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Abstract

Motivation: Synthetic lethality (SL) between two genes occurs when simultaneous loss of function leads to cell
death. This holds great promise for developing anti-cancer therapeutics that target synthetic lethal pairs of endogen-
ously disrupted genes. Identifying novel SL relationships through exhaustive experimental screens is challenging,
due to the vast number of candidate pairs. Computational SL prediction is therefore sought to identify promising SL
gene pairs for further experimentation. However, current SL prediction methods lack consideration for generalizabil-
ity in the presence of selection bias in SL data.

Results: We show that SL data exhibit considerable gene selection bias. Our experiments designed to assess the
robustness of SL prediction reveal that models driven by the topology of known SL interactions (e.g. graph, matrix
factorization) are especially sensitive to selection bias. We introduce selection bias-resilient synthetic lethality
(SBSL) prediction using regularized logistic regression or random forests. Each gene pair is described by 27 molecu-
lar features derived from cancer cell line, cancer patient tissue and healthy donor tissue samples. SBSL models are
built and tested using approximately 8000 experimentally derived SL pairs across breast, colon, lung and ovarian
cancers. Compared to other SL prediction methods, SBSL showed higher predictive performance, better generaliz-
ability and robustness to selection bias. Gene dependency, quantifying the essentiality of a gene for cell survival,
contributed most to SBSL predictions. Random forests were superior to linear models in the absence of dependency
features, highlighting the relevance of mutual exclusivity of somatic mutations, co-expression in healthy tissue and
differential expression in tumour samples.

Availability and implementation: https://github.com/joanagoncalveslab/sbsl

Contact: Joana.Goncalves@tudelft.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Synthetic lethality (SL) describes a relationship between two genes
where simultaneous loss of function in both genes causes cell death,
but independent disruption of either gene does not affect cell viabil-
ity. An SL relationship can be exploited for precision anti-cancer
treatment by targeting a gene known to be synthetic lethal with an-
other gene that is deleteriously mutated in the tumour cells. This tar-
geted gene disruption not only induces the death of tumour cells, it
is also unlikely to affect healthy cells if they do not carry the muta-
tion. For instance, PARP inhibitor drugs are preferentially lethal to-
wards tumour cells with BRCA1 or BRCA2 mutations and were the
first SL-based therapy approved for use in the clinic (Lord et al.,
2015). Developing SL-based therapies requires the identification of
novel SL interactions through SL loss-of-function screens, which
silence gene pairs of interest and measure the respective effect on
cell viability (Nijman, 2011). However, exhaustive screening is

expensive and becomes impractical due to the vast number of pos-
sible gene pairs. This is where computational SL prediction comes
into play to guide experimental follow-up and reduce screening to
only promising SL pairs.

Previous computational approaches have derived SL through the
analysis of gene mutation or expression (Jerby-Arnon et al., 2014;
Wan et al., 2020; Wappett et al., 2016), patient survival (Feng et al.,
2019; Lee et al., 2018), metabolic networks (Folger et al., 2011;
Raman et al., 2018), protein–protein interactions (Jacunski et al.,
2015; Kranthi et al., 2013), signalling pathways (Zhang et al.,
2015), existing SL networks (Cai et al., 2020; Huang et al., 2019;
Liu et al., 2020), evolutionary conservation within and between spe-
cies (Conde-Pueyo et al., 2009; De Kegel et al., 2021; Lu et al.,
2015; Wu et al., 2014), among others. We categorize existing SL
prediction approaches as either SL topology-based or SL feature-
based methods. Informally, SL topology prediction methods:
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(i) consider a limited prediction universe based on a predefined set
of genes, usually induced by the availability of SL labels; (ii) are ex-
plicitly aware of the gene–gene SL label graph structure, where
nodes denote genes and edges denote SL relationships between pairs
of genes. SL topology methods can be further categorized into ma-
trix factorization techniques like pca-gCMF (Liany et al., 2020),
SL2MF (Liu et al., 2020), GRSMF (Huang et al., 2019) and graph-
based methods like SLant (Benstead-Hume et al., 2019), DDGCN
(Cai et al., 2020) and GCATSL (Long et al., 2021). Conversely, SL
feature methods are unaware of gene identity or the structure
defined by the SL relationship labels and rely exclusively on molecu-
lar features of genes for the prediction task. For this reason, feature
models can be used to predict an SL relationship for any pair of
genes with a corresponding feature-based representation. SL feature
methods include statistical techniques like DAISY (Jerby-Arnon
et al., 2014) and BiSEp (Wappett et al., 2016), and supervised learn-
ing models such as Lu et al. (2015), DiscoverSL (Das et al., 2019)
and EXP2SL (Wan et al., 2020).

