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The objective of this study was to explore the molecular mechanisms of acute noise-induced hearing loss and recovery of steady-
state noise-induced hearing loss using miniature pigs. We used miniature pigs exposed to white noise at 120 dB (A) as a model.
Auditory brainstem response (ABR) measurements were made before noise exposure, 1 day and 7 days after noise exposure.
Proteomic Isobaric Tags for Relative and Absolute Quantification (iTRAQ) was used to observe changes in proteins of the
miniature pig inner ear following noise exposure. Western blot and immunofluorescence were performed for further
quantitative and qualitative analysis of proteomic changes. The average ABR-click threshold of miniature pigs before noise
exposure, 1 day and 7 days after noise exposure, were 39.4 dB SPL, 67.1 dB SPL, and 50.8 dB SPL, respectively. In total, 2,158
proteins were identified using iTRAQ. Both gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) database
analyses showed that immune and metabolic pathways were prominently involved during the impairment stage of acute hearing
loss. During the recovery stage of acute hearing loss, most differentially expressed proteins were related to cholesterol
metabolism. Western blot and immunofluorescence showed accumulation of reactive oxygen species and nuclear translocation
of NF-κB (p65) in the hair cells of miniature pig inner ears during the acute hearing loss stage after noise exposure. Nuclear
translocation of NF-κB (p65) may be associated with overexpression of downstream inflammatory factors. Apolipoprotein
(Apo) A1 and Apo E were significantly upregulated during the recovery stage of hearing loss and may be related to activation of
cholesterol metabolic pathways. This is the first study to use proteomics analysis to analyze the molecular mechanisms of acute
noise-induced hearing loss and its recovery in a large animal model (miniature pigs). Our results showed that activation of
metabolic, inflammatory, and innate immunity pathways may be involved in acute noise-induced hearing loss, while cholesterol
metabolic pathways may play an important role in recovery of hearing ability following noise-induced hearing loss.

1. Introduction

Noise-induced hearing loss (NIHL) is the most common
form of nonhereditary sensorineural hearing loss, the inci-
dence which is increasing annually. An epidemiological

survey from 2005 showed that, worldwide, roughly 16% of
cases of adult hearing loss were caused primarily by noise
overexposure at work [1]. A recent investigation of American
adults under 70 years old was performed by the Centers for
Disease Control. The results showed that there are roughly
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26 million people with NIHL, with prevalence rate of 15%.
Furthermore, over 16% of American teenagers (12–19 years
old) were shown to have hearing loss caused by excessive
noise exposure [2]. NIHL has emerged as a heavy burden to
daily communication for patients and for their physical and
mental health.

Hair cells in the cochlea play a critical role in convert-
ing mechanical sound waves into neural signals for hearing
[3–5]. Previous studies using mouse models showed that
acoustic injury of the auditory system is caused by multiple
factors, and most of the hearing loss induced by noise, differ-
ent ototoxic drugs, infection, or aging are caused by the hair
cells damage [6–13]. Impulse noise (>140 dB SPL) causes
hearing loss primarily through mechanical damage of hair
cells [14], while steady noise causes metabolic damage of
hair cells [15]. However, the complex molecular pathways
involved in NIHL remain incompletely understood.

Miniature pigs, which share numerous similarities with
humans in terms of inner ear morphology and hearing func-
tion, represent a novel large animal model for studying
NIHL. Except for primates, pigs and humans have the closest
evolutionary relationship, sharing similarities in genetic, ana-
tomical, and physiological factors. The structure of the pig
inner ear is very similar to that of humans, and the size of
the pig cochlear scala tympani is mostly the same as in
humans [16, 17]. These observations suggest that the nerve
nuclei of the entire auditory pathway of pigs are highly sim-
ilar to those of humans. Therefore, the pig model is more
suitable than rodents for studying NIHL.

Proteomic Isobaric Tags for Relative and Absolute
Quantification (iTRAQ) has been used to identify abnormal
protein expression in different diseases [18–20]. In the
present study, we aimed to perform proteomic analysis of
miniature pig cochleae as pertaining to acoustic trauma.
Continuous stimulation with 120 dB (A) white noise was
adopted to establish a stable model of NIHL [21]. iTRAQ
was used to assay the comparative proteomics of miniature
pig inner ears under conditions of noise exposure vs. no
noise exposure. Gene ontology (GO) and Kyoto Encyclope-
dia of Genes and Genomes (KEGG) database analyses of
differentially expressed proteins showed that immune path-
ways may play a key role in the development of NIHL.
Major inflammatory factors enriched in KEGG analysis
were validated by Western blot and immunofluorescence
in noise-exposed pigs. Our results showed that within 24 h
of noise exposure, there was significant upregulation and
nuclear translocation of NF-κB (p65) in hair cells. NF-κB
is a key transcription factor involved in inflammatory sig-
naling pathways, responsible for initiation of transcription
of downstream inflammatory factors.

