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A long‑term travel delay 
measurement study based 
on multi‑modal human mobility 
data
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Understanding human mobility is of great significance for sustainable transportation planning. Long-
term travel delay change is a key metric to measure human mobility evolution in cities. However, it 
is challenging to quantify the long-term travel delay because it happens in different modalities, e.g., 
subway, taxi, bus, and personal cars, with implicated coupling. More importantly, the data for long-
term multi-modal delay modeling is challenging to obtain in practice. As a result, the existing travel 
delay measurements mainly focus on either single-modal system or short-term mobility patterns, 
which cannot reveal the long-term travel dynamics and the impact among multi-modal systems. 
In this paper, we perform a travel delay measurement study to quantify and understand long-term 
multi-modal travel delay. Our measurement study utilizes a 5-year dataset of 8 million residents from 
2013 to 2017 including a subway system with 3 million daily passengers, a 15 thousand taxi system, 
a 10 thousand personal car system, and a 13 thousand bus system in the Chinese city Shenzhen. We 
share new observations as follows: (1) the aboveground system has a higher delay increase overall 
than that of the underground system but the increase of it is slow down; (2) the underground system 
infrastructure upgrades decreases the aboveground system travel delay increase in contrast to the 
increase the underground system travel delay caused by the aboveground system infrastructure 
upgrades; (3) the travel delays of the underground system decreases in the higher population region 
and during the peak hours.

We have more than 56.61% of the world population living in urban areas in 2021, and this number is projected to 
be 68% by 20501, which leads to various mobility challenges, e.g., traffic congestion and energy consumption2–4. 
According to an analysis, drivers lost an average of 99 h due to congestion in 2019. The commuters in the New 
York City suffer from an annual delay of 102 h with a $1594.75 cost of congestion per driver in 20215.

However, understanding long-term travel delay evolving patterns is extremely challenging because (i) travel 
delay happens in different modalities, e.g., subway, taxi, bus and personal cars, with implicated coupling, and 
(ii) long-term travel delay experiences spatial and temporal dynamics (e.g., city development, policy changes) 
under various contexts. More importantly, long-term multi-modal travel delay is difficult to model without 
explicated data.

Recently, the ubiquity of GPS devices and the upgrades of transportation infrastructures have led to unprec-
edented data for human mobility modeling including travel delay6,7. In particular, modern cities have been 
equipped with sensor devices in transportation systems to track and dispatch vehicles. Previous work has studied 
human mobility or travel delay based on real-world data such as cellphone data8–14, taxicabs15, buses16. These 
models have good performances when they are used to understand modal-specific mobility patterns and short-
term travel delay, e.g., many papers using large-scale cellphone data6,8 to study daily commuting patterns. How-
ever, they cannot be used to understand long-term multi-model travel delay, e.g., cross-modality effect, since 
cellphone data do not have explicit transportation modality, e.g., subway, car, bus, and taxi.

OPEN

1Department of Computer Science, Rutgers University, Piscataway, NJ  08854‑8019, USA. 2Department of 
Computer Science, Florida State University, Tallahassee, FL 32306, USA. 3Department of Computer Science and 
Engineering, Lehigh University, Bethlehem, PA 18015, USA. 4Shenzhen Institute of Advanced Technology, Chinese 
Academy of Science, Shenzhen  518055, People’s Republic of China. 5University of Science and Technology of 
China, No. 96, JinZhai Road, Hefei 230026, Anhui, People’s Republic of China. 6These authors contributed equally: 
Zhihan Fang and Guang Wang. *email: angyan@ustc.edu.cn; desheng@cs.rutgers.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-19394-z&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:15988  | https://doi.org/10.1038/s41598-022-19394-z

www.nature.com/scientificreports/

In this paper, based on the smart city initiative of Chinese city Shenzhen17, we are working with Shenzhen 
Transportation Committee to access 5-year mobility data for major transportation modalities in both above-
ground and underground transportation systems in Shenzhen for a data-driven transportation study. It enables 
us to analyze evolving mobility patterns and systematic evaluation in a long-term period for multiple modalities 
in a modern city Shenzhen with high-speed city development. Based on this data access opportunity, we conduct 
a measurement case study called mRhythm for urban travel delay measurement and understanding for Shenzhen 
long term transportation planning. To best of our knowledge, this is the first systematical data-driven measure-
ment for travel delay based on large-scale, long-term, and cross-modality mobility data. mRhythm advanced 
the state-of-the-art works by providing several in-depth observations and causality analyses on long-term travel 
delay with the interaction of two major mobility modalities, i.e., aboveground systems including cars, taxis, and 
buses, and underground system including subways. In particular, we summarize our major findings in terms of 
7 observations as follows:

•	 Long Term Individual Modality Evolving Based on our study from 2013 to 2017 of Shenzhen, we provide 
causality analyses for (1) one expected Observation 1 the travel delay and variance increase each year for both 
aboveground systems (including cars, taxis, and buses) and underground system (including subways) (2) two 
unexpected observations: Observation 2 The aboveground systems have a slow-down increase trend of travel 
delay compared to the underground systems, which means the rate of increase is higher for the underground 
systems than the aboveground systems; Observation 3 The underground systems have a lower increased 
delay overall compared to the aboveground systems. More importantly, we provide in-depth analyses of 
5-year census data including various factors, such as subway passengers, car numbers, population, length of 
subway systems and road networks, to explain our results.