Significant challenges remain before existing SL prediction meth-
ods can be routinely used to guide experimental screening. To be ef-
fective, they must rank positive SL gene pairs consistently high
across multiple datasets, be able to make predictions for unseen
genes, and generalize to unseen gene pairs. However, most studies
assess prediction performance under limited scenarios, for instance
focusing on a single cancer type and testing of gene pairs whose
genes individually appear in the training set. We hypothesize that
some genes may be overrepresented in existing SL labels while
others remain understudied for historical or academic reasons
(Stoeger et al., 2018). The extreme case, where SL labels are avail-
able for many pairs but involving only a few genes, is also likely to
induce SL relationship biases because pairs involving the same gene
are not independent from each other. We argue that the presence of
strong biases in SL labels can lead to performance overestimation,
particularly of SL topology models which are explicitly designed to
exploit them.

In this work, we propose different experiments to assess the sen-
sitivity of SL prediction methods to selection biases. We also intro-
duce SBSL (selection bias-resilient synthetic lethality) prediction
models, with two main goals in mind: (i) improving model resilience
to biases in SL prediction; and (ii) bridging the performance gap be-
tween SL topology and SL feature methods currently perceived in
the SL prediction literature. To improve bias-resilience, we propose
SL feature models based on supervised machine learning (ML) that
explicitly ignore the structure of the SL label graph. To improve per-
formance, we define novel features based on molecular data that
could be relevant for SL prediction but remains underexplored in
the SL prediction context. Specifically, these are the interaction be-
tween gene dependency scores (measuring cell viability upon gene
silencing) and mutations in cancer cell lines (Behan et al., 2019;
Dempster et al., 2019; McFarland et al., 2018; Meyers et al., 2017),
as increased dependency on one gene in cell lines harbouring a dele-
terious mutation in another gene may indicate SL between the two;
gene expression from healthy donor tissue, in addition to expression
from patient tumour tissue, which could help identify tumour-
specific changes in the relationship between the pair of genes; meas-
ures of mutual exclusivity, quantifying the non-co-occurrence of
mutations in a pair of genes (Babur et al., 2015; Canisius et al.,
2016); change in survival time between cancer patients with and
without mutations or aberrant expression in the pair of genes, both
of which may be associated with SL (Lee et al., 2018; Srihari et al.,
2015).

2 Materials and methods

Our proposed models aim to predict if a given pair of genes is syn-
thetically lethal for a specific cancer type, where the pair is described
by a collection of molecular features. We approach it as a binary
classification problem.

2.1 Data
SL labels. We obtained cancer-specific SL labels from two studies,
ISLE and DiscoverSL (Das et al., 2019; Lee et al., 2018). Together,
they included thousands of SL relationships experimentally derived
by 21 other studies using double gene knockdown/knockout experi-
ments or targeting of one gene using CRISPR or RNAi in contexts
where the other gene is either endogenously inactive or rendered in-
active through the use of drug compounds. We removed duplicate
gene pair entries from ISLE and DiscoverSL separately by retaining
a single entry if all entries agreed, or removing all duplicate entries if
any of them disagreed on the label. To combine the two datasets, we
reduced 63 gene pairs with duplicate entries across the datasets to a
single entry per pair. In case of disagreement, we chose the label
from DiscoverSL, since there was a lower level of disagreement
within DiscoverSL than within ISLE. We ended up with 7962
labelled gene pairs distributed over the four cancer types that had at
least 200 positive and negative labels after pre-processing, namely
breast (BRCA), colon (COAD), lung (LUAD) and ovarian (OV;
Table 1). The ISLE, DiscoverSL and combined SL gold standards
had differing cancer type representations and class imbalances. We
used the combined SL gold standard in our experiments except
where otherwise specified.

Cancer cell line data. We used cancer cell line gene dependency
scores based on CRISPR (CERES; Dempster et al., 2019; Meyers
et al., 2017) and RNA interference (DEMETER2; Behan et al.,
2019; McFarland et al., 2018) screens from the 19Q3 DepMap and
DEMETER2 Data v6 public releases, respectively. We also obtained
functionally categorized mutation data per gene (Ghandi et al.,
2019).

Patient tumour and clinical data. We collected the following pa-
tient tumour sample data from The Cancer Genome Atlas (TCGA)
using the Broad GDAC Firehose pipeline run stddata__2016_01_28
(TCGA GDAC, 2016): mutation data, discrete copy-number vari-
ation (CNV) scores from GISTIC (Mermel et al., 2011), patient
race, age, sex and survival time (days). We also obtained gene ex-
pression data from the GEO (accession GSM1536837) as aggre-
gated read counts (Rahman et al., 2015).

Healthy tissue data. We collected expression data from GTEx
for breast, lung, colon and ovarian tissue of healthy donors, pro-
vided as gene-aggregated transcripts per million (TPM) values
(dbGaP accession phs000424.v8.p2; Lonsdale et al., 2013). We also
included expression data of TCGA matched normal BRCA and
LUAD samples from GEO, as described for patient tumours.

