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ABSTRACT

Computational reconstruction of nearly complete
genomes from metagenomic reads may identify
thousands of new uncultured candidate bacterial
species. We have shown that reconstructed prokary-
otic genomes along with genomes of sequenced mi-
crobial isolates can be used to support more ac-
curate gene prediction in novel metagenomic se-
quences. We have proposed an approach that used
three types of gene prediction algorithms and found
for all contigs in a metagenome nearly optimal mod-
els of protein-coding regions either in libraries of pre-
computed models or constructed de novo. The model
selection process and gene annotation were done by
the new GeneMark-HM pipeline. We have created a
database of the species level pan-genomes for the
human microbiome. To create a library of models rep-
resenting each pan-genome we used a self-training
algorithm GeneMarkS-2. Genes initially predicted in
each contig served as queries for a fast similarity
search through the pan-genome database. The best
matches led to selection of the model for gene predic-
tion. Contigs not assigned to pan-genomes were ana-
lyzed by crude, but still accurate models designed for
sequences with particular GC compositions. Tests of
GeneMark-HM on simulated metagenomes demon-
strated improvement in gene annotation of human
metagenomic sequences in comparison with the cur-
rent state-of-the-art gene prediction tools.

INTRODUCTION

In recent years a number of sequenced microbial isolates
has increased significantly; >310 000 annotated prokaryotic
genomes, with the total length ∼1 Tb nt, were listed in Gen-
Bank as of February 2021 (www.ncbi.nlm.nih.gov/genome/

browse#!/prokaryotes). The number of metagenomes with
assembled contigs in the WGS section of GenBank has
already reached above 75 000, with the total length of
nucleotide sequences exceeding ∼2.1 Tb nt (www.ncbi.
nlm.nih.gov/Traces/wgs/?search=metagenome). Recent im-
provements in sequencing technology and assembly meth-
ods have led to increase in the average length of metage-
nomic contigs (1). Still, a vast majority of them are not
long enough to allow for estimation of parameters of the
‘contig-specific’ high order model with precision typical
for the algorithms trained on complete or nearly complete
prokaryotic genomes (2–5). Therefore, in gene finders work-
ing with short sequences with unknown genomic context
special methods for finding effective model parameters have
to compensate the lack of information. Several algorithms
for gene prediction in metagenomic sequences have been de-
veloped: (6–10). Also, recently developed methods of recon-
struction of nearly complete genomes from metagenomic
datasets added to the picture thousands of genomes of un-
cultured candidate bacterial species.

The goal of development of the GeneMark-HM pipeline
(HM stands for human microbiome) was to improve accu-
racy of gene prediction in metagenomic contigs, those orig-
inated from a shotgun sequencing of human microbiome
(11,12), up to a level achievable by gene finding algorithms
trained on complete prokaryotic genomes.

Importantly, genomes of sequenced isolates and recon-
structed prokaryotic genomes could be used to support
more accurate gene prediction in novel metagenomes. The
main idea is as follows. Many metagenomic contigs may be-
long to organisms whose very close relatives have sequenced
or nearly sequenced genomes. Still, many other contigs may
belong to organisms distant from any known species. We
argue that nearly optimal models of protein-coding regions
could be determined for annotation of a vast majority of
contigs in a metagenome. The solution of the annotation
problem is implemented in GeneMark-HM, a pipeline for
metagenomic contigs originated from human microbiome.
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The pipeline is using three gene prediction algorithms along
with two reference databases (Figure 1).

The pipeline components are (i) the newest version
of MetaGeneMark, an algorithm using GC content spe-
cific models of protein-coding regions (6,5,10). This tool
was designed for analysis of anonymous sequence frag-
ments of arbitrary length, even as short as 400nt; (ii)
GeneMarkS-2 (5) a self-training algorithm for gene pre-
diction in sufficiently long sequences, up to complete
genomes; (iii) GeneMark.hmm-2, an efficient algorithm
that requires a model defined externally or by self-training.
GeneMark.hmm-2 is an indispensable part of GeneMarkS-
2 and the newest version of MetaGeneMark; (iv) a
database of pan-genomes of the human microbiome; (v)
a database of pan-genome specific models of protein-
coding regions; the models are pre-computed by running
GeneMarkS-2 on a representative genome of each pan-
genome. The GeneMark.hmm-2 algorithm was described in
the GeneMarkS-2 publication (5).

All contigs in a metagenome are effectively divided into
three groups: (i) contigs that can be analyzed by GeneMark-
hmm-2 with models from genomes of close relatives, (ii)
contigs with no close relatives with sequenced genomes
which are sufficiently long to run self-training GeneMarkS-
2 and (iii) short anonymous contigs analyzed by MetaGen-
eMark with pre-computed GC specific models.