•	 Cross-Modality Impact Analyses We made two new observations on how infrastructure upgrades of the 
underground system and the aboveground system can impact each other: Observation 4 The aboveground 
system infrastructure upgrades (e.g., new highway) increase the underground system travel delay; Observa-
tion 5 The underground system infrastructure upgrades (e.g., new subway lines) slows down the aboveground 
system travel delay increase. More importantly, we rigorously test the statistical significance of these observa-
tions and provide a case study for each of them to validate their representativeness.

•	 Impact of Factors We study the impact of five major contextual factors on travel delay including population, 
temporal, spatial, weather, and social event. We made two new observations. (1) Population: Observation 
6 The underground system travel delay decreases with higher population (from 15.5% delay in regions with 
10K-20K population to 10.4% in regions with 50K–60K population); whereas the aboveground system travel 
delay increases with higher population (from 8% delay in regions with 10K–20K population to 28% in regions 
with 50K–60K population). (2) Temporal: Observation 7 The underground system travel delay decreases 
during peak hours (from 18% delay in off-peak hours to 13% delay in peak hours); whereas the aboveground 
system travel delay increases during peak hours (from 35% delay in off-peak hours to 50% delay in peak 
hours).

Results
Individual evolving patterns.  Quantitative results.  The box distribution of all trips’ delay is used where 
the top and bottom of each box are the 25th and 75th percentiles; the middle red lines are the median values; the 
top and bottom of each black dash lines indicate the maximal and minimal values. Figure 1a, b show the delay 
ratio distributions in underground systems (i.e., Subway) and aboveground systems (i.e., combining taxi, bus, 
and PV) from 2013 to 2017 where we made three observations as follows.

Observation 1 in Fig. 1: For both underground and aboveground, both travel delay and variance increase each 
year We analyze Shenzhen census data, which shows the high-level statistics about the mobility demand/supply 
and population change. We process the census data from 2011 to 2016 and normalize all absolute values to rela-
tive differences from the values of the first year, i.e., 2011, to show evolving patterns of travel demand and supply. 
Increasing Overall Demand Figure 2a gives Shenzhen Travel Demand by the number of passengers for subway; 
the number of personal vehicles (i.e., cars); Shenzhen citywide permanent population. We found that (1) the 
permanent population increases from 10.47 million to 11.91 million (13.8%); (2) the number of cars increases 
from 1.98 million to 3.23 million (63.3%); (3) the annual use of subway passengers increases from 0.4 billion 
to 1.2 billion (177.1%). Decreasing per-capita Supply Figure 2b shows Shenzhen Travel Supply by the length of 
roads per capita; the length of subway systems (in terms of km) per capita. We found that even increasing in the 

Figure 1.   Travel delay from 2013 to 2017.
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absolute length, both travel supply for both aboveground system and underground system decrease per capita 
due to increasing population and travel demand as shown in Fig. 2a. A combination of the increasing overall 
demand and decreasing per-capita supply leads to our observation.

Observation 2 in Fig. 1: The aboveground systems have a slow-down delay increase compared to the underground 
system To explore the reason, we refer to Fig. 2a where we found that the increase of cars slows down from 2015. 
We further explore to find out that to control the increase of personal cars and alleviate the traffic congestion, 
from 2015, the Shenzhen government implemented a license lottery policy on personal cars18. In the license-
plate lottery policy, residents submit applications for vehicle license plates each year but only certain number 
of applications will be approved. Therefore, the increasing speeds of personal cars became much slower since 
2015. Since personal cars account for the major aboveground system delay, its slower car increase leads to our 
observation “the aboveground system has a slow-down delay increase”.

Observation 3 in Fig. 1: The underground system has lower increased delay overall compared to the aboveground 
one To explore the reason, we refer to Fig. 2b where even both the underground system and aboveground sys-
tem have decreasing per-capita supply, the underground system supply decreasing rate is much lower than that 
of aboveground system, due to the fast building of Shenzhen Subway System (i.e., increasing from 178.341 to 
285.528 km in these 5 years). As a result, even though (1) the underground system has a strongly increasing 
demand (177.1%) and (2) the aboveground system has an almost-stopped increasing demand (due to license 
lottery policy, Shenzhen only have 2.2% more registered cars from 2014 to 2016), the underground system’s 
overall increase delay is still lower than the aboveground system. It might suggest that increasing supply is better 
than controlling demand.

Statistic significance of observation 1, 2, and 3.  To validate the statistical significance of data for the above three 
observations, we put the average delay of all origin-destination pairs in a year in a vector, and then report the test 
results of the statistical difference between the delays of two consecutive years. Table 1 shows the results of two 
statistical tests, for each cell, the shadowed background means it is statistically significant in Mann–Whitney U 
test19 and the value in the cell is the A measure in Vargha–Delaney20. We found that all travel delay differences 
between consecutive years from 2013 to 2017 are statistically significant by both two tests. The A measure con-
firms the travel delay increases with time in the city, i.e., A > 0.5 . We observed a relatively smaller number in 
16–17 when comparing ABOVE with UNDER, the potential reasons are increasing demand of UNDER, while 
the travel delay for ABOVE has a relatively small number due to car policy, a relatively larger baseline of delay 
for ABOVE in 2016, and upgrade of ABOVE road networks.