Biological pathway data. We downloaded KEGG (Kanehisa and
Goto, 2000), PID (Schaefer et al., 2009) and Reactome (Jassal et al.,
2020) pathway gene sets from the Molecular Signatures Database
v7.1 (MSigDB; Liberzon et al., 2011; Subramanian et al., 2005).

Protein–protein interaction and gene ontology data. Protein–
protein interaction data were downloaded from STRINGdb, version
11 (Szklarczyk et al., 2021). We selected only interactions supported
by curated experimental evidence. Gene Ontology (GO) biological

Table 1. SL gold standard statistics. Breakdown of labels into posi-

tives and negatives, unique gene count and percentage of labelled

pairs

ISLE DiscoverSL Combined

þ � þ � þ � No. of

genes

Labelled (%)

BRCA 713 1168 835 72 1548 1240 1072 0.39

COAD 859 806 0 0 859 806 1560 0.14

LUAD 202 5155 347 312 549 5467 804 1.66

OV 223 449 0 0 223 449 86 18.14

All 1997 7578 1182 384 3179 7962 3072 0.05

Columns þ and � show number of positive and negative labels for each

dataset. Number of genes and Labelled (%) denote the number of unique

genes and percentage of labelled pairs (of all possible pairs involving genes

from the combined dataset).

Overcoming selection bias in synthetic lethality prediction 4361



process and cellular component data were downloaded from the GO
repository on March 18, 2021 (Ashburner et al., 2000; The Gene
Ontology Consortium, 2021).

2.2 Features
Every example denotes a tissue type-specific relationship between a
pair of genes (A, B), characterized by the following 27 molecular
features (see Supplementary Table S1 for a summary of all individ-
ual features).

Gene dependencies. We calculated five features for each type of
gene dependency, CRISPR or RNAi (10 in total). We performed two
two-tailed Wilcoxon rank-sum tests (Mann and Whitney, 1947),
one for (A, B) and another for the same pair in reverse order (B, A).
Each test quantifies the change in dependency on the first gene
between cell lines with and without a non-silent mutation in the
second gene. We chose as features the test statistic and P-value
for the tested pair (A, B) or (B, A) that yielded the smallest P-value.
We defined two additional features as the Pearson’s correlation
coefficient and corresponding two-tailed t-test P-value between the
dependency scores of A and B. The fifth feature was the average of
the means of the dependency scores for genes A and B. Respectively,
the features are termed CRISPR/RNAi_dep_stat, CRISPR/RNAi_
dep_pvalue, CRISPR/RNAi_cor_stat, CRISPR/RNAi_cor_pvalue
and CRISPR/RNAi_avg.

Mutual exclusivity. We calculated seven mutual exclusivity fea-
tures based on tumour mutation data using three methods:
DiscoverSL (four features; Das et al., 2019), DISCOVER (Canisius
et al., 2016) and MUTEX (Babur et al., 2015). These features are
termed discoversl_mutex_amp, discoversl_mutex_del, discoversl_
mutex_mut, discoversl_mutex, discover_mutex and MUTEX. We
calculated an additional mutual exclusivity P-value, mutex_alt, by
treating every non-silent mutation, amplification (CNV¼2), and de-
letion (CNV¼ -2) as an ‘alteration’ event. We used a hypergeometric
test:

p ¼ 1�
XminðnA ;nBÞ

j¼nA;B

nA

j

� �
nT � nA

nB � j

� �

nT

nB

� � ; (1)

where nA and nB are the numbers of tumour samples with an alter-
ation in A and B, respectively, nA;B is the number of samples with
alterations in both, and nT is the total number of samples.

Survival. We modelled patient survival time using Cox propor-
tional hazard models accounting for the alteration status of gene
pair (A, B) in patient tumours. We defined the status as ‘altered’ if
any of the following alterations occur in both A and B (unaltered
otherwise): copy-number amplifications (CNV¼2) or deletions
(CNV¼�2), non-silent mutations or aberrant expression. We
defined aberrant expression as having a gene expression level in the
upper or lower fifth percentile across all patient samples. We also
controlled for age, race and sex as follows:

ln hðtÞ � ln h0 þ b1sðA;BÞ þ b2sexþ b3ageþ b4race ; (2)

where hðtÞ is the hazard function defined as the conditional prob-
ability of a patient dying at time t given that the patient has survived
to time t (Bewick et al., 2004). The indicator variable sðA;BÞ
denotes the alteration status of gene pair (A, B) in a patient tumour
sample. The b values are the regression coefficients. One feature,
logrank_pval, was defined as the two-tailed P-value of b1 6¼ 0 using
the Wald statistic (Bangdiwala, 1989).

Co-expression. We determined co-expression between a gene
pair for three types of biological samples: tumour and normal
TCGA samples (for BRCA and LUAD), and healthy donor GTEx
samples. We used pairwise Pearson’s correlations and two-tailed
t-test P-values, yielding four to six features: tumour_corr/pvalue,
normal_corr/pvalue and gtex_corr/pvalue.