The database of the species level pan-genomes was built
in the gene space, a non-redundant representation of the
entire set of genes of a set of strains of the same species
(13). To create a database of representative models for the
pan-genomes we used the self-training GeneMarkS-2 run-
ning on a representative genome of a clade. The genes ini-
tially predicted in each metagenomic contig were used for a
fast similarity search against the database of genes of pan-
genomes. The top hits, if the similarity existed, were used
to identify a model for GeneMark.hmm-2 that would make
more precise gene predictions. Otherwise, depending on a
length of the contig, the GeneMarkS-2 or MetaGeneMark
were the right tools to have genes predicted in the anony-
mous contig (Figure 1).

Testing of GeneMark-HM on simulated metagenomes
demonstrated improvement in accuracy of gene annota-
tion in metagenomic sequences from human microbiome
in comparison with the current state-of-the-art gene predic-
tion tools.

MATERIALS AND METHODS

Sequence data

Recently as many as 154 723 genomes of prokaryotic
species were reconstructed from sequence reads of human
metagenomes (14). These genomes, called rGenomes (or
MAGs, metagenome assembled genomes), were clustered
into 4930 species-level genome bins (SGBs). Almost 2000
SGBs in this collection contained a single rGenome (Sup-
plementary Figure S1 shows a frequency histogram of the
number of rGenomes per SGB). Notably, the rGenomes are
fairly fragmented, e.g. contigs under 10,000 nt account for
27% of total volume of rGenomes (Supplementary Figure
S2). Representative rGenomes selected for each SGB in (14),
normally the largest in length, varied in total length and

GC content (Supplementary Figure S3). For 23% of SGBs,
it was observed that a sequenced genome of a prokaryotic
species could be found within less than 5% ANI (average nu-
cleotide identity) distance from one of the rGenomes in the
SGB. Thus, such SGBs are called ‘known SGBs’, [kSGBs].
Remaining 77% or 3796 SGBs were deemed to be genome
bins of strains of new species and were named ‘unknown
SGBs’ [uSGBs] (14).

Besides the use of SGB rGenomes, we retrieved from
the NCBI database genomes of those bacterial and ar-
chaeal species that were reported to inhabit human guts
(15–20,12,21,22). We grouped genomes of strains having
the same Taxa ID into six archaeal and 695 bacterial
genome clusters (tClusters). Annotation of the representa-
tive genomes of these 701 tClusters (Supplementary Fig-
ure S4) was available in RefSeq (23). The tClusters and
the SGBs could overlap. Merging of the tClusters and
the SGBs produced 4930 updated SGBs along with 152
tClusters that did not overlap any of the SGBs (see Sup-
plementary Materials). We argue that after such merg-
ing the genomes of strains of a single prokaryotic species
would be contained in a single updated SGB or in a single
tCluster.

Construction of species level pan-genomes

Each pan-genome was built in the gene space. A pan-
genome represented gene sequences from all the genomes
from a particular tCluster or SGB. The purpose of mak-
ing pan-genomes was the reduction of a reference database
of gene sequences. The procedure was implemented as fol-
lows. In each SGB (tCluster), all the genome sequences
were processed by GeneMark.hmm-2 to predict genes.
In this analysis one and the same model of protein-
coding region, the SGB (tCluster) specific model was used
(see below).

The initial set of gene sequences for the pan-genome of
an SGB (tCluster) was a whole complement of genes pre-
dicted in the SGB (tCluster) representative genome (Fig-
ure 2). Then the construction process continued by taking
one gene set after another in order of diminishing length
of the rGenomes (genomes) from a given SGB (tCluster).
To decide which genes from a particular gene set should be
added to the growing pan-genome, the sequences of genes
were used as queries in the BLASTn search against the cur-
rent set of the pan-genome genes. The search was run in
the fast MegaBLAST mode (24). If a given query and its
highest scoring target in a pan-genome had an average nu-
cleotide identity (ANI) above 95% (25), along with >90%
coverage of the query in the pairwise alignment, then the
query gene was deemed to be a close homologue of the tar-
get and was not added to the pan-genome. Otherwise, the
query was added to the pan-genome as an entry increas-
ing the pan-genome diversity. The process continued until
all the genes in all the rGenomes (genomes) were screened.
The pan-genome building procedure was repeated for all the
SGBs and tClusters. To limit the size of a pan-genome for
a given SGB (tCluster) without a noticeable loss of sensi-
tivity in a downstream analysis, only gene sets from the 150
longest rGenomes (genomes) were used in the pan-genome
construction. As it was expected, the number of genes in a
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Figure 1. Principal flowchart of the GeneMark-HM pipeline.

