for each sample using RNA expression
and variants from the WES data. By comparing the heterozygous variants from the
RNA-seq data to the variants in the WES data, we were able to assign each RNA-
seq sample to its corresponding DNA sequence. Using these multiple layers of
information, we corrected any mislabeling, when necessary. For RNA-seq samples
with documented matching WES, if the discordance rate between said sample and
its best corresponding exome sequence was >10%, they were removed from further
analyses. This left 958 RNA-seq samples in the MSBB dataset. In the ROSMAP
gene expression data, we found one sample were gender was mislabeled and
removed it from further analyses.

In the MSBB data, to filter out low expressed genes, we removed all genes that
did not have at least 1 count per million (c.p.m.) in at least 10% of the samples. We
normalized the raw counts using the voom function from the limma R package.
After exploration of the main drivers of variance using principal component (PC)
analyses and using linear mixed models (variancePartition), we adjusted the
normalized counts for batch effects using linear mixed models. The corrected
residuals were further adjusted with the ImFit function of the limma package for
postmortem interval (PMI), race, sex, RNA integrity number (RIN), and exonic
mapping rate. Sex was included as a covariate in all modeling procedures to ensure
that sex-specific differences in AD were accounted for. Outlier samples further than
3 standard deviations (std) from the centroid of PC1 and PC2 were removed from
downstream analyses. Samples with RIN <4 were removed from further analyses.
The raw counts of the 886 samples remaining were then subjected to the exact
same protocol, to get normalized and adjusted gene expression for 24,865 genes.

From the processed MSBB data, we identified 18 samples for which variants
from RNA-seq and WES data did not achieve the level of concordance expected for
samples derived from the same donor. In addition, for six samples the sex inferred
by DNA and RNA data did not match the sex reported for the corresponding
participant in the clinical report, and 13 of the RNA-seq samples mapped to more
than one WES sample (discordance rate with best matching sample >10%). We
removed from all further analyses 16 of these samples that could not be
unambiguously corrected (Supplementary Fig. 9a, b, Supplementary Data 1).
Finally, we removed all RNA-seq measurements with RIN <4, leaving 246 samples
in BM10 for detailed analyses.

To assess integrity of these data and identify covariates that could impact our
analyses, we carried out variance partition and PC analyses, and identified exonic
mapping rate (fraction of reads mapping to exonic regions), RIN, and sequencing
batch as covariates explaining the greatest variation in gene expression across
samples (Supplementary Fig. 9c-h). To minimize the impact of these covariates on
detecting our primary signal of interest (association of molecular traits to AD), we
adjusted the normalized RNA-seq count data for these main drivers of technical
variation, in addition to race, sex, and PMI (Supplementary Fig. 9d-h) using linear
mixed models. Protein-expression data were processed in a similar fashion and
corrected for batch, PMI, race, and sex to minimize unwanted variation.

In the ROSMAP dataset, we followed a similar protocol removing all genes that
did not have at least 1 c.p.m. in at least 10% of the samples, normalized using the
voom function and after exploration of the main drivers of variance, adjusted the
normalized counts for batch, sex, race, PMI, RIN, median 5’ to 3’ bias, strand
balance, and percent of intronic bases using the ImFit function. The RIN values in
this dataset were from 5.0 to 9.9 (mean = 7.06, std = 0.99). The output was a
matrix of normalized and adjusted counts of 19,452 genes for 633 samples.

The mouse RNA-seq data was aligned to the mouse genome (GRCm38),
version M10 (Ensembl 85) following the same procedure as described for the
human data above. For both overexpression models (AAV-VGF and VGFA/4), no
covariates were found to drive variance of the data, and normalized counts were
directly used for DE analyses.

Protein-expression processing and correction for other covariates. The
protein-expression data was taken through similar procedures to ensure that

technical variation was accounted for. After correction for batch on the protein-
expression data for 266 samples, we further adjusted for PMI, race, and sex using
the ImFit function of the limma package. The remaining 2692 protein-expression
residuals were used for downstream analyses.