Differential expression. We calculated differential expression
using tumour samples to quantify the variation in expression of one
gene given the presence or absence of non-silent mutations in the

other gene. We performed two differential expression tests per gene
pair (A, B), for gene A based on the mutation status of gene B and
vice versa, and used the minimum of the two P-values and the corre-
sponding log fold-change as features for the gene pair. These were
calculated using edgeR based on the read count data (Robinson
et al., 2010). Using the edgeR default parameter values, we per-
formed Trimmed Mean of M-values normalization and calculated
gene-wise log2 fold-changes and P-values as features, respectively,
termed diff_exp_logFC and diff_exp_pvalue.

Pathway co-participation. We calculated a pathway_coparticipa-
tion P-value denoting the significance of co-occurrence of a pair of
genes in a set of pathways using a hypergeometric test as defined in
Equation (1). Here, nA and nB are the number of occurrences of
genes A and B in all pathways, respectively, nA;B is the number of
occurrences of both genes in the same pathway and nT is the total
number of pathways. The set of pathways was defined as the union
of the KEGG, PID and Reactome gene sets.

2.3 SL prediction models
SBSL prediction models. We trained logistic regression and ran-
dom forest models with regularization, as representatives of linear
and non-linear models. For logistic regression, we used L0 and L2
(L0L2), or L1 and L2 (Elastic Net) regularization, as imple-
mented, respectively, in the L0Learn and glmnet packages
(Friedman et al., 2010; Hazimeh and Mazumder, 2020). We also
tried two regularized random forest implementations:
Multivariate random forests with Unbiased Variable selection in
R (MUVR; Shi et al., 2019), and Regularized Random Forests
(RRF; Deng and Runger, 2012). MUVR combines a random for-
est model with feature selection through repeated, nested, cross-
validation and backward feature elimination on the train set. RRF
is a random forest variant that uses two parameters to control
model complexity: mtry determining how many features are ran-
domly sampled at each new node; and coefReg to control the pen-
alization of the information gained when adding a new feature to
the model to split at a given node.

Other SL prediction models for comparison. We compared the
SBSL models against five other published methods: statistical ap-
proach DAISY (Jerby-Arnon et al., 2014), supervised model
DiscoverSL (Das et al., 2019), graph-based GCATSL (Long et al.,
2021), GRSMF (Huang et al., 2019) and matrix factorization pca-
gCMF (Liany et al., 2020).

2.4 Training and evaluation
For each experiment, we created 10 different train/test set splits of
the available dataset(s), so that we could better assess the robust-
ness of the models. For each pair of train and test sets, which we
term run for short, we performed the following steps: hyperpara-
meter search on the train set using cross-validation, learning of a
final model on the entire train set using the best parameters, and
assessing the final model on the corresponding disjoint test set. We
report the averages and standard deviations of our performance
evaluation metrics across the 10 runs. These steps are further
detailed below.

Train and test sets. All pairs of train and test sets were created as
follows, unless otherwise specified. To handle class imbalances
(Table 1), we uniformly downsampled the dataset to ensure an equal
number of SL and non-SL pairs. We then divided it into train and
test sets with a 70/30 split via uniform sampling. We standardized
every feature in both sets by subtracting the mean and dividing by
the standard deviation calculated from the train set. We also
excluded any feature for which at least 95% of the values in its fea-
ture vector were constant.

Hyperparameter tuning. To select model hyperparameters
for Elastic Net and RRF, we defined a search space per model as
follows; Elastic Net: lambda ¼ [0, 1], alpha ¼ [0, 1]; RRF: mtry ¼
[4, 8], coefReg ¼ [0.5, 1]. For L0L2, the search space hyperpara-
meters were set to nGamma¼20 and nLambda¼50. For the
Elastic Net, RRF and L0L2 models, we conducted 10-fold cross-
validation on the train set with five repeats using the area under the

4362 C.Seale et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac523#supplementary-data


receiver operating characteristic (AUROC) as performance metric.
Results of the hyperparameter search for these three models can be
found in Supplementary Figures S1–S3. The hyperparameters used
for the MUVR backwards feature elimination algorithm were
nRep¼5, nOuter¼10, and varRatio¼0.8.

Evaluation. Following hyperparameter tuning, SBSL models
were trained on the entire train set using the best hyperparameters.
Performance was then assessed on the corresponding disjoint test
set, using receiver operating characteristic (ROC) and precision-
recall (PR) curves. The curves were summarized by AUROC or area
under the precision-recall curve (AUPRC) metrics. We report aver-
ages and standard deviations of the AUROC and AUPRC across the
10 runs.