Figure 2. A species level pan-genome construction in gene space.
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pan-genome was significantly smaller than the total num-
ber of genes predicted in the original rGenomes (genomes)
of the SGBs (tClusters).

For gene prediction in human metagenomes, we created
a 5082 species level reference pan-genomes.

Models of protein-coding regions and regulatory signals

A species specific model of a protein-coding region, formal-
ized as an inhomogeneous Markov chain of an order k (26),
is a key component of ab initio gene finding algorithms for
prokaryotic and eukaryotic genomes (27,5,28). The transi-
tion probability values, the model parameters, are derived
from the three phase positional frequencies of occurrences
of nucleotide (k + 1)-mers in a manually curated, or auto-
matically compiled, set of protein-coding regions. Particu-
larly, these parameters are determined by self-training of
GeneMarkS-2 on an anonymous prokaryotic genomic se-
quence (5). Notably, besides a model of protein-coding re-
gion, a full set of parameters of the generalized HMM (hid-
den Markov model) of a genomic sequence includes a model
of non-coding sequence as well as a model of the gene start
region with a ribosome binding site (RBS) or a promoter
region located close to gene start in case of leaderless tran-
scription (5).

Representative models. The GeneMarkS-2 model trained
on a genome representing a particular SGB or tCluster we
call a representative model. Given the evolutionary close-
ness of the strains comprising an SGB or tCluster we ex-
pect that the GeneMark.hmm-2 algorithm using a single
representative model will be sufficiently accurate in predict-
ing genes in metagenomic contigs of all the strains from
this SGB or tCluster. In analysis of metagenomic contigs
GeneMark.hmm-2 uses contig-specific representative mod-
els associated with a contig by a ‘matching algorithm’. For
contigs ‘without match’ the algorithm uses either de novo
derived GeneMarkS-2 model or, for too short contigs, a
pre-computed GC-specific model. We tested the gene pre-
diction accuracy of GeneMark-hmm-2 with the represen-
tative model in the following way (Figure 3). GeneMarkS-
2 was self-trained on each rGenome from an SGB, thus
making a set of the rGenome-specific native models. Then
the sets of gene predictions made for a given rGenome by
GeneMark.hmm-2 with the representative model and with
the native model were compared.

The results of the accuracy test were quite satisfac-
tory as it could be seen in the Results section. Therefore,
GeneMark.hmm-2 with the SGB (tCluster) specific repre-
sentative model was an accurate tool for gene prediction
in metagenomic contigs assigned to the pan-genome cor-
responding to an SGB or tCluster. The SGB (tCluster) spe-
cific gene prediction models were created for each of the cor-
responding 5,082 pan-genomes.

Notably, in a process of metagenome annotation some
contigs may not be assigned to any pan-genome. Then, the
gene prediction is done as follows (Figure 1). If the contig is
relatively short (see more details below), the genes are pre-
dicted by MetaGeneMark with a pre-computed GC specific
models (10). If the contig is long, the model parameters es-
timation and the simultaneous gene prediction is done by
GeneMarkS-2 (5).

Initial gene prediction in an anonymous contig

For accurate gene prediction, GeneMark-HM had to rec-
ognize the type of genetic code of an anonymous contig.
Most frequent genetic code was one with the three stan-
dard stop codons TAA, TAG, TGA (genetic code 11), while
the second in frequency was the one with two stop codons,
TAA and TAG, while TGA was reassigned to code for ei-
ther Tryptophan (genetic code 4) or Glycine (genetic code
25) (www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi).
Other types of genetic code, e.g. with TAG or TAA reas-
signments, have not yet been observed in prokaryotes (29).
Parameters of the model of protein-coding region change
depending on the role of TGA.

GeneMark-HM determines the role of the TGA triplet by
the following approach. The GC-specific models of Meta-
GeneMark are diversified not only by 1% increment in GC
content of contigs but also by the role of TGA (genetic code
11 or 4/25). Therefore, at the first stage of analysis, Meta-
GeneMark is run twice on each contig, with models cor-
responding to one or another role of TGA. The log-odds
scores of a contig computed in the two runs are used in a
classifier trained on 10 000 nt long contigs with known ge-
netic codes (Figure 4). Assessment of the classifier accuracy
on sets of 10 000 nt long genomic fragments not overlap-
ping with the training set demonstrated that the role of TGA
(a stop codon or a sense codon) was correctly identified in
99.9% cases.

Gene predictions made with a predicted role of TGA are
retained as the initial gene predictions in the contig.