Cross‑modal evolving patterns.  For a rigorous cross-modal investigation, we study the impact of the 
aboveground system and the underground system infrastructure upgrades (e.g., new roads or new subway lines) 
on travel delay in two categories of areas: (1) Test areas (Test): city areas covered by the infrastructure upgrades 
based on our spatial partition. (2) Control areas (Control): city areas not covered. We calculate population dis-
tribution, delay ratio, and ratio increase speed in the test areas before infrastructure upgrades, and then we select 
control areas with similar features.

A travel delay ratio is defined with five attributes in Eq. 3 in both underground and aboveground systems. 
With the same θ and temporal partition, we apply a spatial alignment on the two systems to study the cross-
modal impact under the same spatio-temporal dimension. Specifically, we map both the underground system 
and the aboveground system partitions into 497 administrative regions released by government based on the 
their overlap areas.

Figure 2.   Travel demand and supply evolving.

Table 1.   Yearly travel delay difference.

Year 13–14 14–15 15–16 16–17

UNDER 0.71 0.74 0.76 0.79

ABOVE 0.72 0.75 0.78 0.71



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:15988  | https://doi.org/10.1038/s41598-022-19394-z

www.nature.com/scientificreports/

Impact of aboveground system infrastructure upgrades.  We collect data about the aboveground system infra-
structure upgrades (e.g., road open time) by analyzing OpenStreetMap data21 on social media. We found 653 km 
of roads were constructed and taken into services during 2013 and 2017, i.e., 6015 km of total road length at the 
beginning of 2013, and 6668 km of total road length at the end of 2017.

Citywide Trend To compare the impact of aboveground system infrastructure upgrades (i.e., new roads) 
on travel delay in both aboveground and underground systems, Fig. 3 presents mean and standard deviation of 
delay ratio increase, i.e., the absolute delay ratio difference, during 5 years in the two groups.

Observation 4 in Fig. 3a: The aboveground system infrastructure upgrades increase the aboveground travel delay 
When we compare test areas with control areas. Based on the locations of the aboveground system upgrade, 
we found that they mostly happen in suburban areas since the downtown areas are well-developed and out of 
space for new roads. As a result, these the aboveground system upgrades enable residents in suburban areas to 
take new roads to transfer to subways to go to downtown, which leads to increased the underground system 
travel delay in test areas. Based on results in Fig. 3b, we found some expected results: the aboveground system 
upgrades decrease the aboveground travel delay. This is an obvious observation since new roads decrease both 
travel distance in connected areas and travel volumes on existing roads.

Statistical Significance of Observation 4 We conduct U-test and A-test on different origin-destination pairs 
and the results are reported in Table 2. The shadowed cells indicate the travel delay differences are statistically 
significant with U-test. The number in the table is A measures of A-test. The results show the aboveground 
system upgrades have (1) a positive impact on the aboveground system delay, e.g., the aboveground system 
delay in Test Area decreases from 0.71 to 0.33 while the aboveground system delay in Control Area increases 
from 0.69 to 0.78; (2) a negative impact on the underground system delay, e.g., the underground system delay in 
Test Area significantly increases from 0.61 to 0.79 while the underground system delay in Control Area slightly 
increases from 0.65 to 0.68.

A Case Study of Aboveground System Upgrades We take a major highway (Guangshen Yanjiang Express-
way) connecting Shenzhen airport, residential areas, and CBD areas for measurement, which was open at the 
end of 2013.

Figure 4a shows the delay comparison for the underground system between the Test areas (impacted by 
the new highway) and Control areas (not impacted by the new highway) one month before and after this new 
highway was put into services. Similarly, Fig. 4b shows the travel delay comparison for the aboveground system.

(1) As shown in Fig. 4a, this highway significantly increases the underground system delay in the Test Area 
(from 18 to 24%) while the underground system delay in the Control Area only slightly increases (from 20 to 
21%). This is because this highway (far-reaching to remote areas) brings more passengers for two major subway 
stations at one end of the highway, leading to increase the delay in these stations. This result is consistent with 
our Observation 4 on citywide trend. (2) As shown in Fig. 4b, this highway decreases the aboveground system 
delay in the Test Area (from 22 to 18%) while the aboveground system delay in the Control Area significantly 
increase (from 23 to 36%). The new highway directly decreases the travel time in the aboveground system by 
decreasing the travel distance and improving the traffic conditions. This result is consistent with our Observa-
tion 5 on citywide trend.

Impact of the underground infrastructure upgrades.  In Shenzhen, three subway lines and 68 stations were added 
to the subway system in 2016 and 2017.

Figure 3.   Delay increase in underground or aboveground areas covered by aboveground upgrades (test areas) 
and similar area not covered by aboveground upgrades (control areas).

