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Glioblastoma, also called glioblastoma multiform (GBM), is the most aggressive cancer
that initiates within the brain. GBM is produced in the central nervous system.
Cancer cells in GBM are similar to stem cells. Several different schemes for GBM
stratification exist. These schemes are based on intertumoral molecular heterogeneity,
preoperative images, and integrated tumor characteristics. Although the formation of
glioblastoma is remarkably related to gene methylation, GBM has been poorly classified
by epigenetics. To classify glioblastoma subtypes on the basis of different degrees of
genes’ methylation, we adopted several powerful machine learning algorithms to identify
numerous methylation features (sites) associated with the classification of GBM. The
features were first analyzed by an excellent feature selection method, Monte Carlo
feature selection (MCFS), resulting in a feature list. Then, such list was fed into the
incremental feature selection (IFS), incorporating one classification algorithm, to extract
essential sites. These sites can be annotated onto coding genes, such as CXCR4,
TBX18, SP5, and TMEM22, and enriched in relevant biological functions related to
GBM classification (e.g., subtype-specific functions). Representative functions, such
as nervous system development, intrinsic plasma membrane component, calcium
ion binding, systemic lupus erythematosus, and alcoholism, are potential pathogenic
functions that participate in the initiation and progression of glioblastoma and its
subtypes. With these sites, an efficient model can be built to classify the subtypes
of glioblastoma.

Keywords: glioblastoma, methylation, signature, subtype, classification

INTRODUCTION

Glioblastoma, also called as glioblastoma multiform (GBM), is the most aggressive cancer that
initiates within the brain. The cause of this disease is unclear. The risk factors of GBM include
genetic factors and environmental factors, such as smoking and exposure to pesticides. Similar to
other brain cancers, GBM can cause epilepsy, nausea, vomiting, headaches, and mild hemiplegia.
The typical symptoms of glioblastoma are deteriorating memory and personality or decline in
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neurological function. Most symptoms are caused by the
destruction of the temporal lobes and the frontal lobes. Different
subspecies of glioblastomas are produced in the central nervous
system, and cancer cells in GBM are similar to stem cells.

Several different schemes for glioblastoma stratification exist.
One is based on intertumoral molecular heterogeneity in
GBM. This scheme identities the subtypes of procedural and
mesenchymal glioblastoma on the basis of the biomarker genes
VEGF-A, VEGF-B, ANG1, and ANG2 (Sharma et al., 2017).
The second technique involves the use of preoperative images
as predictive markers of GBM subtypes; in this approach,
the distinctive imaging phenotypes and imaging patterns of
glioblastoma subtypes are detected by employing machine-
learning techniques (Macyszyn et al., 2016). The third technique
is based on integrated tumor subtypes, which have been
discovered through an integrative subtype analysis of the GBM
dataset from the cancer genome atlas (TCGA) (Shen et al., 2012).

The promoter region is a functional part of the genome that
is regulated by methylation and contributes to the regulation
of gene expression during the pathogenesis of glioblastoma.
Such genomic modification affects the expression of a group
of important proteins, including MGMT, GATA6, and CASP8;
the dysmethylation of these genes is remarkable in glioblastoma
(Skiriute et al., 2012). For example, through whole-genome wide
methylation screening, a study found that 5 m-dC level is the best
discriminant among methylation classes, and the upregulation of
LINE1 methylation is an independent prognostic factor in GBM
diseases (Lai et al., 2014). Although the formation of glioblastoma
is related to gene methylation, glioblastoma has been poorly
classified on the basis of epigenetics.