Improvement of initial gene predictions

Each initially predicted gene is used as a query in BLASTn
working in the MegaBLAST mode (24) for similarity search
against the gene database of pan-genomes. Among the hits
with scores having E-value better than 10–5 we select those
in which at least 90 nt of the query sequence and the target
in the BLASTn alignment has the ANI value above 95%.
Such hits are used to assign the query gene to a pan-genome.
If, for a given query, the ANI values of several BLASTn
alignments exceed the 95% threshold, the target that has
an alignment with the highest BLASTn score is selected.
A query gene that has no high enough scores and, thus,
is not assigned to a pan-genome is not used in the con-
tig classification. A contig is assigned to a pan-genome to
which the majority of the contig’s genes have been assigned.
Next, the representative model of the selected pan-genome
is used by GeneMark.hmm-2 to update the initial predic-
tions of protein-coding genes (Figure 1). For contigs not as-
signed to a pan-genome we proceed as follows. If the contig
is relatively short, the number of genes initially predicted by
MetaGeneMark is smaller than 150, then the set of genes
initially predicted by MetaGeneMark is reported as the fi-
nal annotation. Otherwise, the self-training GeneMarkS-2
runs on the contig to deliver the final gene predictions.

The above-mentioned restrictions, the alignment
length >90 nt as well as the ANI > 95%, were justified as
follows. We selected at random four rGenomes from a set
of rGenomes not used in a pan-genome construction (any
SGB with more than 154 rGenomes would contain such
rGenomes). Genes predicted in these rGenomes were used

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi
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Figure 3. Assessment of accuracy of GeneMark.hmm-2 with the SGB representative models on rGenomes from the same SGBs. Gene predictions made by
self-trained GeneMarkS-2 in a particular rGenome were considered as ‘annotation’. The gene co-ordinates predicted by GeneMark.hmm-2 with the SGB
representative model were compared with the annotation.

Figure 4. Separation of the log-odds score vectors computed for 10 000 nt
contigs.

as queries in BLASTn search against all the pan-genomes.
We observed that use of the top BLASTn hits without
considering the length of alignment generated many false
positives in the contig assignment to the pan-genome. Use
of the combined restriction ‘>90 nt alignment length AND
>95% ANI’ produced sufficiently high sensitivity with low
number of false positives.

Classification of long anonymous contigs as bacterial or ar-
chaeal

The GeneMarkS-2 branch of analysis of anonymous long
contigs (Figure 1) has an extra step ‘Classify into bacteria or
archaea’, a step made prior to application of GeneMarkS-
2. The accuracy of GeneMarkS-2 improves if information
about the species domain is provided. To make the domain
assignment for a contig, GeneMark-HM uses results of the
BLASTn similarity search for genes initially predicted in the
contig. If majority of the significant hits (with E-value <
10–5), that also have > 60% ANI with the targets and at
least 90nt long alignments, have matches to genes of bacte-
rial pan-genomes, the contig is classified as bacterial, oth-
erwise, as archaeal. On contigs with no assignment to a do-
main, GeneMarkS-2 runs without a domain assignment (5).

The other branch of analysis, for contigs associated with
pan-genomes, runs GeneMark.hmm-2 that uses representa-
tive models for which the type of domain is known from
the SGB or tCluster specification. The domain informa-
tion was used in the derivation of the representative model
by GeneMarkS-2. In the MetaGeneMark branch analyzing
short contigs, the domain of each predicted gene is deter-
mined, albeit not precisely, by the model, bacterial or ar-
chaeal, delivering higher log-odds score (5).

Tests on simulated metagenomes

Some SGBs were classified as ‘known’ SGBs (14) if there
was a species whose genome in the NCBI database had a
high ANI (>95%) with one of the rGenomes in the SGB.
We used 625 NCBI genomes associated with ‘known’ SGBs
to generate a set of contigs with lengths distribution like a
contig length distribution observed in assembled rGenomes
(Supplementary Figure S2). To construct the test set of an-
notated genes we selected from the 625 genomes only those
genes whose protein products had similarity to proteins in
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Figure 5. Gene prediction accuracy of GeneMark.hmm-2 with the SGB
representative models was assessed on 6599 rGenomes selected from 1849
SGBs with two and more rGenomes. Excluded from the test sets were in-
complete genes shorter than 200 nt.

other organisms; such genes were supposed to be more re-
liably annotated by PGAP (30). The genes co-ordinates de-
termined by PGAP were transferred to the individual con-
tigs. Minimum gene length of both the complete and incom-
plete genes in the test set was 90 nt. The final test set had
1,640,483 genes, with 83% complete and 17% were incom-
plete.