2. Materials and Methods

2.1. Animals.Healthy miniature pigs (2–3 months, male and
female, ~5 kg) were from Zhuozhou Kangning Miniature
Pig Cultivation Company (Zhuozhou, China). All animals
underwent baseline hearing evaluation. Procedures involving
the use and care of animals were supported and controlled by

the local ethics committee in compliance with institutional
animal protection regulations.

2.2. Experimental Procedures. After baseline hearing evalua-
tion, pigs were randomly assigned to a noise exposure group
or the control group (no noise exposure). Animals in the
noise groups were subjected to noise exposure and scheduled
hearing evaluations. Their cochleae were collected for proteo-
mics analyses and pathological analysis at defined time points.
Animals in the control group were subjected to the same pro-
tocol as in the noise groups except for noise exposure.

Data were objectively measured and analyzed indepen-
dently by two individual researchers. All animals in the
noise exposure groups were compared with corresponding
controls, and pigs were randomly assigned to either the noise
groups or control group. There were no animal deaths
because of attrition, and no data were excluded from analysis.

2.3. Noise Exposure. Animals in the noise groups were placed
in a wire mesh cage and exposed to white noise at 120 dB (A)
for 3 h on 2 consecutive days. The white noise signal was
routed through an attenuator (PA5 TDT, Alachua, FL,
USA) and a power amplifier (MF-1201 MOSTET, ATech)
to a loudspeaker (Aijie Audio Equipment Factory) which
was positioned at 20 cm above the animal’s head. The noise
level at the position of the animal’s head in the sound field
was calibrated using a sound level meter (Brüel & Kjær,
2250L, Denmark), a preamplifier (RA4PA, 4-channel, TDT),
and a condenser microphone (RA4LI, TDT). This noise expo-
sure regime can cause permanent loss in cochlear sensitivity.

2.4. Auditory Brainstem Responses. Auditory brainstem
response (ABR) measurements were conducted prenoise
exposure, 1 day and 7 days postnoise exposure to assess hear-
ing sensitivity of the animals (Figure 1(a)). Each animal was
anesthetized with intramuscular injection of Sumianxin
(0.1ml/kg) and 3% pentobarbital sodium (1ml/kg). Body
temperature was maintained at 38°C with a warming blanket.
Stainless steel needle electrodes were placed subdermally at
the vertex (noninverting input) and behind the stimulated
and nonstimulated ears (inverting input and ground, respec-
tively). Each ear was stimulated separately with an open-field
sound delivery system positioned at 1 cm from the animal’s
tested ear. ABRs were induced with clicks and tone bursts
at 2, 4, 8, 16, and 24 kHz, generated digitally (SigGen, TDT)
using a multifunction processor (RX6, TDT). This was then
fed to a programmable attenuator (PA5, TDT), an amplifier
(SA1, TDT), and an open-field loudspeaker (MF1-1250,
TDT) at 90 dB SPL. The stimulus level was decreased by
10 dB steps until no response was identifiable. The signal
was bandpass filtered (100–3000Hz), amplified (×50,000),
and averaged using Tucker Davis Technologies (TDT)
System III hardware and SigGen/BioSig version 4.4.1 (TDT,
RX6, Alachua, FL, USA) software. Responses were stored
and displayed on a computer. The ABR threshold was
defined as the lowest stimulus intensity that reliably induced
a detectable response.

2.5. Cochlear Tissue Collection. Animals were decapitated
under deep anesthesia with Sumianxin (0.1ml/kg) and 3%
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Figure 1: ABR results from three groups of animals. (a) Pattern of hearing changes during different stages of acoustic injury. (b) ABR-click
waveforms for the three groups of animals: Top: Normal control individual (CTRL) ABR waveforms, I-V waves are well-differentiated, II- and
V-waves are most stable, and this individual ABR threshold is 35 dB SPL. Middle: 1 day after of noise exposure (NE1) testing ABR, the
amplitude at 90 dB SPL decreased, and the potential of I-V waves was prolonged. This individual ABR threshold was 70 dB SPL. Bottom:
ARB waveforms were tested at 7 days after noise exposure (NE7), and the individual ABR threshold was 55 dB SPL. (c) There was a
statistically significant difference in ABR-click thresholds between the three groups of animals. ∗∗ indicates p < 0:01, a significant
difference (one-way ANOVA, Tukey test). (d) Comparison of ABR-click and tone-burst thresholds in the three groups of animals. n: the
number of cochleae in each group.
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pentobarbital sodium (1ml/kg). Cochleae were quickly
removed from the skull as previously described [22]. For
proteomic and Western blot analyses, cochleae were rinsed
with 0.01M phosphate-buffered saline (PBS), frozen imme-
diately in liquid nitrogen for 10min, and stored at −80°C.
For immunohistological and pathological examinations,
cochleae were fixed with 4% paraformaldehyde at 4°C over-
night. Cochleae were then dissected in PBS, and the organ
of Corti and stria vascularis were collected.