Table 2.   Impact of ABOVE upgrades.

Areas Test before upgrade Test after upgrade Control before upgrade Control after upgrade

UNDER 0.61 0.79 0.65 0.68

ABOVE 0.71 0.33 0.69 0.78
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Citywide Trend To compare the impact of the underground system infrastructure upgrades (the underground 
system upgrade hereafter, i.e., new stations) on travel delay in both systems, Fig. 5 shows the delay ratio increase, 
i.e., the absolute delay ratio difference, during 5 years in the test areas (impacted by the underground system 
upgrades) and control areas (not impacted by the underground system upgrades but with similar demographic 
and geographic features). Since the aboveground system upgrade only happens in 2016 and 2017, the delay 
increases in 2014 and 2015 in test areas are 0.

Observation 5 In Fig. 5a, an expected observation is that the underground system upgrades decrease travel 
delay in the underground system by 14% (absolute difference) due to increased underground supply. Figure 5b: 
The aboveground system infrastructure upgrades slows down the aboveground system travel delay increase From 
3.5 to 2%, even though the travel delay still increases in test areas. We found most underground system upgrades 
happen in downtown areas with high travel demand. The underground system upgrades decrease travel demand 
in the existing aboveground system and lead to lower traffic increase in the aboveground system. This is also 
supported by the previous literature outcomes such as a mismatch between demand increase and travel infra-
structure upgrades22–24.

Statistical Significance of Observation 5 We further measure the difference by the two tests, and their results 
are reported in Table 3. The shadowed cells show the travel delays are statistically significant by U-test. The val-
ues of A measure show underground upgrades have (i) a positive impact on the aboveground travel delay, e.g., 
the A measure of aboveground travel delay in Test Areas slows down from 0.68 to 0.53 while the A measure of 
aboveground travel delay in Control Areas increases from 0.66 to 0.71; (2) a positive impact on the underground 
travel delay, e.g., the A measure of underground travel delay in Test Areas decreases from 0.61 to 0.28 while the 
A measure of underground travel delay in Control Areas increases from 0.61 to 0.63.

A Case Study of Underground System Upgrades We investigate the impact of subway line NO.7 opened in 
2016, which has a length of 30.1 km and includes 27 stations. For the underground system, we study how the 
new stations influence travel delays of overloaded stations. Figure 6a shows the travel delay comparison for the 
underground system. Figure 6b shows the travel delay comparison for the aboveground system between Test 
areas (impacted by the new subway line) and Control areas (not impacted by the new subway line) one month 
before and after this new subway line was taken into services.

Figure 4.   Impact of new highway; (a) new highway increases underground delay in test areas after open (TA-
A); (b) new highway decreases aboveground delay in test areas after open.

Figure 5.   Delay increase in underground or aboveground areas with underground upgrades (test areas) and 
similar areas have no aboveground upgrades (control areas).

Table 3.   Impact of UNDER upgrades.

Areas Test before upgrade Test after upgrade Control before upgrade Control after upgrade

UNDER 0.61 0.28 0.61 0.63

ABOVE 0.68 0.53 0.66 0.71
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(1) As shown in Fig. 6a, this new subway line decreases underground delay in Test areas significantly (from 
36 to 18%) while the underground system delay in control areas increases slightly (from 19 to 20.6%). This is 
because the subway line passes through central business areas and is connected with 6 existing subway lines. It 
reduces passengers in existing stations, reduce the travel distance and transfer time. The result is consistent with 
our Observation 6 on citywide trend. (2) As shown in Fig. 6b, the new subway line slows down the travel delay 
increase in the Test areas (0.9% delay ratio increase compared with 3.2% delay ratio increase in Control areas). 
This is because more passengers choose the subway and it slows down the passenger demand increase in the 
aboveground systems. The result is consistent with our Observation 5 on the citywide trend.

Contextual factors.  We measure the impact of five contextual factors on delay ratio of the underground 
system (i.e., subway) and the aboveground system (i.e., car, bus, taxi), i.e., population, temporal, spatial, weather, 
social event, and West Texas Intermediate (WTI) crude oil price.

(1) Population
Population distribution is one of the most important and unexpected factors for travel delay. For the under-

ground system, we map the population to stations based on the walking distance in a non-overlapping partition 
where the average distance between adjacent stations in the subway system is 1.16 km, so we set the walking 
distance as half of the average distance, i.e., 0.58 km, which leads to the walking area of 1.05 km225. 78.4% of 
regions in the coverage areas of the subway system have more than 10,000 population because the subway system 
covers the most downtown areas. For the aboveground system, we map the population to grids and investigate 
the relationship between population and delay at the grid level. The grid size we investigate is 1.37 km2 . 77.1% of 
grids have less than 10,000 population. In Fig. 7a, b based on different populations on the X-axis, we show both 
the ratio of regions among all regions (Left Y-Axis) and average the underground system delay in these regions 
(Right Y-axis). Observation 6 the underground travel delay decreases with the higher population; whereas the 
aboveground system travel delay increases with the higher population. This is mainly because of the different 
flexibility of underground system and the aboveground system supply, even with the same increasing demand. 
For the underground system in high population regions, both higher train frequency and denser subway system 
deployment are used for higher the underground system supply per passenger in populous areas. However, for 
the aboveground system, a higher the aboveground system supply is not possible in populous regions since the 
space for the aboveground system infrastructure upgrades (e.g., new road) is limited in the populous regions. 
Another minor observation is that the degree of the aboveground system travel delay increasing is smaller in 
grids with more than 20,000 population. This may be because the dense regions (e.g., downtown CBD) have 
better road structures.