RESULTS

Evaluation of accuracy of GeneMark.hmm-2 with the repre-
sentative models

By the procedure described in Methods, we assessed the
accuracy of gene prediction by running GeneMark.hmm-
2 with the SGB representative models on rGenomes from
1849 SGBs, those having two and more rGenomes. Af-
ter computing numbers of true positives, false negatives
and false positives (Tp, Fn and Fp, respectively) for each
rGenome based on comparison with the ‘native’ model-
based annotation we found that most of the time the (Sn
+ Sp)/2 value (Sn = Tp/(Tp + Fn), Sp = Tp/(Tp + Fp)) was
above 98% (Figure 5). The accuracy below 98% (the dots
below the red line) was observed in rGenomes whose frag-
mentation into short contigs was significantly higher than
average. Similar results were observed in the same type of
experiments with the representative models of tClusters.

Among the representative models determined for 4930
SGBs we observed the following frequency distribution of
types of the regulatory signals, canonical and non-canonical
RBS and promoters situated upstream to gene starts (Table
1).

All the three gene finding algorithms employed in
GeneMark-HM had to make predictions of the genes
with nucleotide composition deviated from a balk of the
genes in each genome (atypical genes). This was done with
the use of the GC content specific alternative models of
protein-coding regions (5). We saw that in the representative
rGenomes of 4930 SGBs the atypical genes could comprise

Figure 6. Distribution of the percentage of atypical genes in the represen-
tative rGenomes of 4930 SGBs.

up to 20% of all the genes in an rGenome (Figure 6); the
mode of the distribution was at ∼6%.

Identification of a role of the TGA codon in a metagenomic
contig

A role of TGA codon (code 11 or code 4/25) was iden-
tified for all the 4930 representative rGenomes. Just 18 of
them had TGA coding for an amino acid. The predictions
were confirmed by the MegaBLAST alignments of the eigh-
teen relatively short (less 1 Mb nt in length) representa-
tive rGenomes to prokaryotic genomes in GenBank (31)
(https://blast.ncbi.nlm.nih.gov/Blast.cgi). All the 18 repre-
sentative rGenomes (with predicted codes 4 or 25) had best
hits to genomes known to have genetic codes 4 or 25. Co-
versely, all the genomes with genetic code 4/25 from Gen-
Bank were aligned by MegaBLAST against 4912 rGenomes
(4930 – 18). The alignments did not indicate a presence of
any additional genomes with genetic code 4/25. Thus, all
4912 rGenomes were identified as ones with TGA coding
for the end of translation (code 11).

In GeneMark-HM, a role of TGA in a contig was deter-
mined immediately upon the assignment of a contig to a
pan-genome. If no such assignment to a pan-genome was
made, the role of TGA was defined by the analysis of Meta-
GeneMark predictions as described in Methods. The accu-
racy of the TGA role prediction by MetaGeneMark was
tested on contigs from the 18 representative rGenomes with
genetic code 4/25 (a total of 1040 contigs) as well as on
the contigs from the representative rGenomes with genetic
code 11. A prediction was called false positive when a con-
tig with TGA being a stop codon was identified as s contig
with TGA coding for an amino acid. The same set of con-
tigs was used to assess the accuracy of identification of the
role of TGA by MetaProdigal (7).

If a contig does not carry genes containing TGA (either
as a stop or a sense codon) then the result of gene predic-
tion will not change regardless of what role of TGA has a
model of a protein-coding region used for gene prediction
in the contig Therefore, in addition to counting contigs with
correctly and incorrectly predicted genetic code we counted
the numbers of genes predicted with errors due to the TGA
misinterpretation (Table 2). It was observed that Meta-
GeneMark made less errors (2170) in contigs with code

https://blast.ncbi.nlm.nih.gov/Blast.cgi
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Table 1. Types of regulatory signals observed in the representative models for 4930 SGBs. Estimation of the type and parameters of the signal model was
done in the GeneMarkS-2 self-training (5)

Description Number of models Genome group

Canonical RBS 3481 A
Non-canonical RBS 641 B
Leaderless – Promoters and RBS – bacteria 717 C
Leaderless – Promoters and RBS – archaea 12 D
Unclassified start signal 68 X

11 than MetaProdigal (25 729), (Table 2, top panel) and
made more correct predictions than MetaProdigal in con-
tigs with code 4, where TGA codes for Trp (Table 2, bottom
panel).