DE analyses. The DE analyses were performed for both gene and protein
expression using the limma package after the adjustment for covariates described
earlier. To capture all aspects of the disease, the DE was performed for each AD
trait. In addition, to capture signal corresponding to the entire spectrum of AD, DE
analyses were performed in two ways: controls against any sample that had any
level of cognitive impairment (and in the case of PlaqueMean using its quantitative
level as a response), and definite controls against definite AD as defined by each
trait (Supplementary Table 2). Validation of DE was done with gene set enrichment
analyses R packages GOtest and msigdb. The public DE sets were assembled from
the literature derived significantly differentially expressed genes and proteins. The
GWAS set is comprised of the genes associated to AD in the latest AD GWAS!3
and the GWAS in TAD set is comprised of all the genes within topologically
associated domains containing a significant locus (defined as the lead SNP and the
SNPs with R?> 0.5 with them). P values were adjusted for multi-testing using
Bonferroni correction.

QTL analyses. All QTL analyses were run using the fastQTL package. Using
plink2, we removed markers with >5% missing rate, <1% major allele frequency,
and Hardy-Weinberg p value <1076 from the WES (MSBB) or WGS (ROSMAP)
variants. Following standard practices, only European individuals were used to find
QTLs. Non-European samples were identified through PCA analyses using
smartPCA and mapping in PC space to the 1000 Genomes Project consortium.
VCF liftover was used to lift over the ROSMAP WGS from hgl9 to hg38. The
residuals described above were used for QTL analyses for both gene and protein
expression after further correction for PEER surrogate (latent) variables (SVs) as
follows: (i) BM10 gene expression: 19 SVs; (ii) BM10 protein expression: 9 SVs; (iii)
BM22 gene expression: 20 SVs; (iv) BM36 gene expression: 17 SVs; (v) BM44 gene
expression: 17 SVs; (vi) ROSMAP gene expression: 25 SVs. We also included in the
model the first 5 PCs of the genotype data to remove further population-specific
structures. The analyses looked for cis-eQTLs as defined 1 Mb of the transcription
start site of each gene and protein corresponding gene. FDR were computed fol-
lowing Benjamini-Hochberg procedure. The causal inference testing was per-
formed with the R package citpp (https://bitbucket.org/account/signin/?next=/
multiscale/citpp).

Co-expression analyses. Three WGCNA co-expression networks were built on
the adjusted data, one for the gene expression, one for the protein expression, and
one for both gene and protein expression (multiscale), using the coexpp R package.
To identify modules of interest in the context of AD, we projected the union of all
DE genes or proteins on the corresponding co-expression network. We calculated
enrichment statistics using Fisher’s exact test, and corrected for multi-testing fol-
lowing the Bonferroni procedure.

Seeding gene list construction. Making the assumption that DE genes are
important for AD, and that therefore these genes need to be included in the model,
we added the union of all DE genes to the seeding gene list. To include other
important genes that covary with these DE genes, but that may not reach sig-
nificance in the DE analyses, we included all genes in co-expression modules
enriched for DE genes. Finally, for the discovery gene expression set only (BM10),
to maximize the chances to not miss important genes, we used PEXA34 to add
other genes known to be connected to our current gene list in the literature to the
gene list of DE genes and modules of interest. To build the extended network,
PEXA used KEGG pathways, and to trim it, used a PPI network from CPDB. We
used the outputted discovery seeding gene list of 5714 genes for which we have
gene expression for Bayesian causal network construction. For the replication sets,
the seeding gene lists were comprised of only the DE genes and the co-expression
modules enriched for the DE genes, and consisted of 10,585 genes for BM22,
16,578 genes for BM36, 8086 genes for BM44, and 9682 genes for ROSMAP. For
BM44, due to the small number of DE genes and to increase the number of genes in
the AD DE gene set with genes related to DE genes and find co-expression module
enrichments, we added the top 10 correlated genes to each of the DE genes before
module enrichments.