Preliminary attempts on clustering GBMs using epigenetic
biomarkers have already started. According to a systematic
analysis on the DNA methylation-based classification of central
nervous system tumors (Guardiola Bagán et al., 2017; Capper
et al., 2018), central nerve system (CNS) tumors can be further
classified into multiple subgroups based on the whole-genome
wide methylation status. As one important part of the CNS
tumors, GBM can be further classified into eight classes, which
is DMG K27, GBM G34, GBM MES, GBM RTK I, GBM RTK II,
GBM RTK III, GBM MID, and GBM MYCN. Researchers tried
to use unsupervised clustering of reference samples using t-SNE
dimensionality reduction. According to the original publications,
group DMG K27 can be easily distinguished from other seven
groups based on the results of t-SNE based separation. However,
the differences between the other seven subgroups cannot
be clarified clearly and the specific methylation locus that
contribute to the separation have not been identified. Therefore,
in this study, we used methylation datasets downloaded from
Gene Expression Omnibus (GEO) database to identify specific
methylation locus/biomarkers that contribute to the classification
and annotation of different GBM subgroups (Capper et al., 2018).

We aimed to identify essential methylation sites (features)
in this study, on which the subtypes of glioblastoma can be
efficiently classified. To this end, we employed two datasets
collected in GEO. One dataset was termed as the training
dataset, whereas the other was treated as the independent test
dataset. A powerful feature selection method, Monte Carlo

feature selection (MCFS) (Dramiński et al., 2007), was applied on
the training dataset. A feature list, indicating the importance of
features, was produced. After that, incremental feature selection
(IFS) (Liu and Setiono, 1998) was executed on this list, which
incorporated one classification algorithm, to extract essential
methylation sites. As a result, we found 4100 methylation sites
(features) associated with the classification of GBM. These
sites can be annotated onto coding genes, such as CXCR4,
TBX18, SP5, and TMEM22. Through the further functional
enrichment analysis of these dysmethylated genes using GO
and KEGG databases, we identified several biological functions
related to GBM classification (e.g., subtype-specific functions).
Also, with these methylation sites, an efficient model with
support vector machine (SVM) (Cortes and Vapnik, 1995)
as the prediction engine can be built to classify subtypes
of glioblastoma. In summary, on the basis of the powerful
computational approaches, we identified various novel potential
pathogenic genes at the epigenetics level and revealed several
potential pathogenic functions that participate in the initiation
and progression of glioblastoma and its subtypes with wide
support from recent reports.

MATERIALS AND METHODS

Dataset
Two sets of methylation profiles of patients with GBM were
downloaded from GEO with the accession numbers GSE90496
and GSE109379 (Capper et al., 2018). The first dataset
included 347 GBM cases and the second dataset contained
324 GBM cases. These two datasets were used as the training
dataset and independent test dataset, respectively. All GBM
cases are classified into seven categories. The distribution of
GBM cases on seven categories is listed in Table 1. The
methylation levels of 42,383 probes were used to represent each
patient. The goal was to identify discriminative methylation
features (e.g., dysmethylated sites or genes) corresponding to
different GBM subtypes.

Feature Selection
In this study, we first used MCFS (Dramiński et al., 2007)
to identify the general interpretable information of features
(methylation sites) in tumor samples from the central nervous
system. Then, we applied IFS (Liu and Setiono, 1998) to

TABLE 1 | Breakdown of the GBM samples in the training and independent
datasets.

Category Training dataset Independent dataset

G34 41 13

MES 56 104

MID 14 19

MYCN 16 17

RTK 64 44

RTK II 143 118

RTK III 13 9
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improve classification performance by obtaining a group of
optimal features with the strong recognition ability of central
nervous system tumors.

MCFS
Monte Carlo feature selection is a classical and powerful
feature selection method wherein decision trees are used to find
distinguishable features for classification (Dramiński et al., 2007).
It is quite suitable to analyze datasets with features much more
than samples. The datasets described in section “Dataset” are
in such type. Thus, we adopted MCFS to analyze the training
dataset, aiming to extract essential features. Furthermore, such
feature selection method can deeply investigate complicated
relationship between features or class labels, extracting essential
features in deep levels.