Evaluation of the accuracy of gene prediction (as a whole)

We used 625 complete genomic sequences (see Methods)
to create simulated metagenomes. Annotation of 1 640
483 genes made by the NCBI PGAP (30) was transferred
to the metagenomics contigs. We emphasize that only a
subset of all genes, those annotated with support of pro-
tein homology, was used and not the genes ab initio pre-
dicted by GeneMarkS-2, being a part of PGAP. Along with
GeneMark-HM we have tested FragGeneScan, MetaGe-
neAnnotator, MetaProdigal and MetaGeneMark (Table 3).
The results show that GeneMark-HM missed less genes in
the test set than other gene finders; GeneMark-HM also
made less errors in predictions of gene starts. Since the
test set was a subset of the whole complement of genes
in any given genome, accurate assessment of false positive
rates was a difficult task. However, the results showed that
GeneMark-HM predicted fewer overall number of genes
than other gene finders, except MetaGeneAnnotator; a tool
that had a higher threshold on minimal length of predicted
genes. This observation suggests that the lower error rate in
gene prediction (higher sensitivity) of GeneMark-HM was
not a result of gene over-prediction.

Notably, GeneMark-HM was the only one tool in this
comparison that was using a pan-genome database of ref-
erence genes. The average accuracy of gene predictions
made by GeneMark-HM in each metagenome would, there-
fore, depend on the proportion of sequences originated
from species distant from the ones carried in the reference
database. To assess effects of this variation, we used the fol-
lowing approach. While we used one and the same simu-
lated metagenome made from sequences of 625 genomes,
we changed the size of the reference database of genes, D,
which largest instance was the set of genes in all 5082 pan-
genomes (Table 3).

Four instances of database D were as follows: (a)
D4––genes of randomly selected 40% of the 625 genomes
were excluded from the set of genes of 5082 pan-genomes;
(b) D3––genes of randomly selected 30% of the 625
genomes were excluded; (c) D2––genes of randomly se-
lected 20% of the 625 genomes were excluded; (d) D1–– all
5082 pan-genomes were used without exclusions. As a re-
sult, we saw the percentage of genes predicted via the pan-
genome path increasing as the database was getting larger
(from a to d); at the same time the percentage of genes pre-
dicted by MetaGeneMark was decreasing.

Figure 7. Distribution of frequency of sizes of the orthologous groups in
SGB # 1472 (150 rGenomes out of total 200 rGenomes were used in the
pan-genome construction).

In the set of 625 complete genomes, 410 were classified
by GeneMarkS-2 (5) as genomes with the canonical Shine-
Dalgarno RBS, 99 were classified as genomes with non-
canonical RBS and 110 were classified as ones with frequent
leaderless transcription. GeneMark-HM used the regula-
tory signal model in the gene start prediction. All over,
GeneMark-HM had the lowest number of missed genes and
incorrectly predicted gene starts in each class. We show the
statistics of the gene start prediction errors for GeneMark-
HM and for the runner-up, MetaProdigal (Table 4). The dif-
ference in the number of errors in gene start prediction was
the smallest for genomes with canonical RBS and the largest
for genomes with frequent leaderless translation initiation.

Computational complexity of running GeneMark-HM

Frequency distributions of sizes of the sets of orthologous
genes in SGBs and tClusters did show a typical pattern il-
lustrated here for SGB # 1472 (14), a large SGB with 150
rGenomes (Figure 7). A spike at the low numbers of ortho-
logues corresponds to rather unique genes that appear in a
single or in a few rGenomes (the highest peak relates to the
truly unique genes). A spike at the large number of ortho-
logues corresponds to universal genes present in each of 150
rGenomes. The middle part of the graph relates to dispos-
able genes present in some rGenomes and absent in others.

Most of the time, upon construction of pan-genomes
in gene space, the initial gene set defined by a representa-
tive rGenome was expanded three- or four-fold towards the
end of the process (Supplementary Figure S5). However,
in some pan-genomes the increase could be more signifi-
cant (Supplementary Figure S6). To keep the size of a pan-
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Table 2. Accuracy of genetic code identification by MetaGeneMark and MetaProdigal

932 969 contigs with TGA being a stop codon (code 11)

Algorithm # of contigs predicted to use code 4 # of genes with TGA incorrectly interpreted
MetaGeneMark 1168 2170
MetaProdigal 26 305 25 729

1040 contigs with TGA coding for Trp (code 4)

Algorithm # of contigs predicted to use code 4 # of genes with TGA correctly predicted as Trp
MetaGeneMark 942 11 292
MetaProdigal 820 9627

Table 3. Assessment of gene finding accuracy of GeneMark-HM on simulated metagenomic sequences. The shortest contig length was 1500 nt. The
protein-coding regions reported by MetaGeneAnnotator and FragGeneScan were longer than 120 nt; the three other tools reported predicted coding
regions longer than 90 nt

1 640 483 genes in the test set
# of missed
genes

% of missed
genes

total # of
genes
predicted

# of wrong
starts

% of wrong
starts

FragGeneScan 71 242 4.3 1 861 953 291 400 17.8
MetaGeneAnnotator 37 451 2.3 1 794 502 284 555 17.3
MetaProdigal 22 071 1.3 1 824 182 194 188 11.8
MetaGeneMark 21 861 1.3 1 830 949 330 985 20.2
(a) GeneMark-HM with D4 (81% in pan-genome path,
19% in MetaGeneMark path)