(2) Temporal Fig. 8 presents travel delay during one day in UNDER and ABOVE system. Observation 7 the 
underground system travel delay decreases during peak hours (7 am to 9 am and 4 pm to 8 pm); whereas the 
aboveground system travel delay increase during peak hours. For example, there are a lower travel delay in the 
underground system (around 13% on average) and a higher travel delay in the aboveground system (around 

Figure 6.   Impact of new stations; (a) it decreases the travel delay in the underground system; (b) it decreases 
the travel delay in the aboveground system.

Figure 7.   Correlation between travel delay and population: (a) the underground system’s delay is low in 
populous regions; (b) the aboveground system’s delay is high in populous regions.
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50% on average). For the underground system, the subway system sends trains more frequently in peak hours 
as shown in Fig. 8a, i.e., the 5-min time interval in the peak hours and the 8.5-min time interval in the off-peak 
hours26. Sending trains more frequently reduces the waiting time significantly while increases the operational 
cost. For instance, a subway line with 1 h of total travel time requires at least 7 subway trains (1 h/8.5 min) to 
maintain services in off-peak hours but 12 trains in peak hours (1 h/5 min). It increases the operational cost by 
71% (from 7 trains to 12 trains). For the aboveground system, we found a lower entropy (lower randomness) in 
taxis and personal vehicles as shown in Fig. 9a during the peak hours. In other words, taxis and personal cars 
concentrate on commuting between certain areas, e.g., work areas and home areas, during peak hours, which 
leads to increased the aboveground system delay. Figure 9b shows the weekly patterns where we found a higher 
travel delay on weekdays than weekends in the aboveground system by 25% during peak hours, while the differ-
ence is negligible in the underground system.

(3) Spatial In both systems, travel delay increase by years in downtown areas because of higher travel demand 
in the downtown areas (where most regions with Top k delay ratios reside) with a limited improvement of infra-
structures. In contrast, the general trend of suburban areas in both systems is decreasing by years. This is because 
the better infrastructures are constructed in suburban areas, e.g., roads and subway stations, along with Shenzhen 
urbanization. Comparing the underground and aboveground systems, we found the impact of infrastructure 
upgrades on the underground system is larger than the aboveground system because a new subway line can cover 
large areas and can even function as transfer lines to decrease the travel time between the existing two stations.

(4) Weather We group days in 5 years by the level of wind (fresh, gentle, moderate, gale), rain (no rain, light 
rain, heavy rain), and temperature.

(i) Wind Figure 10a, b show the delay changes in time of day under different wind levels. For the extreme 
wind weather (e.g, gale), both aboveground system and underground system have higher delay ratios. Through 
a deeper analysis, we found the delay in the underground system is caused by the temporary closing of some 
lines and stations where passengers take detours, which leads to higher the underground system delays. But even 
though some stations and lines may be closed in extreme weather, the underground systems might be more reli-
able since it can be recovered soon. (ii) Rain For the aboveground system, both the light and heavy rains increase 
travel delay, especially during peak hours. For the underground system, the light rain increases the travel delay; 
whereas the heavy rain slightly decreases the travel delay, which is caused by the decrease of passenger demand 
after analyzing the number of passengers in the subway system. (iii) Temperature Through our analyses, there is 
no major impact of temperature on travel delay.

(5) Social Events We found different social events have different impacts on travel delay. For example, in 
the Spring Festival, since most residents leave the city, the travel delay decreases a lot during that time; whereas 
in the National Day Break, people go shopping and go to local attractions, which leads to a high travel delay.

(6) Crude Oil Prices Figure 11a gives the WTI crucial oil price changes based on the public data records27. 
The general trend of crucial oil prices decreased from around 100 USD to around 50 USD during year 2012 to 
years 2018. The correlation analysis is based on the WTI crucial oil price and travel delay ratio change. Since the 

Figure 8.   Delay distribution during one day; (a) underground travel delay is dominated by train frequency; (b) 
aboveground travel delay is dominated by spatial entropy.

Figure 9.   (a) A lower spatial entropy means lower randomness on spatial dimension and cars moves to certain 
areas; (b) lower peak hour and shifts on weekends.
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delay ratio increases in long term due to city expansion and increasing demand, we conduct impact analysis of oil 
price change in a short-term period. Figure 11b shows the WTI crucial oil price changes on daily basis (relative 
difference of day two compared with day one). We compared the delay ratio change with the fuel price change 
in Fig. 11c, in which we found a negative correlation between delay ratio change and fuel price changes. The 
decrease of fuel price has a higher impact on delay ratio compared with the increase of the price. The potential 
reason is that the decrease of fuel price will increase the travel demand on above-ground transportation while 
the increasing price does not impact the travel demand of people who already choose to drive cars to commute. 
Besides, the impact of fuel price in short term does not impact underground transportation significantly because 
it does not change the train frequency in the underground transportation system.