The MCFS method evaluates the importance of features by
constructing lots of decision trees. Given a dataset with M
features, randomly construct s feature subsets consisting of m
features, where m is much smaller than M. For each feature
dataset, t bootstrap sample sets are constructed from the original
dataset, in which samples are represented by features in such
feature subset. Accordingly, t decision trees are built. After all
feature subsets are processed by the above procedures, s·t decision
trees are constructed. Based on these trees, a feature g is assigned
a relative importance (RI) value, which can be calculated by

RIg =

st∑
τ=1

(wAcc)u
∑
ng (τ)

IG(ng(τ))

(
no. in ng(τ)

no. in τ

)v
, (1)

where IG(ng(τ)) stands for the gain information of node ng(τ),
(no. in ng(τ)) represents the number of samples in node ng(τ),
(no. in τ) denotes the number of samples in tree τ, wAcc indicates
the weighted accuracy of the tree. u and v are the regular factors,
which were suggested to set to one (Dramiński et al., 2007). All
investigated features are ranked in a list with the decreasing order
of their RI values. Clearly, features with high ranks are more
important than those with low ranks.

In present study, we used the MCFS program retrieved from
http://www.ipipan.eu/staff/m.draminski/mcfs.html. Default
parameters were adopted.

IFS
Incremental feature selection is a feature selection method
used to distinguish between samples from different classes
(e.g., normal and diseased) (Liu and Setiono, 1998). In this
study, different classes of samples were discerned by a set
of optimal features screened by IFS performed in a rank-
descending feature list. We set candidate high-performance
feature subsets as feature subsets with large interval sizes (e.g.,
10 features) from the ranked feature list. Suppose N candidate
feature subsets F = [F1, F2, . . . , FN

] exist. The i-th feature subset
includes 10 ∗ i features yielding Fi

= [f1, f2, . . . , fi∗N]. We
construct and evaluate the classifier on each candidate feature
subset. The candidate feature subset with the maximal prediction
performance is the optimal feature subset, and the classifier
constructed from these optimal features is the optimal classifier.

Classification Algorithm
Support Vector Machine
The classifier acts as a classification model that maps data samples
to a given category for data class prediction. We use support
vector machine (SVM) (Cortes and Vapnik, 1995) based on
statistical learning theory for supervised data classification. It
has wide application for tackling different biological problems
(Muthukrishnan et al., 2014; Chen et al., 2017, 2020; Liu et al.,
2020; Sang et al., 2020; Zhou et al., 2020a,b). The basic principle is
to use a given kernel function (e.g., Gaussian kernel) to transform
data from a low-dimensional space to a high-dimensional space.
The SVM model can separate the samples of each class/category
by maximizing the data interval and also predicts (new) sample
categories on the basis of the interval where this sample falls
in. For two-class classification, the largest margin between the
two categories of samples can be inferred by SVM, where
large margins are associated with small generalization error. For
multiclass classification, SVM uses the “One Versus the Rest”
strategy. In this study, we solved the optimization problem of
SVM by using the sequence minimization optimization (SMO)
algorithm (Platt, 1998; Keerthi et al., 2001) implemented by
the tool “SMO” in Weka software (Frank et al., 2004; Witten
and Frank, 2005), which can be downloaded at https://www.cs.
waikato.ac.nz/ml/weka/. For convenience, the default parameters
were adopted, where the kernel was a polynomial function and
the regularization parameter C was set to one.

Random Forest
A random forest (RF) (Breiman, 2001) is a metaclassifier that
contains a large number of tree classifiers for establishing
final joint classification, which determines the output
categories/classes by summarizing votes from different decision
trees (Breiman, 2001). The RF is a commonly used method
in machine learning and is widely applied in computational
biology (Pan et al., 2010; Zhao et al., 2018; Jia et al., 2020; Liang
et al., 2020; Yuan et al., 2020). Notably, a slight difference exists
between each decision tree and other decision trees in a RF.
Thus, the predictions of all decision trees are averaged to obtain
the final decision of RF. This approach can avoid over-fitting
and improve the performance of the integrated model. However,
it slightly increases the bias of the overall model and causes
the loss of some interpretability. In this study, we used the tool
“RandomForest” in Weka (Frank et al., 2004; Witten and Frank,
2005), which implemented the above RF. The number of decision
trees was set to ten.