Comparison with other SL prediction methods. We calculated
DAISY scores for all gene pairs, and predicted DiscoverSL scores for
test set pairs using the package provided by the authors. GCATSL,
GRSMF and pca-gCMF models were trained on the train set using
their default parameter settings (see Supplementary Methods).
Scores obtained by all methods for gene pairs in the test set were
used for comparison during evaluation.

Feature importance. We calculated permutation feature im-
portance (FI) values for SBSL models based on the test set to de-
termine which features contributed most to the predictions
(Fisher et al., 2019). Interpreting FI scores can be confounded by
multicollinearity, as importance may spread over correlated fea-
tures. For this reason, we assessed multicollinearity using vari-
ance inflation factors (VIF; James et al., 2013).

3 Results and discussion

3.1 SBSL and SL topology methods are the top

performers
We first evaluated the performance of the SL prediction models sep-
arately within each cancer type (BRCA, COAD, LUAD and OV).
We evaluated the predictive performance of the SBSL logistic regres-
sion (L0L2, Elastic Net) and random forest (MUVR, RRF) models
against published methods DAISY, DiscoverSL, GCATSL, GRSMF
and pca-gCMF.

On BRCA and LUAD, the SBSL models and the matrix factoriza-
tion methods GRSMF and pca-gCMF performed most consistently
considering the two metrics, with average AUROC and AUPRC
above 0.80 (Tables 2 and 3, Supplementary Fig. S4 for ROC and PR
curves). SBSL models did better at predicting true SL pairs for
BRCA and LUAD than the other approaches, with the exception of
pca-gCMF on BRCA (Table 3). GRSMF performed reasonably with
average AUPRC above 0.80, but GCATSL performed poorly on
BRCA (average AUPRC of 0.55) while scoring highest among the
SL Topology methods on LUAD (average AUPRC of 0.85). On
COAD, AUROC performances were very modest across the board,
with SBSL models featuring on the higher end (0.38< average
AUROC < 0.64).

On OV, the SBSL models predicted poorly whereas GCATSL,
GRSMF and pca-gCMF showed high AUROC and AUPRC scores
above 0.90. We hypothesize that the low performance of SBSL mod-
els in OV could be due to the modest mutational burden typically
observed for this cancer type (Vareki, 2018), which could affect the
resolution and informativeness of features relying on mutation data.
We confirmed that OV cell lines contained a much lower average
number of mutations per gene pair than the other cancer types (OV:
1.6, BRCA: 4.33, LUAD: 11.35, COAD: 5.97). As for the high per-
formance of SL topology methods on OV, we reasoned that it could
be due to selection bias, which we investigate in a later section.

DAISY and DiscoverSL performed poorly overall and were
excluded from subsequent experiments. We note that DAISY is
not an ML approach and does not involve separate training and
prediction. For fairness, DAISY was applied to the entire dataset,
per cancer type, and then evaluated on the same test sets as the other
models (see Section 2).

Our results suggest that SBSL models and pca-gCMF are the
most consistent and thus may be better suited for pre-selecting SL

pairs for experimental follow-up in BRCA and LUAD. Most
methods struggled to predict SL for COAD according to one or both

performance metrics.
We advance that low mutational burden could negatively affect

the performance of SBSL models on OV, and go on to further
investigate a possible link between selection bias and the high per-
formance of SL topology methods.

3.2 Selection bias drives SL topology method

predictions
Since SL topology methods are driven by the structure of the SL

label graph, we hypothesized that their predictive performance
could be affected by selection bias in SL screens. We sought to assess
the impact of this bias.

Selection bias in SL labels. We examined the coverage and struc-
ture of SL labelled gene pairs. The OV set of labelled pairs stood out

from the other cancer types for three reasons. First, it had limited
gene coverage, comprising only 86 unique genes whereas the other

cancer types included 804 to 1560 labelled genes. Second, 18.14%
of all possible pairs formed by these 86 genes were labelled in OV,
compared to a maximum of 1.66% for the other cancer types

(Table 1). Third, the structure of the labels was quite striking: many
rows were nearly identical to one another, showing very consistent

patterns of SL and non-SL relationships with the same genes. These
formed visibly distinct groups, indicative of heavy gene selection
bias (Fig. 1). For example, the eight genes at the bottom of Figure 1

(highlighed in red) are functionally related: they mostly consist of
tyrosine kinases, which are all reported targets of the same drug
dasatinib (Korashy et al., 2014).