Bayesian causal networks. BNs were built using RIMBANET using gene
expression, protein expression, and both gene and protein expression (multiscale)
for the discovery datasets, and using gene expression for the replication datasets.
In each case, QTLs were used as priors (eQTLs for gene networks, pQTLs for
the protein network, and both for the multiscale network), which both reduce the
search space size and enhance causal inference among nodes3!:33. To reduce the
search space and increase the likelihood to reach a global maximum of the fit of
the network, we reduced the gene space from entire expressed transcriptome
(24,865 genes) to the seeding gene list described earlier for the gene-only and the
multiscale networks. Since there was protein expression for only 2692 proteins, we
included all the proteins in both the protein and the multiscale networks. To
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account for the central dogma of biology where RNA is translated into corre-
sponding proteins and the results of the CIT analysis described earlier, we included
weak edge priors (increasing the likelihood for that edge to be searched) to the
multiscale network from the parent gene to its corresponding protein product.
While including such guiding structure priors can result in more accurate net-
works, such priors are not absolute, and any such edge must ultimately be sup-
ported by the data (an important feature given our finding from causal mediation
analyses that did not always support causal relationships between gene- and
protein-expression traits).

Representation of networks and subnetworks was achieved using the Cytoscape
software version 3.5.1.

Key driver analyses. For both the discovery and the replication datasets, KDA was
performed using the R package KDA. This package defines a background sub-
network by looking for a neighborhood K-steps away from each node in the target
gene list in the network. Stemming from each node in this subnetwork, it assesses
the enrichment in its k-step (k varies from 1 to K) downstream neighborhood for
the target gene list. In this analysis, we used K = 6. KD analyses were performed by
projecting multiple seeding target lists of interest on the networks: The DE lists of
the corresponding omics for each disease trait to find KDs of the diseases. In the
discovery dataset, KDs were then prioritized by first how many networks they
appear in (replication) and then how many times they appear across networks
(importance). In the replication datasets, we looked for presence of VGF as a KD of
the networks.

Validation of KD predictive power with Enrichr signatures. A matrix of dis-
tances between every node in our discovery BN models was computed with the
distances function of the igraph R package. Subnetworks around each node in
the networks were defined both in an undirected and downstream fashion. For
each node with a perturbation in the CNS or the immune system, enrichment for
signatures in subnetworks from path length 1 to 6 were computed with the R base
function fisher.test and adjusted for multi-testing using the FDR setting of the p.
adjust function. The proportion of nodes with significant enrichment was defined
at each path length as the proportion of nodes with existing perturbation and FDR
<0.05 divided by the total number of nodes with existing perturbation. The ratio of
KDs to non-KDs with significant enrichment was defined as the proportion of KDs
with significant enrichments divided by the proportion of non-KDs with significant
enrichments.

Ranking of KDs using machine learning. For each classifier we performed a
random split of the data, stratified by class, into 75% training set and 25% vali-
dation set. The training set was subjected to SMOTE to resolve any class imbalance
for training the random forest (RF) classifier (python sklearn package). Classifier
performance was evaluated against the validation set and quantified using area
under the curve (AUC) of the receiver operating characteristic (ROC) curve. RF
randomly subsets the features into decision trees, selecting a feature from each
subset that best separates the data into classes. Therefore, the choice of a feature to
be included in the forest is an indication of the performance and stability of that
feature. Features were ranked by importance, as based on information gain score.
This process was performed 500 times to estimate the distribution of feature
information gain across classifiers. Features were then organized into a meta-rank
by a weighted z-score method across the 500 iterations per classifier. There, a z-
score was established from the features rank per iteration of the information gain
and weighted by a factor accounting for stability of features and performance of the
classifier. The weight is the product of two components: (i) the ratio of the number
of iterations each feature appeared in to the mean number of all features’ iteration
appearances, both across the 500 forests; (ii) the absolute value of the ROC AUC
score of each classifier centered at 0, minimizing the impact of random classifiers.

The classifiers were run independently, after normalization and adjustment for
covariates, on each scale of expression data: the gene expression data, the protein-
expression data and the gene and protein-expression data together. In each case,
the 11 AD traits were used as classes to train and test the classifiers, and a meta-
rank for each feature across the 11 traits was computed using the weighted z-score
approach across all 5500 classifiers. To further prioritize the network KDs, all KDs
were ordered according to the meta-rank of features across traits for their
corresponding scale of data (Supplementary Data 3).