Rule Learning
In this study, we used the rule learner known as repeated
incremental pruning to produce error reduction (RIPPER) to
generate classification rules for classifying samples from different
GBM subtypes (Cohen, 1995). RIPPER learns interpretable
classification rules consisting of IF–ELSE rules. Briefly, RIPPER
learns the rules of one class and then moves to learn the next
class in a given order, e.g., it learns from the first minority
class to the next until the dominant class. To quickly implement
the RIPPER algorithm, we directly employed the tool “JRip”
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in Weka (Frank et al., 2004; Witten and Frank, 2005). Default
parameters were used.

Functional Enrichment Analysis
The selected optimal methylation probes (features) were mapped
onto genes on the basis of the annotation files of GPL13534
downloaded from GEO. The enrichments of these genes on GO
terms and KEGG pathways were evaluated with hypergeometric
tests measured by phyper function in R1. The cutoff of the
adjusted hypergeometric test p-values, i.e., FDR (false discovery
rate), was set to 0.05. In other words, only the GO terms
and KEGG pathways with FDR < 0.05 were considered to be
statistically significant.

Performance Measurement
We employed Matthew Correlation Coefficients (MCC)
(Matthews, 1975; Gorodkin, 2004) to evaluate the performance
metrics of different kinds of classifiers. The MCC accounts
for true and false positives and true and false negatives, and
this measurement has values ranging from −1 and +1. It is
a common method for calculating the correlation between
target and prediction classes. Applying 10-fold cross-validation
(Kohavi, 1995), we used MCC to evaluate the performance of
different training models for glioblastoma classification.

RESULTS

In this study, we investigated the methylation profiles of GBM
patients. The entire procedures are illustrated in Figure 1.

Results of MCFS Method on the Training
Dataset
We first used MCFS to analyze the training dataset. Each feature
was evaluated by a RI value. Accordingly, all features were ranked
in the decreasing order of their RI values. Obtained feature list is
provided in Supplementary Table 1.

IFS Results
Next, we generated a series of feature subsets from the MCFS
feature list and then subjected them to IFS with SVM, RF,

1http://finzi.psych.upenn.edu/R/library/stats/html/Hypergeometric.html

and RIPPER to obtain the best features for classifying different
categories of GBM samples. The complete results of the three
classifiers using different number of features are given in
Supplementary Table 2. For an easy observation, an IFS curve
was plotted with number of used features as X-axis and MCC
as the Y-axis for each classification algorithm, as shown in
Figure 2, in which the highest MCC of each classification is
marked. It can be observed that the highest value of MCC
generated by SVM was 0.939 when using the top-ranked 4100
features. Accordingly, we constructed the optimal SVM classifier
with these 4100 features. For RF, when using the top-ranked
1690 features, the largest MCC value of 0.882 was achieved.
These 1690 features were used to build the optimal RF classifier.
When using the top-ranked 1180 features, the highest MCC
value of 0.737 was obtained by RIPPER. The optimal RIPPER
classifier was built based on these 1180 features. The overall
accuracies of above-mentioned classifiers are listed in Table 2
and the accuracies on seven categories are shown in Figure 3.
As shown by these results, the optimal classifier was SVM,
which was superior to RIPPER and RF although it used
additional features.

Performance of Optimal Classifiers on
the Test Dataset
To show the generalizability of our pipeline, we also evaluated
above-constructed classifiers on a completely independent test
dataset. The MCCs generated by the optimal SVM, RF, and
RIPPER classifiers were 0.798, 0.832, and 0.937. These results
are summarized in Table 3, in which the corresponding overall
accuracies are also listed. The detailed performance on each
category is shown in Figure 4. The results indicated that
the RIPPER classifier had better generalizability than other
two algorithms, and SVM shown the worst generalizability
performance in this study.