Table 2. Classification performance of SL prediction models within

a cancer type, denoted by the AUROC curve

Method BRCA COAD LUAD OV

Elastic Net 0.84 6 0.01 0.60 6 0.02 0.85 6 0.02 0.59 6 0.03

L0L2 0.84 6 0.01 0.60 6 0.02 0.85 6 0.02 0.59 6 0.03

MUVR 0.86 6 0.01 0.64 6 0.01 0.87 6 0.01 0.56 6 0.07

RRF 0.86 6 0.01 0.63 6 0.02 0.87 6 0.02 0.57 6 0.07

DAISY 0.61 6 0.02 0.38 6 0.02 0.44 6 0.03 0.41 6 0.04

DiscoverSL 0.54 6 0.02 0.54 6 0.02 0.54 6 0.03 0.45 6 0.04

GCATSL 0.59 6 0.04 0.51 6 0.01 0.86 6 0.03 0.99 6 0.02

GRSMF 0.82 6 0.01 0.57 6 0.02 0.87 6 0.02 0.99 6 0.01

pca-gCMF 0.90 6 0.02 0.54 6 0.03 0.87 6 0.02 0.94 6 0.05

Mean and standard deviations of AUROC performance values over 10

runs. Bold text indicates the method (row) with the largest mean AUROC

value for each cancer type (column).

Table 3. Classification performance of SL prediction models within

a cancer type, denoted by the AUPRC

Method BRCA COAD LUAD OV

Elastic Net 0.87 6 0.01 0.59 6 0.01 0.87 6 0.02 0.58 6 0.03

L0L2 0.88 6 0.01 0.59 6 0.02 0.87 6 0.02 0.58 6 0.04

MUVR 0.89 6 0.01 0.62 6 0.02 0.87 6 0.02 0.54 6 0.06

RRF 0.89 6 0.01 0.63 6 0.02 0.87 6 0.02 0.55 6 0.05

DAISY 0.58 6 0.02 0.43 6 0.01 0.47 6 0.02 0.48 6 0.04

DiscoverSL 0.55 6 0.02 0.53 6 0.02 0.55 6 0.03 0.49 6 0.04

GCATSL 0.55 6 0.02 0.50 6 0.01 0.82 6 0.04 0.98 6 0.03

GRSMF 0.81 6 0.01 0.59 6 0.02 0.85 6 0.02 0.97 6 0.04

pca-gCMF 0.89 6 0.04 0.56 6 0.03 0.83 6 0.03 0.93 6 0.06

Mean and standard deviations of AUPRC performance values over 10

runs. Bold text indicates the methods (rows) with the largest mean AUPRC

value for each cancer type (column).
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The high performances of matrix factorization and graph-based
methods on OV data could be expected, given that they are designed
to exploit this structure. However, the consistency of patterns seen
in these OV labels will not likely generalize well to most randomly
selected pairs of genes. The SL labels for the other cancer types
exhibited similar bias, albeit less pronounced given the larger sample
size and gene coverage (Table 1, Supplementary Figs S5–S8). As an

example, for BRCA the five most frequently occurring genes were
involved in 52% of all SL labelled gene pairs (PARP1 18%, BRCA1
12%, PTEN 11%, TP53 7% and BRCA2 4%). We also identified
two distinct groups of genes with visibly coordinated patterns,
which also happened to be functionally related: one group com-
prised members of cell proliferation pathways (JAK2, GATA3,
PIK3C3, FLI1, MAP2K4, PPARA, BIRC3, CREBBP, KRAS,
MAP3K1 and others), and the other group contained genes involved
in DNA damage response (CHD1, USP6, CANT1, ERCC4,
MAML2, DHRS13 and FHIT).

Cross-SL-dataset generalization. We assessed the impact of se-
lection bias on the ability of SL prediction methods to generalize
across the two datasets of SL labels. We trained BRCA models on
gene pairs from ISLE and tested them against DiscoverSL. We also
trained LUAD models on DiscoverSL and tested them against ISLE.
We focused on these specific combinations, since the number of
available SL pairs was insufficient for the reverse combinations.
Any labelled pairs present in both datasets were removed from the
train set. Our results showed that SBSL models generalized better
across gold standards (Fig. 2, Supplementary Fig. S9), with linear
models performing best overall. The SL topology approaches
(GCATSL, GRSMF and pca-gCMF) struggled to generalize, and
their performances decreased to nearly random on LUAD data. We
found that pca-gCMF did only marginally better than the graph-
based methods on LUAD, but was comparable to our SBSL models
on BRCA.

Contributing to the poor performance of SL topology models
is the fact that these techniques have difficulty making connec-
tions to genes that are not involved in pairs in the train set, an
issue that is most prevalent in LUAD SL data. Specifically,
for BRCA, 522 of the 907 pairs in DiscoverSL contained genes
that also appeared in ISLE. However, for LUAD, only 19 out of
659 DiscoverSL pairs shared a gene with ISLE (Supplementary
Figs S10 and S11). SL topology methods would be more affected
by this than SBSL models due to missing prior SL information for
the genes in the test set.

Gene holdout experiments. We further investigated the impact
of selection bias on SL prediction using gene holdout experiments,
where train/test sets were constructed in three different ways, seek-
ing to control the number of genes shared between the two sets. In
our original baseline scenario, also termed None, we only ensured
that there was no overlap in gene pairs between train and test sets.
For Single holdout, we constructed the train and test sets such that
for every gene pair in the test set, only one of the genes from the pair
could be present in the train set. For Double holdout, we created the
train and test sets such that they did not share any genes. Note that
there was not enough OV data to conduct the Double experiment.