Discussion
(i) Delay Evolving Based on our long-term measurement, we provide some qualitative and quantitative results 
(Fig. 1a, b) to show delay increasing for both systems. Our measurements show the travel increases are statistically 
significant and the significance increases by years (Table 1). The main reason for delay increasing given by our 
causality analyses is a long-term mismatch between demand increase and travel infrastructure upgrades (Fig. 2b).

(ii) Contexts
The most unexpected results are the impacts of population on these two systems. For the aboveground sys-

tem, a region with higher population has a higher delay (Fig. 7b); whereas for the underground system, a region 
with higher population has a lower delay (Fig. 7a). We found the fundamental reason for this contradiction is 
the transportation resources per capita for these two systems. Social events either increases or decreases delay 
based on resultant culture-based patterns.

(iii) Interdependency We found that delay dependency exists between different modalities. In the under-
ground system, having new subway lines and stations decreases the delay by 44.1% in the overloaded transfer 
stations, and remits the travel delay increases in the aboveground system from 43.8 to 13% (Fig. 6b, a). In the 
aboveground system, having new highway decreases the travel delay in the connected regions by 12.2% (Fig. 4b), 
but it increases the travel delay in the connected subway stations by 16.7% because it connects subway uncovered 
areas with subway stations, leading to high subway demand (Fig. 4a).

(iv) Practical Impacts on Shenzhen Our measurement results and observations have practical impacts on 
Shenzhen Transportation Committee. The long-term individual modality and its causality analysis provide some 
comprehensive and quantitative references for their evolving patterns in Shenzhen covering both aboveground 
and underground mobility patterns. Our cross-modality impact analysis gives a new angle for mobility analysis 
in Shenzhen because most of existing studies are based on single modalities, and ignore the impacts from other 
transportation modalities, which may lead to bias in modeling. We studied various contextual factors in mobil-
ity modeling and analyses, but most of existing works are focusing on short-term and single modality instead 
of long-term analysis with cross-modality settings. Those are all important factors for researchers’ and practi-
tioners’ projects focusing on Shenzhen human mobility modeling, traffic volume and speed predictions, urban 
planning. For working with Shenzhen Transportation Committee, we have achieved our goals to understand 

Figure 10.   Extreme weather causes high travel delay in both underground and aboveground system; caused (a) 
subway lines close and (b) low speed on roads.

Figure 11.   Fuel price change causes the dynamics of delay ratio for above-ground transportation.
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transportation infrastructure deployment (e.g., select best locations for new subway stations) and public trans-
portation scheduling (e.g., frequency of subway and bus lines) from a long-term and multi-modal perspective. 
Our study indicates that the underground infrastructure upgrades (e.g., new subway lines or stations) might 
decrease both the travel delay in the underground system and aboveground system, e.g., a new subway line in 
Shenzhen reduced underground delay by 18% and reduced underground delay. Hence, new subway stations or 
subway lines need to be built to reduce travel delay.

(v) Broader Impacts on Other Applications and Data Release Human mobility is a key topic of Data 
Science Technology, and one of the most important measurement to human mobility evolution is the travel 
delay change in a long time. We investigate the first long-term multi-modal travel delay evolution at city scale, 
which potentially reflect the general human mobility trend. Our insights and lessons learned can benefit a wide 
range of future urban mobility applications, i.e., multi-modal travel recommendation28,29, congestion-aware 
fleet management30, social event detection31, human mobility prediction32,33, measuring the impact of mobility 
intervention strategies for the recent pandemic mitigation6,34. The one month aggregate multi-modal data set 
we will release has the potential to motivate and validate the aboveground urban mobility solutions, and verify 
various human mobility models for broader applications.

(vi) Generalization Despite the fact that our measurement work is done in one city, i.e., Shenzhen, the meas-
urement framework such as metrics and insights can be potentially generalize to other urban cities with similar 
scales and policies, e.g., related to the observation 2 and 3. However, most of our observation is independent 
from local policies, which we believe can be generalized to other cities as well. Specifically, we can also measure 
the impacts of contextual factors on aboveground and underground travel delay given the similar data from any 
particular city.