Results of Enrichment Analysis
On the training dataset, the optimal SVM classifier gave the
best performance, which adopted 4100 top-ranked features
(methylation sites). These sites were mapped onto genes based on
the annotation file of Illumina HumanMethylation450 BeadChip
from GEO with platform number of GPL135342, resulting

2https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL13534

FIGURE 1 | Flowchart of the analysis performed in this study. The training dataset is first analyzed by the Monte Carlo feature selection (MCFS) method. Features are
ranked in a list, which is fed into the incremental feature selection (IFS) with one of three classification algorithms. The optimal classifiers based on different
classification algorithms are built and further evaluated their performance on a test dataset.
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FIGURE 2 | IFS curves with support vector machine, random forest, and RIPPER on the training set. The support vector machine can yield the highest MCC (0.939)
when top 4100 features are used, while the highest MCCs of random forest and RIPPER are 0.882 and 0.737, respectively, when top 1690 and 1180, features
respectively, are adopted.

in 1813 coding genes, which are provided in Supplementary
Table 3. For consistency, these genes were called optimal genes
in the following text.

The enrichment analysis was done on the above 1813 genes.
The results are listed in Supplementary Table 4. Several GO
terms and KEGG pathways with FDR < 0.05 were obtained. In
detail, we obtained 167 biological process (BP) GO terms, 28
cellular component (CC) GO terms, 26 molecular function (MF)
GO terms and four KEGG pathways. Some of them would be
analyzed in section “Biological Functions Relevant to GBM Based
on Optimal Genes” and “Biological Pathways Relevant to GBM
Based on Optimal Genes.”

DISCUSSION

Optimal Genes Relevant to GBM
As mentioned in section “Results of Enrichment Analysis,” 1813
optimal genes were obtained. We selected some of them for
analysis in this section. These genes are targeted by probes
with high RI values.

The first gene is CXCR4 (targeted by probe cg02902079
and cg10824187), which is a lymphocyte activity regulation
molecule and acts as an alpha-chemokine receptor specific
for stromal-derived-factor-1. Chemokines play important
autocrine and paracrine roles during tumor initiation and
progression. Generally, the in vivo secretion of chemokines

TABLE 2 | 10-fold cross-validation performance of the optimal SVM, RF, and
RIPPER classifiers on the training set.

Classification algorithm Number of features Overall accuracy MCC

SVM 4100 0.954 0.939

RF 1690 0.911 0.882

RIPPER 1180 0.804 0.737

regulates the biological effects of various components in the
microenvironment of CXCR4 (Würth et al., 2014). In cancer
stem cells, CXCR4 is upregulated and plays an irreplaceable
role in perivascular invasion, a specific tumor behavior in
GBM (Yadav et al., 2016). In addition, CXCR4 is an effective
target for improving tumor sensitivity in GBM in conjunction
with radiation therapy (Yadav et al., 2016). Moreover, CXCR4
is suppressed by PATZ1, which is enriched in the proneural
subtype and colocalizes with stemness markers of GBMs
(Guadagno et al., 2017).

The next identified probe turns out to be cg26558485,
targeting the 5′UTR of CYP4X1. As a member of the cytochrome
P450 superfamily of enzyme, such gene has been generally
reported to participate in neurovascular function in the brain
(Bylund et al., 2002). As for its correlations with GBM, recently,
two successive related publications (Wang et al., 2018, 2019)
confirmed that CYP4X1 contributes to the inhibition of glioma
angiogenesis. Glioma vasculature is quite significant for the
initiation and progression of such disease (Hardee and Zagzag,
2012). The methylation of related functional regions of such gene
definitely affect its biological functions, which further plays an
irreplaceable role for GBM pathogenesis. Therefore, such target
gene can be an effective GBM associated gene.