PRS analyses. We assessed the relationship between VGF expression and genome-
wide risk for AD. WGS was performed as described previously?3. SNPs with data
missing in >2% of the sample, minor allele frequency <1%, or deviation from
Hardy-Weinberg equilibrium (p < 5 x 10~5) were removed using Plink2. After
these initial QC checks, SNPs were pruned based on linkage disequilibrium
(window size = 100, window shift = 50 SNPs, VIF threshold = 2), and multi-
dimensional scaling (MDS) analysis on the N x N matrix of genome-wide IBS
pairwise distances (performed using Plink). The first five MDS components were
utilized as ancestry covariates. Only individuals of European descent were included
in this analysis, as described above in the QTL analysis section. Only SNPs present
in the HRC (Haplotype Reference Consortium) reference set were considered.
Using I-GAP AD GWAS summary statistics! as discovery, AD PRS were

calculated for AMP-AD individuals using PRSice2, with VGF expression as the
response phenotype.

Other statistical analyses. R version 3.3.1 was used for statistical analyses, unless
specified otherwise. GO annotations enrichment was tested with the R packages
goseq, topGO, and org.Hs.eg.db. To test MSigDB pathway enrichment, the R
packages HTSanalyzeR, GSEABase, and gage were used. Figures where generated
using the R packages ggplot2, scales, reshape2 (http://www.jstatsoft.org/v21/i12/),
and grid. UpsetR plots were generated with the UpSetR R package. Heatmaps were
produced with the function heatmap.2 of the R package gplots. Venn diagram was
drawn using the VennDiagram R package. Circos (circular) plot of DE enrichments
in modules were plotted using the NetWeaver R package. Canonical correlation
analyses were performed with the canCorPairs function of the variancePartition
R package and canonical correlation p-values were computed with the p.perm
function of the CCP R package with 10,000 random sampling of the labels. Large
tables were read-in and written using the R package data.table.

Animal models and stereotaxic surgery. The generation of 5XFAD mice was
described previously*!. These transgenic mice overexpress both human APP (695)
harboring the Swedish (K670N, M671L), Florida (I716V), and London (V7171)
FAD mutations and PS1 harboring the two FAD mutations M146L and L286V.
Expression of both trans genes is regulated by neuronal-specific elements of the
mouse Thyl promoter. The 5xFAD strain (B6/SJL genetic background) was
maintained by crossing hemizygous transgenic mice with B6/SJL F1 breeders. The
floxed VGF mouse line was generated as recently described®®. Homozygous floxed
VGF mice that overexpress VGF mRNA and protein by virtue of the placement of
the pgk-neo cassette in the 3’-UTR region of the Vgf gene. This leads to premature
mRNA termination and polyadenylation utilizing a cryptic poly-A addition site in
the inverted pgk-neo cassette, truncating part of the 3’-UTR sequence, and
resulting in increased CNS expression of VGF (Supplementary Fig. 4). All mouse
studies were conducted in accordance with the US National Institutes of Health
Guidelines for the Care and Use of Experimental Animals, using protocols
approved by the Institutional Animal Care and Use Committee of the Icahn School
of Medicine at Mount Sinai.

Mice at 2-3 months of age were anesthetized with a mixture of ketamine (100
mg/kg) and xylazine (10 mg/kg). Thirty-three gauge syringe needles (Hamilton,
Reno, NV) were used to bilaterally infuse 1.0 ul of AAV virus into mouse dHc
(anterior-posterior (AP) = —2.0, medial-lateral (ML) = + 1.5, and dorsoventral
(DV) = —2.0 from Bregma (mm)) at a rate of 0.2 pl per min and the needle
remained in place for 5 min before removal to prevent backflow. AAV5-GFP and
AAV5-VGF (mouse VGF complementary DNA (cDNA)) were prepared by the
Vector Core at the University of North Carolina at Chapel Hill. AAV-injected mice
were used at 7-8 months of age for immunohistochemical analysis or at 10 months
of age for behavioral analysis. Additional mice at 3 months of age were anesthetized
with ketamine/xylazine and a cannula was implanted in the lateral ventricle (AP =
—0.1, ML=+1.0 and DV: — 3.0 from bregma (mm)). TLQP-62 (2.5 mg/ml)
dissolved in artificial cerebrospinal fluid (aCSF) or aCSF alone was delivered i.c.v.
by microosmotic pump (Alzet delivering 0.25 ul/h or 15 pg per day) for 28 days.
Mice were used for immunohistochemical analysis at 4.5 months of age.