15 747 1.0 1 813 984 204 159 12.4

(b) GeneMark-HM with D3 (84% in pan-genome path,
16% in MetaGeneMark path)

15 409 0.9 1 813 830 199 871 12.2

(c) GeneMark-HM with D2 (88% in pan-genome path,
12% in MetaGeneMark path)

15 122 0.9 1 815 335 193 395 11.8

(d) GeneMark-HM with D1 (96% in pan-genome path, 4%
in MetaGeneMark path)

14 162 0.9 1 817 669 178 190 10.9

Table 4. The gene start prediction errors in genomes of each group: (A) with canonical RBS, (B) with non-canonical RBS and (C) with frequent leaderless
transcription

GeneMarkS-2 groups A B C

Number of genes in each class 1 087 637 284 694 244 773
Missed genes by MetaProdigal 14 332 3795 3561

by GeneMark-HM 8797 2760 2353
Difference as % of all genes in the test set 0.51 0.36 0.49
Wrong starts by MetaProdigal 115 201 35 127 40 263

by GeneMark-HM 106 993 31 370 36 374
Difference as % of all genes in the test set 0.75 1.32 1.59

genome under control we had to restrict addition of the
genes with low frequencies of orthologues. An effective way
to impose this restriction was to admit at most N rGenomes
to a pan-genome construction (here N = 150).

Another option to control the size of a pan-genome was
to change the length of the shortest gene. However, we ob-
served that the size of a pan-genome practically did not
change when the minimum gene length was selected any-
where between 90nt and 200 nt; therefore, the gene length
threshold was set to 90 nt.

We also observed that under the restriction of using for
the pan-genome construction no more than 150 largest
rGenomes per SGB, the whole set of the genes would grow
three-fold in comparison with the number of genes in the
SGB representative rGenome. At the same time, the size of
the pan-genome gene sequence database grew >4-fold (due
to the asymmetry of the comparison rule between query and
target (see Methods) we made more frequent selection of
genes longer than queries). Speaking of computational effi-
ciency, a running time of processing a single query increased

just 2-fold between using a single representative rGenome
and a full pan-genome. This effect was partly due to run-
ning the fast mode of BLASTn with the k-mer size of 28
nt chosen under assumption of high similarity of query and
targets (24). This fast mode showed a sub-linear dependence
of the run-time on a size of the sequence database. Use of
pan-genomes has significantly––by factor 15––reduced the
database volume in comparison with a number of all the
genes in a non-redundant set of SGBs and tClusters (Table
5).

Construction of the pan-genomes significantly reduced
(by factor 15) the memory footprint necessary for the
GeneMark-HM operation (Table 5). Although a few er-
roneously predicted genes could be included in the pan-
genome database upon its construction, these ‘targets’
could rarely appear as hits upon similarity searches. Thus,
such errors were not likely to influence accuracy of a contig
assignment to a species level clade.

Similarity searches with the query genes against the pan-
genome database was the most time-consuming step in the
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Table 5. Statistics of the pan-genomes database construction

Source Number of pan-genomes Number of genes in pan-genomes Volume of sequence

tClusters 701 5.7 million 5.3 Gb
SGBs 4930 20.4 million 19.2 Gb
SGBs + non-overlapping tClusters 5082 21.6 million 20.4 Gb

Table 6. Genes predicted in the four human metagenomes with indication of numbers of genes predicted by the three alternative branches of GeneMark-
HM (Figure 1). Contigs shorter than 1500 nt were not included in this analysis

Assembly ID Site
Size,
Mb # of contigs

# of genes
predicted

Pan-genome
path

MetaGeneMark
path

Gene
MarkS-2
path

% by
pan-genome path

GCA 013297495 skin 44.5 7569 49 285 39 154 10 131 375 79.4
GCA 900415335 gut 49.7 5364 44 476 44 211 265 0 99.4
GCA 003604395 gut 85.9 12 353 88 015 87 305 710 0 99.2
GCA 003640265 oral 296.0 81 048 318 534 283 412 35 122 170 89.0

GeneMark-HM operation. To reduce the run-time, given
that we searched for a hit with >95% ANI identity of target
to a query, we used a fast MegaBLAST algorithm (24) with
long k-mers (k = 28). Even in this case, the similarity search
step took on average ∼80% of the GeneMark-HM run-time
(using a single CPU).