Apart from probe cg26558485, another probe named as
cg07028914 targets a transcription factor named as TBX18.
According to recent publications, an independent study in 2015
confirmed that microRNA miR-205 prevent the invasion of
glioma by targeting TBX18 (Zheng et al., 2015), reflecting the
potential regulatory role of TBX18 during glioma pathogenesis.
Most of microRNAs’ biological effects on glioma pathogenesis
relied on the regulation on gene expression, which is similar
with methylation mediated biological processes. Therefore, the
methylation status of such gene may also play a potential
regulatory role for the invasion of glioma.

The next gene, SP5 is targeted by multiple probes including
cg26766005 and cg14768335. According to recent publications,
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FIGURE 3 | Performance of the optimal SVM, RF, and RIPPER classifiers on different categories in the training dataset. The optimal SVM and RF classifiers are much
superior to the optimal RIPPER classifier, and the optimal SVM classifier is slightly superior to the optimal RF classifier.

SP5 has been shown to be therapeutic target and a prognostic
biomarker for multiple cancer subtypes, including glioma (Safe
and Abdelrahim, 2005; Safe et al., 2014). Considering that
methylation can regulate the expression level and biological
effects of a target gene, the methylation status of the regulatory
region of such gene may also probably affect the pathogenesis of
glioma and have different pathological effects in different glioma
subgroups indirectly.

As for TMEM22, also known as SLC35G2, which is targeted by
the optimal features cg25836094, cg13383019, and cg22304507,
it has been generally reported to participate in cell proliferation
and tumorigenesis with few publications (Dobashi et al., 2009).
Although such gene has not been directly reported to be
functionally correlated with glioma, it has been widely reported
to be associated with renal cell carcinoma and its homolog which
shared similar biological functions, TMEM97 has been directly
confirmed to be correlated with glioma at transcriptomics level.
Considering that methylation at gene body is correlated with gene
transcription, it is reasonable for us to regard TMEM22 associated
probes as potential glioma associated probes.

The next identified probe turns out to be cg11823511,
targeting gene BARHL2. According to two independent studies
reported by researchers from University of Birmingham
(Dunwell et al., 2010) and Memorial Sloan-Kettering Cancer

TABLE 3 | Performance of the optimal SVM, RF, and RIPPER classifiers on the
independent test dataset.

Classification algorithm Overall accuracy MCC

SVM 0.852 0.798

RF 0.877 0.832

RIPPER 0.954 0.937

Center (Shen et al., 2012), respectively, the methylation of
BARHL2 is not only related to hematological and epithelial
cancers, but nerve system malignancies including glioma and
may play a specific role for the integrative subgrouping of glioma
(Shen et al., 2012).

RASGRF2 targeted by probe cg06829830 has also been
predicted to be contribute to the pathogenesis of glioma at
methylation level. According to recent publications, in 2019, a
systematic review (Wu et al., 2014) on the cancer methylation
biomarkers confirmed that such gene is a specific biomarker for
aggressive gliomas at methylation level using liquid biopsy.

Apart from such gene, the next identified biomarker is TLX3,
targeted by probe cg26844246. The methylation alteration of
such gene has been identified in multiple tumor subtypes, like
thyroid cancer (Kikuchi et al., 2013), bladder cancer and lung
adenocarcinoma (Pradhan et al., 2013). In a systematic study
on the whole-genome wide glioma methylation status, TLX3 has
been shown with specific methylation status in level II and III
gliomas (Suzuki et al., 2015).

As for gene ANKRD34A (correlated with probes cg10178263,
cg18280463, and cg13947666), according to related methylation
studies (Giri and Aittokallio, 2018; Ding et al., 2020), such
gene has shown to have methylation changes during the
initiation and progression of multiple tumor subtypes, including
lung, colon, bladder, lymphoma, breast and ovarian cancer.
Therefore, it is reasonable for us to connect the methylation
status of ANKRD34A with glioma. Apart from that, a recent
publication (Ding et al., 2020) in 2020 also indicated that the
transcript of such gene, which is regulated by methylation
status, may participate in the RNA regulatory network in
low grade glioma. Therefore, the methylation of such gene
may be correlated with glioma and performed differentially in
different subgroups.
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FIGURE 4 | Performance of the optimal SVM, RF, and RIPPER classifiers on different categories in the independent test dataset. The optimal RIPPER classifier gives
the best generalizability on the independent test dataset, followed by the optimal RF and SVM classifier.