(vii) Limitations We only use data from a particular city Shenzhen for a travel time delay measurement, so the 
results and implication may only apply to Shenzhen or cities with similar features. But we believe our results can 
provide new insights for urban planners or transportation developers to improve mobility of cities with similar 
features. We study the travel delay based on a prefixed spatial partition, which may be not the optimal partition 
for delay measurement, but how to partition cities into different regions to understand human mobility are still 
an open question35. Due to limited data access, we only consider the aboveground motorized modalities, e.g., taxi 
and personal cars, and other non-motorized modalities, e.g., biking or walking, will also provide new insights 
for travel delay modeling. Another limitation of this work is the time duration of the data, which is from 2013 
to 2017. Prolonging the time series and reflecting more recent data in the analyses would improve the paper. 
However, in practice, it is challenging for researchers to obtain such a long-term large-scale dataset from four 
different transportation systems. In this work, we are working with the Shenzhen government, who provides the 
data between 2013 to 2017 to us for its urban sustainable developments. Since 2017, there are stricter data access 
regulations in China , it is hard to obtain such large-scale human mobility data after 2017. Even though the data 
are 5 years old, we argue that our long-term measurement study can still reveal travel dynamics and the impact 
among multi-modal systems during the evolving process with different factors like infrastructure upgrading, 
population growing, and weather change, etc. Since this is also the first work to investigate the long-term travel 
delay change with 5-year dataset collected from four transportation systems with 8 million residents, we believe 
the findings in this paper can benefit other researchers and city governments. In addition, the measurement 
framework can be potentially generalize to other urban cities with similar scales and policies since most of our 
observation is independent from local policies.

(viii) Modal Shifting During the Pandemic Situation During the COVID-19 pandemic36,37, there is an 
increase in the usage of personal cars instead of public transport in some cities38,39, which may cause more 
congestion and travel delay of the aboveground system39,40. One way to relieve this situation is to increase the 
punctuality of public transportation systems (e.g., providing exclusive bus lanes), which would be useful to gain 
back the trust of those passengers who shifted to cars during the pandemic. In addition, more residents choose 
to work remotely for safety considerations, which can also restrict the number of used private cars and increased 
delay time during rush hours.

Methods
Multi‑modal dataset and statistics.  City Background We accessed both the system data and contextual 
data from Shenzhen. As one of the most modernized cities in China (one out of four tier-1 cities with rapid 
urbanization), Shenzhen is located in the southeast seashore of China with a size of 792 mi2 and 12 million 
population.

Mobility Data We utilize four different urban transportation systems in Shenzhen, i.e., subway, bus, taxi, 
personal car. The data cover all of the city population who utilize smartcard for public transportation (bus and 
subway), all of the passengers in the city who take taxis, and 10 thousand personal car drivers. (i) Subway System 
includes 8 lines, 194 stations, 972 trains, 3 million daily passengers, and 4 million daily fare records. Passengers 
swipe smart cards when they enter origin stations or leave destination stations. A fare transaction record has 6 
attributes (card id, date, time, station id, in/out). (ii) Bus System includes 1115 bus lines, 10,106 bus stations, and 
13 thousand buses. A bus record (uploaded every 30 s) has 6 attributes (plate, date, time, stop id, GPS location, 
speed). (iii) Taxi System includes 15 thousand taxis. A taxi record (uploaded every 30 s) has 6 attributes (plate, 
date, time, GPS, speed, free/occupied). (iv) Personal Vehicle System (i.e., PV system) includes 10 thousand cars 
traveling regularly around Shenzhen. A PV record (uploaded every 10 s) has 5 attributes (device id, date, time, 
GPS location, speed). Drivers voluntarily report their PV data with an on-board diagnostics and a smartphone 
app for insurance premium discounts.

Figure 12 is drawn by us using a software called Processing version 3.5.441. The first two figures in Fig. 12 
present temporal demand distribution, i.e., number of passengers, of the four kinds of mobility, assuming one 
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passenger per PV, and spatial coverage of three aboveground mobility. They are rather expected. The last two 
figures in Fig. 12 visualize the four mobility with two categories, i.e., the underground system (i.e., subways) 
and the aboveground systems (i.e., buses, taxis, cars). The brighter color indicates higher travel demand. For 
example, the underground system covers some populous areas in a city, e.g., downtown areas; whereas above-
ground system cover the majority of the city. We omit further statistics since they are expected. A summary of 
the mobility dataset is shown in Fig. 13.

Partition and metrics.  Spatial Partition We use different spatial partitions in (1) the aboveground systems 
including taxis, buses, personal cars; (2) the underground system including subway. For aboveground systems, 
the most delays are due to traffic congestion on roads25; whereas for the underground system, most of the delay 
is due to the waiting in the subway station42. Moreover, a underground trip has fixed stations as origins and 
destinations (OD hereafter); whereas an aboveground trip has flexible OD at arbitrary locations given by GPS. 
Figure 14a presents a partition for the underground system based on subway station coverage where we apply a 
non-overlapping partition with walking distance circles and perpendicular bisector lines to assigning residents 
to the nearest station within walking distance. Figure 14b presents a grid partition for the aboveground systems 

Figure 12.   Mobility dataset in Shenzhen.

Figure 13.   Mobility dataset.

Figure 14.   Spatial partition.
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with an example of three trips. To ensure fine-grained modeling, we divide the Shenzhen into 100m× 100m 
rectangular grids, which is used extensively for fine-grained mobility modeling25.

Trip Travel Time Given the above aboveground system spatial partition, we first apply an existing trip segmen-
tation technique based on staying points43 to extract the aboveground systems trips (Note that the underground 
system trips are directly given by data). We identify a trip by five parameters (so, sd , to, td , i) , where so and sd are 
the origin and destination of the trip, to is the start time of the trip, td is the end time of the trip, i is the passenger 
id or vehicle id of this trip. Given a trip, its travel time is the time difference between the trip end time and trip 
start time, which is given by a function τ(so, sd , to, td , i) . The travel time of a trip is given in Eq. (1).