We should mention that, for comparison, we imple-
mented an alternative variant of GeneMark-HM using pan-
genomes in protein space and the Diamond algorithm for
similarity searches (32). Strikingly, the run-time increased
by the two orders of magnitude. A particular reason for
the increase was having large number of high scoring align-
ments to proteins from more remotely related pan-genomes,
as the protein translations of genes mask DNA differences
in synonymous codon positions.

Gene prediction in real metagenomes

We tested GeneMark-HM on human metagenomes
originated from microbiomes sampled from the skin
(GCA 013297495), the gut (GCA 900415335 and
GCA 003604395) and the oral cavity (GCA 003640265).
We observed that most gene predictions in each
metagenome, from 79.4% to 99.4%, was made by
GeneMark.hmm with the representative models (the
pan-genome path, Table 6 and Figure 1). A percentage
of the predictions made through this path was especially
high (>99%) in the human gut metagenomes. A sizable
number of relatively short contigs that were not assigned
to pan genomes and require use of MetaGeneMark was
observed in the oral and in the skin metagenomes, where
a few unassigned to a pan-genome contigs were suffi-
ciently long for de novo training of GeneMarkS-2 (Table
6). Such long unassigned contigs were absent in the gut
metagenomes.

In the tests on real metagenomes with total sequence
length of 45 Mb we observed the following run-times (us-
ing a single CPU): MetaGeneMark – 10 s, MetaProdi-
gal – 3.5 min, GeneMark-HM – 12 min. The time of
GeneMark-HM included the time required for the BLASTn
scanning the pan-genome database (∼80% of the time).
This time could be significantly improved by parallel
processing.

DISCUSSION

In the Results section we demonstrated that the GeneMark-
HM pipeline did improve the accuracy of gene prediction in
metagenomic sequences. Particularly, we observed improve-
ments in the whole gene prediction sensitivity as well as in
accuracy of the gene starts prediction (Table 3).

The observed improvement was mainly due to select-
ing an accurate model for GeneMark.hmm-2 by means of
assignment of a metagenomic contig to a pan-genome in
the pan-genome database. The optimal model selection
made GeneMark.hmm-2 capable to annotate genes in short
contigs no less accurately than GeneMarkS-2 annotates
complete genomes (Figure 1, Table 3). The pan-genome
database for the human microbiome was built from ar-
guably the largest collection of genomes of sequenced iso-
lates and prokaryotic genomes reconstructed in silico from
metagenomics reads.

Experiments with real metagenomes from human sites
demonstrated, that up to 99.4% of all contigs could be
assigned to pan-genomes made at a species level. If such
an assignment was in place, a representative model of the
pan-genome could be used in GeneMark.hmm-2 to pre-
dict genes in the contig. The highest rate of a contig to
a pan-genome assignment, 99.4%, was observed for hu-
man gut metagenomes. The lower rate, down to 89.0% and
79.4% was observed for oral and skin metagenomes respec-
tively (Table 6). These results could be expected as the oral
and skin microbiomes might be mixed with microbes from
environment. The contigs not matched to pan-genomes
were processed by either MetaGeneMark, the shorter ones,
and by GeneMarkS-2, the longer ones (Figure 1). Interest-
ingly, the MetaGeneMark performance was quite close to
GeneMarkS-2 in terms of accurate prediction of the 3′ ends
of genes, with 1.3% and 0.9% error, respectively (Table 3).

A significant improvement was observed in gene start
prediction (Table 3). Types of sequence signals controlling
translation initiation in prokaryotic genomes vary signifi-
cantly (5). A contig assignment to a pan-genome triggered
an automatic selection of a suitable model of the sequences
near translation start sites for the whole contig.

For comparison, the gene start models in MetaProdigal
are aware of canonical RBS (group A in Table 3) and non-
canonical RBS (group B in Table 3), but not of frequently
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observed sequence patterns associated with the leaderless
translation initiation (group C in Table 3). In this group the
decrease in the error rate of GeneMark-HM in comparison
with the one of MetaProdigal was the largest (Table 4).

Incorrect identification of a role of the TGA codon would
affect the accuracy of gene prediction in an anonymous
contig. Determination of this role is, therefore, is made in
GeneMark-HM. It was shown that GeneMark-HM identi-
fied the role of TGA in anonymous contigs with fewer errors
than MetaProdigal (Table 2). Particularly, GeneMark-HM
made no errors in contigs with more than 100 genes.

The GeneMark-HM accuracy does depend on the cor-
rect assignment of a metagenomic contig to a reference pan-
genome. Overall improvement of the gene prediction accu-
racy confirms that this step was done efficiently. Moreover,
the assignment to a pan-genome would also facilitate accu-
rate functional annotation of the predicted genes and pro-
teins by narrowing down the phylogenetic search space.
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