The last target of the optimal probes is MARCH11 (targeted
by probe cg09017434), regulating the intracellular transport of
lysines. As for its correlations with GBM, according to recent
publications, such gene has shown to be correlated with the
carcinogenic transformation of cells with different expression
levels (Yang et al., 2020). Considering the correlations between
gene region methylation and gene expression, it is reasonable
for us to speculate that the methylation status of such gene may
be correlated with potential malignant alterations, supporting its
correlations with GBM.

Biological Functions Relevant to GBM
Based on Optimal Genes
Here, to summarize the specific biological functions that may
contribute to revealing the differences between different GBM
subgroups at methylation level, we performed GO enrichment
analyses and pathway analyses on the optimal genes associated
with GBM related probes (see Supplementary Table 4).

For the GO enrichment analyses results, firstly nervous
system development has been screened out. Nervous system
development is a biological process related to GBM. The
malignant transformation and invasive migration of glioma
cells rely on basic cellular components and physical anatomical
structure. Therefore, the nervous system may contain proteins
that are crucial for GBM. A recent publication confirmed that
MT1-MMP, a major component of nervous system development,
plays an important role during the pathogenesis of GBM (Beliën
et al., 1999). Nervous system development is also associated with
DNA methylation. Specific patterns have been seen at the DNA
methylation level in the nervous system during the development
and pathogenesis of GBM. Some patterns are even shared by
two groups (Numata et al., 2012). Therefore, nervous system
development, as an effective biological process, can be predicted

to contribute to the description of GBM, validating the efficacy
and accuracy of our prediction.

Apart from that, the next enriched term calcium ion binding
has also been shown to be related to GBM. Various important
cells in the central nervous system and the pathogenesis
of GBM-like astrocytes participate in complicated metabolite
transportation from the blood to the brain. Under pathogenic
conditions, glioma cells seize control of the regulation of vascular
tone through the Ca+-dependent release of K+, suggesting that
calcium ion binding and blood stream in the brain in pathogenic
status have important clinical implications (Watkins et al., 2014).
Calcium ion binding is also related to methylation. An increase
in the ionic strength and a decrease in the methylation reduce the
amount of calcium required for the gelation of pectin–calcium
systems (Garnier et al., 1993).

Biological Pathways Relevant to GBM
Based on Optimal Genes
Apart from GO enrichment analyses, we also performed KEGG
pathway analyses on such optimal genes (see Supplementary
Table 4). The results of this study indicated that alcoholism
is related to glioblastoma. Repurposing disulfiram (DSF) is a
drug that has been widely used over the past several years to
control alcoholism. DSF can inhibit the growth of GBM cells
with TMZ resistance without affecting normal cells in the human
central nervous system. DSF can suppress the growth and self-
renewal of primary cells from GBM tumors, suggesting that an
association exists between alcoholism and GBM (Triscott et al.,
2012). Alcoholism is also related to the methylation alteration
of transporter genes. Methylation status is further affected by
alcoholism. The methylation of DAT in peripheral blood has also
been validated to be a biomarker for alcohol-dependent patients
(Wiers et al., 2015).
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CONCLUSION

We found several methylation features (sites) associated with the
classification of GBM using our newly presented computational
method for classifying glioblastoma subtypes on the basis of gene
methylation level. Through the further functional enrichment
analysis of dysmethylated genes, such as CXCR4, TBX18,
SP5, and TMEM22, several potential pathogenic functions
are found to participate in the initiation and progression
of glioblastoma. These functions include nervous system
development, intrinsic plasma membrane component, systemic
lupus erythematosus, and alcoholism.
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