The SBSL models were more robust to gene holdouts than SL
topology models on BRCA, COAD and LUAD. For these cancers,
SBSL models showed a negligible decrease between baseline and
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Fig. 1. Structure of SL labels. Adjacency plot showing OV gene pairs. Elements

along horizontal and vertical axes represent unique genes. Each coloured cell

denotes a negative (red) or positive (blue) SL pair. White cells denote pairs with no

label. Rows are ordered according to hierarchical clustering with complete linkage

and Euclidean distance. Columns follow the ordering of rows. The barplot to the

right shows the number of pairs each gene is involved in. The group of eight genes

at the bottom of the plot (highlighted in red) consists mostly of tyrosine kinases (A

color version of this figure appears in the online version of this article.)
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Single holdout, and a more pronounced drop to mean AUROC val-
ues between 0.60 and 0.75 using Double holdout. Comparatively,
the performance of SL topology models varied more and became ap-
proximately random with Double holdout (Fig. 3, Supplementary
Fig. S12). OV was the exception, where SL topology methods
seemed to do better, possibly due to the previously described bias in
SL labels. We note that our results are confounded by shrinking of
the train set size as we move through the scenarios from None to
Double and that OV is the smallest of the datasets.

3.3 Not all cancers are equal in SL prediction
We wondered whether the underlying molecular patterns that allow
us to recognize when two genes are synthetically lethal could be in-
dependent of cancer type and thus generalizable across cancers. To
answer this question, we assessed the potential benefits of training
pan-cancer L0L2 and MUVR models, which could also help miti-
gate the sparsity and selection bias affecting some of the cancer types
(Supplementary Tables S2 and S3 and Figs S13–S14 for results
including all SBSL models).
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Fig. 3. Performances of gene holdout experiments, where bias is controlled by ensuring that none, one or both genes of pairs in the test set are excluded from the train set.

Shown are AUROC values for each gene-holdout experiment per cancer type (10 runs). For ‘None’, we only guarantee that train and test sets are disjoint in terms of gene pairs,

not individual genes; for ‘Single’, only one gene from a gene pair in the test set can be present in the train set; for ‘Double’ neither gene of a pair in the test set appears in the

train set. The results for ‘None’ correspond to those also reported in Table 2. Note: There was insufficient data to conduct the OV ‘Double’ experiment

Table 4. Performance of one-cancer and pan-cancer models (AUROC)

Method Cancer Pan-cancer One-cancer

Unbalanced Balanced

L0L2 BRCA 0.64 6 0.02 0.75 6 0.01 0.83 6 0.01

COAD 0.52 6 0.02 0.51 6 0.02 0.60 6 0.02

LUAD 0.73 6 0.03 0.79 6 0.02 0.83 6 0.02

OV 0.40 6 0.04 0.53 6 0.04 0.58 6 0.03

MUVR BRCA 0.76 6 0.01 0.82 6 0.02 0.86 6 0.01

COAD 0.62 6 0.02 0.60 6 0.01 0.64 6 0.01

LUAD 0.81 6 0.02 0.83 6 0.02 0.86 6 0.01

OV 0.55 6 0.06 0.52 6 0.04 0.54 6 0.07

Mean and standard deviation of AUROC values calculated over 10 runs.

One-cancer and pan-cancer models trained with unbalanced or balanced cancer

representation, tested on held-out gene pairs. Bold text indicates the setting

leading to the largest mean AUROC (pan-cancer unbalanced, pan-cancer

balanced, or one-cancer).
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First, we trained two pan-cancer models on data from all four
cancer types (Table 4). One was an unbalanced model, with gene
pairs uniformly selected from the combined dataset to keep the ori-
ginal cancer type ratios. The other model was trained with balanced
proportions of cancer types and class labels by undersampling. Both
models were evaluated against held-out data from every cancer type.
Model performances improved in almost every case when training
on balanced compared to unbalanced data. However, training on
multiple cancers resulted in a degradation of overall performance
relative to the cancer-specific models. We note that balanced models
typically had less gene pairs to train on.

We then assessed the ability of SBSL cancer-specific models to
make SL predictions for other cancer types (Fig. 4). As expected,
models that performed poorly within the same cancer type, like
COAD and OV, could not generalize to other cancer types either.
The better-performing models, BRCA and LUAD, could not predict
well on COAD and OV either. Notably, the L0L2 linear models gen-
eralized reasonably both when trained on BRCA and tested against
LUAD (mean AUROC 0.79) and vice versa (0.69). The MUVR ran-
dom forests could generalize when trained on BRCA and tested
against LUAD (0.73), but not vice versa (0.53), showing they were
more prone to overfit.