Immunohistochemical and biochemical analysis. Inmunohistochemical and
biochemical characterization were performed as previously described. For bio-
chemical analysis, to prepare total homogenate, mouse brain tissues were homo-
genized in ice-cold protein lysis buffer containing 50 mM Tris-HCI (pH 7.5), 140
mM NaCl, 1% Triton X-100, 0.5% Na deoxycholate, 0.1% sodium dodecyl sulfate,
and 2mM EDTA with 1x Halt Protease and Phosphatase Inhibitor Cocktail
(Thermo Fisher Scientific, Waltham, MA). For immunohistochemistry, 50-um-
thick sagittal sections were incubated with the following antibodies: rabbit anti-Iba-
1 (1:500; Wako, Richmond, VA), mouse anti-6E10 (1:1000; Covance, Princeton,
NJ), rabbit anti-doublecortin (1:500, Cell signaling Technology, MA), rabbit anti-
PSD-95 (1:500, Cell signaling Technology, MA). Sections were then incubated with
appropriate secondary antibodies: anti-mouse Alexa Fluor 488 (1:500; Invitrogen,
Carlsbad, CA) and anti-rabbit Alexa Fluor 594 (1:500; Invitrogen, Carlsbad, CA).
For nonfluorescent immunostaining, endogenous peroxidase was quenched with
phosphate-buffered saline containing 3% hydrogen peroxide, followed by ampli-
fication using the ABC system (VECTASTAIN Elite ABC HRP Kit, Vector
Laboratories, Burlingame, CA). Horseradish peroxidase conjugate and 3,3’-dia-
minobenzidine were then used according to the manufacturer’s manual (Vector
DAB, Vector Laboratories, Burlingame, CA). ThioflavinS (Sigma-Aldrich, T1892,
1% w/v stock solution) was used for labeling amyloid deposits. For immunoblot-
ting, membranes were incubated with either anti-VGF C terminal (1:1000; rabbit
polyclonal), anti-6E10 antibody (1:1000; Covance, Princeton, NJ), rabbit anti-PSD-
95 (1:500, Cell signaling Technology, MA), and anti-actin (1:1000; Sigma-Aldrich)
antibodies. The membranes were washed, incubated with a secondary horseradish
peroxidase-labeled donkey anti-rabbit or donkey anti-mouse antibody (1/6000; GE
Healthcare) for 1h, washed again, and incubated with ECL detection reagents
(Millipore). Densitometric analysis was performed using the Image] software.
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RNA extraction and real-time reverse transcription quantitative PCR analysis.
RNA from mouse tissue specimens, obtained by dissection of the prefrontal cortex,
was extracted using miRNeasy Mini Kit (Qiagen) according to the manufacturer’s
protocol, and 0.25 ug was reverse transcribed using iScript reverse transcription
supermix for RT-qPCR Kit (Bio-Rad, Hercules, CA). One nanogram of first-strand
cDNA was subjected to PCR amplification using a SYBR green real-time reverse
transcription PCR master mix (PerfeCTa SYBR Green FastMix, Quanta Bios-
ciences). AACt method was used to quantify relative gene expression and nor-
malized to glyceraldehyde 3-phosphate dehydrogenase.