Fluent Travel Time When no congestion occurs in a trip between an OD pair, the travel time of this trip is called 
the fluent travel time of this OD pair, which is often modeled as the minimum travel time between two locations25. 
However, since lots of errors and noise exist in real-world data caused by factors such as sensing errors or abnor-
mal behaviors (e.g., motor racing), the minimum travel time is most likely to be an error. Therefore, we first apply 
a data clean procedure, and then we use a noise filer function to remove potential errors and noise43. Therefore, 
the fluent travel time estimation is given in Eq. (2) where we filter errors and noise by a predefined threshold of 
the standard score x (i.e., z score) θ on travel time τ.

Delay Ratio as Measurement Metric Based on a trip i’s travel time τ(so, sd , to, td , i) and the fluent travel time 
f (so, sd , θ) between two locations (so, sd) , the Delay Ratio of this trip i is defined as in Eq. (3).

We set θ = 1.96 which gives us a 95% confidence interval. We use subway fare records to model travel delay ratio 
of the underground system, and on-board GPS records to model the travel delay ratio for above-ground systems, 
Even though the data format are different, we use the same method to model the delay ratio. In the first step, 
we calculate the travel time for individual trips between an origin-destination pair by Eq. 1. Second, we model 
the fluent travel time between origins and destinations with Eq. 2. In the last step, we use Eq. 3 to calculate the 
delay ratio of individual trips.

Statistical Significance of Delay Ratio Comparison To ensure a rigorous delay ratio study beyond traditional 
metrics (e.g., standard deviation), we apply the non-parametric significant test, i.e., Mann–Whitney U test19, 
to determine if a difference between travel delays are statistically significant (p value below 0.01) by chance. To 
further investigate how much two sets of travel delay differs, we use a non-parametric effect size, a pair-wise 
Vargha-Delaney A measure20 as in Eq. (4).

where D is a set of travel delays, e.g., Di = {di1, . . . , d
i
k , . . . , d

i
n} and Dj = {d

j
1, . . . , d

j
k , . . . , d

j
n} . For example, D2013 

is the travel delay of the Year 2013 between all origin-destination pairs; d2013k  is the average delay between one OD 
pair k. The pair-wise Vargha-Delaney A measure ( A measure hereafter) indicates the probability that one travel 
delay distribution is higher than another. A measure is above 0.5, the first distribution is higher; A measure 
is 0.5, the two distributions are equal; A measure is below 0.5, the second distribution is higher. The closer A 
measure to 0 or 1.0; the higher the differences between the two distribution.

In this work, we only utilize the aggregate data to study the travel delay, and the individual information can-
not be revealed from our data. Any sensitive information has been removed before conducting this project. We 
confirm that informed consent was obtained from all subjects and/or their legal guardian(s). For example, before 
the data were collected, all passengers and drivers have been notified that their transportation card data or com-
mercial vehicle GPS data will be collected for the billing and mobility systems management purposes including 
understanding mobility system performance and improving mobility services. We confirmed that all methods 
were performed in accordance with relevant guidelines and regulations. We confirmed that all experimental 
protocols were approved by the Institutional Review Board of School of Software Engineering, University of 
Science and Technology of China.

Conclusion.  In this paper, we quantify, measure, and understand long-term multi-modal travel delay based 
on a 5-year multi-modal mobility dataset in Chinese city Shenzhen. Our measurement study utilizes a dataset 
of 8 million residents from 4 transportation modalities spanning 5 years from 2013 to 2017, which, to our 
knowledge, has not been studied before due to limited data access. Through our measurement, we found: (1) the 
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(2)

f (so, sd , θ) = min
i,to ,td

{τ(so, sd , to, td , i)|P(τ � z) � θ}

z =
|τ(so, sd , to, td , i)− τ̄ (so, sd , ∀to, ∀td , ∀i)|

σ(so, sd ,∀to,∀td ,∀i)

(3)d(so, sd , to, td , i, θ) =
τ(so, sd , to, td , i)− f (so, sd , θ)

f (so, sd , θ)
× 100%

(4)

A(Di ,Dj) =

n
�

k=1

σ(d
j
k − dik)

n

σ(d
j
k − dik) =











1, d
j
k − dik > 0

0.5, d
j
k − dik = 0

0, d
j
k − dik < 0



12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:15988  | https://doi.org/10.1038/s41598-022-19394-z

www.nature.com/scientificreports/

aboveground system has a higher delay increase overall than that of the underground system but the increase of 
it is slow down; (2) the underground system infrastructure upgrades decreases the aboveground system travel 
delay increase in contrast to the increase the underground system travel delay caused by the aboveground sys-
tem infrastructure upgrades; (3) the travel delays of the underground system decreases in the higher population 
region and during the peak hours.

Code availability
Codes to reproduce ourresults in the figures from the data is publicly available ongithub. https://​github.​com/​
Grand​Dueli​st/​mRythm.
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