We also investigated the ability of models trained on multiple
cancers to make SL predictions for unseen cancer types. In this
leave-one-cancer-out (LOCO) experiment, we held out one cancer
type for testing and trained models using samples from the other
three, with balanced class labels and cancer types (Fig. 4, bottom
row). The results were consistent with those of the cross-cancer ex-
periment (Fig. 4). For example, the three-cancer models trained on
COAD, LUAD and OV generalized to BRCA as well as the LUAD-
specific models. This indicates that training on multiple cancer types
is not necessarily detrimental to cross-cancer generalization.

3.4 Gene dependency-based features are most

important
We used permutation feature importance scores (PFI) to quantify
the contribution of the 27 features to the predictions of our SBSL
models. To obtain meaningful PFI scores, the models should be rea-
sonably accurate, thus we excluded the lower-performing OV and
COAD models (Table 2).

Gene dependency-based features were the largest contributors
to the performance of BRCA and LUAD models (Supplementary
Figs S15 and S16). The highest ranked feature overall was CRISPR_
dep_stat, which quantifies the change in dependency score of one
gene between cell lines with and without a non-silent mutation in
the other gene. Specifically, for linear models, the importance of
CRISPR_dep_stat was nearly 2-fold greater than the importance of
the second-ranked feature. Ranking second were features denoting
the average of means of gene dependency scores across all cell lines.
For all LUAD models and the BRCA random forest models, the
choice went to the CRISPR-based feature (CRISPR_avg), while
BRCA logistic regression models picked the RNAi-based feature
(RNAi_avg). Even though CRISPR and RNAi-based dependency
scores exhibit some differences, they are still moderately to highly
correlated (multicollinearity VIF >2, Supplementary Table S4), and
thus fairly equivalent in contribution to SL prediction.

To further assess the reliance of our SBSL models on
dependency-based features, we retrained and tested BRCA and
LUAD models without these features. This led to a significant de-
crease in mean AUROC across all models, from between 0.83 and
0.85 to between 0.64 and 0.76, for both cancer types (Fig. 5). We
also calculated PFI values for these models, which showed not only
higher variability but also a few clear patterns. The DISCOVER mu-
tual exclusivity score (Canisius et al., 2016), discover_mutex,
ranked first across all BRCA models (Supplementary Fig. S17). Gene
co-expression in healthy tissue samples (GTEx), gtex_corr and co-
expression in matched normal tissue samples from cancer patients
(TCGA), normal_corr, respectively, ranked second and third for all
BRCA models (Supplementary Fig. S17). Differential expression fea-
tures, diff_exp_logFC and diff_exp_pvalue, were most important for

LUAD random forest models (Supplementary Fig. S18). These
results indicate that features other than those based on gene depend-
ency could also be informative for SL prediction.

4 Conclusion

We proposed SL prediction models with increased resilience to selec-
tion bias (SBSL models). We used logistic regression and random
forest models based on molecular features characterizing genes and
gene pair relationships. Without explicit knowledge of gene or pair
identity, SBSL models generalized better across SL label datasets and
were more robust to gene holdout compared to methods that predict
based on the structure of SL labels. In addition, SBSL models
improved over existing feature-based SL prediction approaches by
focusing on underexplored data such as cancer cell line gene depend-
encies with mutation data, gene expression from healthy donors,
mutual exclusivity of somatic mutations in patient tumours and can-
cer patient survival. One limitation of our SBSL models is that they
rely heavily on gene dependency scores, which are not available for
rarer cancer types. We showed that other features could partially
compensate for the absence of gene dependency scores, but led to a
significant decrease in performance. In addition, we also note that
some of the most relevant features in SBSL models are less effective
for cancer types typically characterized by low mutational burden.
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Further research is therefore needed into alternative data and strat-
egies to improve SL prediction. Since the ultimate goal of SL predic-
tion models is to identify SL partners for drug target genes,
systematic validation of SBSL models should be conducted to assess
the therapeutic potential of predicted pairs.

Analysis of SL label data revealed the presence of strong gene se-
lection bias. Further experiments showed that SL prediction meth-
ods relying on the structure of SL labels were more sensitive to such
bias. This vulnerability persisted even when the methods incorpo-
rated additional data sources. Our observations align with a study
on the prediction of protein–protein interactions by Richoux et al.
(2019), which showed that including the same proteins in the train
and test set led to performance overestimation. We believe that per-
formances reported for SL topology methods under these conditions
could be optimistic and should be viewed with caution.

We put forward two recommendations for the evaluation of SL
prediction models. First, inspecting performance across cancer types,
SL datasets and other variables of interest is crucial to ensure that
results are consistent and reproducible. Second, we advocate that
gene selection biases are considered to avoid that performance met-
rics report on ability to exploit selection bias rather than predict SL
interactions. We show that plotting SL label adjacencies and con-
ducting gene holdout experiments are effective ways to assess selec-
tion bias and its impact on SL prediction.
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