2.6. Tissue Protein Extraction and Digestion. Briefly, tissues
were harvested and resuspended in 400μl lysis buffer (8M
urea 50mM NH4HCO3, protease inhibitors) and sonicated
on ice to extract total protein. The resulting extracts were
centrifuged at 10,000 rpm for 30min at 4°C. Supernatants
were collected, and protein concentration was measured
using a Bradford assay kit according to the manufacturer’s
instructions. Protein digestion was performed with the
following steps. 200μg proteins were transferred into ultra-
centrifugation tube and reduced by adding a final concentra-
tion of 10.0mM dithiothreitol for 60min at 37°C and then
were immediately alkylated by incubating with a final
concentration of 20mM iodoacetamide for 60min at room
temperature in the dark. 100μL 8M urea, 50mMNH4HCO3
were added into tube to clean the proteins in twice. 100μL
0.5M triethylammonium bicarbonate (TEAB) were added
into tube to exchange the buffer in triple times. Finally, the
proteins were digested into the peptides using a trypsin-to-
protein ratio of 1 : 50 overnight. The resulting peptides were
collected by centrifugation and stored at -80°C.

2.7. iTRAQ Labeling and Peptides Prefractionation by High
pH Reverse Phase Chromatography. Peptides (100μg) in
100mM TEAB from each group were labeled using an 8plex
iTRAQ reagents multiplex kit (ABI, Foster City, CA, USA),
of which isobaric tags 113 and 114 were for the control
group; 115, 116, and 117 were for 1 day postnoise exposure;
and 118, 119, and 121 were for 7 days postnoise exposure.
In brief, the 8plex iTRAQ reagents were first centrifuged at
room temperature and reconstituted with 50μl isopropyl
alcohol to dissolve the iTRAQ labeling reagent. iTRAQ
labeling reagents were added to the corresponding peptide
samples and were allowed to react at room temperature for
1 h. A total of 100μl of water was added to prevent the label-
ing reaction. One aliquot of each sample was analyzed by MS
for the test of labeling efficiency. A total of eight sample
groups were pooled and vacuum-dried. Each pool of mixed
peptides was lyophilized and dissolved in solution A (2% ace-
tonitrile, pH10, pH adjusted with ammonium hydroxide).
Samples were then loaded onto a reverse-phase column
(C18 5μm 4.6× 250mm, waters) and eluted using a step
linear elution program: 5%–35% buffer B at flow rate of
0.7ml/min (98% acetonitrile, without pH adjustment, solu-
tion B) for 30min, 35%–95% buffer B for 2min, 95% buffer
B for 5min, and 95%–5% buffer B for 2min. Samples were
collected every 1.5min. The collected fractions (about 40)
were finally combined into 10 pools and desalted on C18
Cartridges (Empore™ standard density SPE C18 Cartridges,
bed I.D. 7mm, 3ml volume; Sigma, St. Louis, MO, USA).

2.8. LC-Electrospray Ionization-MS/MS Analysis.We referred
to the method of Wang et al. [23]. NanoLC-MS/MS experi-
ments were performed with a Q-Exactive HF mass spectrom-
eter (Thermo Fisher Scientific, Waltham, MA, USA) coupled
with a nano-high-performance liquid chromatography (Ulti-
Mate 3000 LC Dionex; Thermo Fisher Scientific) system.
iTRAQ-labeling peptides were loaded onto a C18-reversed
phase column (3μm C18 resin, 0.1×20mm) and separated
on an analytical column (1.9μm C18 resin, 0.15×120mm;
Dr. Maisch GmbH, Ammerbuch, Germany) using mobile
phase A: 0.5% formic acid (FA)/H2O and B: 0.5% FA/ACN
at a flow rate of 600nl/min, using a 90min gradient. Spectra
were acquired in data-dependent mode. The 20most intensive
ions were selected for MS scanning (300–1400m/z, 120,000
resolution at m/z 400, accumulation of 3:0E6 ions for a max-
imum of 80ms, one microscan). The isolation window was
1.6m/z, and MS/MS spectra were measured at resolution of
15,000 at m/z 400. Dynamic precursor exclusion was allowed
for 60 s after each MS/MS spectrum measurement. Normal-
ized collision energy was 30%.