Behavioral testing and analysis. The Barnes maze test was performed using a
standard apparatus. Ten-month-old mice were transported from their cage to the
center of the platform via a closed starting chamber where they remained for 10 s
prior to exploring the maze for 3 min. Mice failing to enter the escape box within
3 min were guided to the escape box by the experimenter, and the latency was
recorded as 180 s. Mice were allowed to remain in the escape box for 1 min before
the next trial. Two trials per day during 4 consecutive days were performed. The
platform and the escape box were wiped with 70% ethanol after each trial to
eliminate the use of olfactory cues to locate the target hole. All trials were recorded
by video camera and analyzed with ANY-maze video tracking software (Stoelting
Co., Wood Dale, USA).

Field electrophysiology. Coronal brain slices containing the hippocampal for-
mation were prepared as previously described. Animals were anesthetized with
isoflurane and brains were rapidly removed from the skull and placed in an ice-
cold modified aCSF solution containing: 215 mM sucrose, 2.5mM KCI, 1.6 mM
NaH,PO,, 4 mM MgSO,, 1 mM CaCl,, 4 mM MgCl,, 20 mM glucose, 26 mM
NaHCOj; (pH =74, equilibrated with 95% O, and 5% CO,). Coronal brain slices
(400 pum thick) were prepared with a Vibratome VT1000S (Leica Microsystems,
Germany) and then incubated at room temperature for 22 h in a physiologic aCSF,
containing: 120 mM NaCl, 3.3 mM KCl, 1.2 mM Na,HPO,, 26 mM NaHCOs, 1.3
mM MgSOy, 1.8 mM CaCl,, and 11 mM gucose (pH = 7.4 equilibrated with 95%
0O, and 5% CO,). The hemi-slices were transferred to a recording chamber per-
fused with aCSF at a flow rate of ~2 ml/min using a peristaltic pump; experiments
were performed at 28.0 + 0.1 °C. Recordings were acquired with a GeneClamp 500B
amplifier (Axon Instruments) and Digidata 1440 A (Molecular Devices). All signals
were low pass filtered at 2 kHz and digitized at 10 kHz. For extracellular field
recordings (field excitatory postsynaptic potential (fEPSP) recordings), a patch-
type pipette was fabricated on a micropipette puller (Sutter Instruments, Novato,
CA, USA), filled with aCSF, and placed in the middle third of stratum radiatum in
area CAl. fEPSPs were evoked by activating Shaffers collaterals with a Concentric
Bipolar Electrode stimulator (FHC 1201 Main St, Bowdoin, ME, USA) placed in
the middle third of stratum radiatum 150-200 um away from the recording pipette.
Square-wave current pulses (60 ms pulse width) were delivered through a stimulus
isolator (Isoflex, AMPI). Input-output curves were generated by a series of stimuli
in 0.1 mA steps. LTD was induced by treating the slices with (RS)-dihydrox-
yphenylglycine (DHPG), a selective mGluR1/5 agonist, at 100 uM concentration
for 5 min after 20 min of stable baseline recordings. fEPSP responses were collected
for at least 60 min during DHPG washout. Analysis of the average slope (mV/ms)
during the final 5min of LTD recording was used for statistical analysis.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All data, methods, and materials are available either in the main text, Methods, or
Supplementary information, or via the AD Knowledge Portal (https://
adknowledgeportal.synapse.org). The Mount Sinai Brain Bank (MSBB) study data is
available at (https://adknowledgeportal.synapse.org/Explore/Studies/DetailsPage?
Study=syn3159438) via the AD Knowledge Portal (https://adknowledgeportal.synapse.
org). The Religious Orders Study and Memory and Aging Project (ROSMAP) study data
is available at (https://adknowledgeportal.synapse.org/Explore/Studies/DetailsPage?
Study=syn3219045) via the AD Knowledge Portal (https://adknowledgeportal.synapse.
org). The AD Knowledge Portal is a platform for accessing data, analyses, and tools
generated by the Accelerating Medicines Partnership (AMP-AD) Target Discovery
Program and other National Institute on Aging (NIA)-supported programs to enable
open-science practices and accelerate translational learning. Data is available for general
research use according to the following requirements for data access and data attribution
(https://adknowledgeportal.synapse.org/#/DataAccess/Instructions). Source data are
provided with this paper.

Code availability

Only standard published tools were used for the analyses presented in this manuscript.
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