2.9. MS Data Analysis. Raw MS data were processed using
Proteome Discoverer 1.4 (ver. 1.4.0.288; Thermo Fisher
Scientific). Briefly, peptide identification was performed with
Sequest HT search engine against a Uniprot Human Complete
Proteome database supplemented with all frequently observed
MS contaminants. The following options were used to identify
the proteins: Peptidemass tolerance = ±15 ppm, MS/MS
tolerance = 0:2Da, enzyme = trypsin, missed cleavage = 2;
fixed modification: iTRAQ 8-plex (K) and iTRAQ 8-plex
(N-term), variable modification: oxidation (M), database
pattern = decoy. The peptide confidence was set to a high level
(q-value <0.01) for peptide filtering. Quantification experi-
mental bias was set as normalize on total peptide amount.
Up- or downregulated proteins with 1.2-fold changes were
selected as being differentially expressed.

2.10. Bioinformatics Analysis. Gene ontology (GO) enrich-
ment analysis (http://www.geneontology.org) of differentially
expressed proteins with 1.2-fold changes was performed to
classify molecular functions, cellular components, and biolog-
ical processes. Interactions among these proteins pertaining to
biological pathways were determined using Pathway Studio
software and the ResNet database (KEGG) to better under-
stand them in relation to the published literature. The
Pathway Maps tool was used to enrich the pathways, and P
values were calculated based on a hypergeometric distribution,
with the default database used as the background. Significant
pathway enrichment was defined as corrected FDR of P ≤
0:05, and proteins with ≥1.2-fold changes were considered dif-
ferentially abundant proteins.

2.11. Immunohistochemistry. Immunohistochemistry was
used to examine changes in expression of NF-κB (p65) and
Apolipoprotein (Apo) A1 in cochleae. Animals were
sacrificed on days 1 or 7 postnoise exposure. Cochleae were
fixed with 4% paraformaldehyde at 4°C overnight. After dis-
section in 0.01M PBS, the organ of Corti and stria vascularis
were collected. Tissues were then permeabilized with 0.25%
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Figure 2: Continued.
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Triton X-100 in PBS for 30min, blocked with 5% goat serum
in PBS for 30min, and incubated overnight at 4°C with
primary antibody at concentrations recommended by the
manufacturer. Tissues were then rinsed with PBS (three
times), incubated with secondary antibody at room tempera-
ture for 1 h, and counterstained with DAPI for 10min.

For the noise exposure groups, six cochleae each were
used for NF-κB (p65) (6956, Cell Signaling Technology,
Inc) and Apo A1 (Abcam, ab64308) staining. Cochleae from
six additional animals that were not subjected to noise expo-
sure were used as controls. Several sections of tissue from
cochleae were stained only with secondary antibodies to
assess nonspecific staining.

Fluorescence was visualized under a confocal microscope
(Zeiss LSM780 laser scanning confocal image system) as
previously described [24]. The numbers of different stained
hair cells were counted for further quantitative analysis as
previously described [25].

2.12. Detection of Intracellular Reactive Oxygen Species. The
increasing fluorescence intensity of 2′,7′-dichlorofluores-
cein (DCF) was used to measure the generation of intra-
cellular reactive oxygen species (ROS). The reagent 2′,7′

-dichlorodihydorofluorescein diacetate (DCFH-DA; Sigma-
Aldrich, USA) can enter the cell, where the diacetate group
is cleaved off by intracellular esterase. The resulting DCFH
is retained in the cytoplasm and oxidized to DCF by ROS.
The organ of Corti was dissected from the inner ears of
normal control animals and from animals on day 1 after
noise exposure and incubated in 200μl DCFH-DA working
solution (20mM) at 37°C for 30min. Hair cells were
observed under a confocal microscope (Zeiss LSM780 laser
scanning confocal image system). The fluorescence of DCF
was monitored at excitation and emission wavelengths of
485 nm and 530nm, respectively.

2.13. Western Blot. Tissues from pig cochleae were lysed with
RIPA. Western blotting was performed similarly to previous
studies [26]. Briefly, proteins separated by SDS-PAGE were
transferred to polyvinylidene fluoride membranes (Millipore,
Bedford, MA). Membranes were treated with anti-NF-κB
p65 (6956, Cell Signaling Technology, Inc) and Apo A1
(Abcam, ab64308) antibodies. Each antibody preparation
was diluted in 5% skim milk, and protein bands were visu-
alized using an ECL plus chemiluminescence detection sys-
tem (WBKLS0500, Millipore, USA) and photographed.
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Figure 2: Proteomic clustering reveals three distinct groups. (a) Principal component analysis (PCA) of the three groups: normal control
group (N), 1 day postnoise exposure group (NE1), and 7 days postnoise exposure group (NE7). (b) Correlation analysis between control
and noise exposure pig cochleae. (c) Volcano analysis showing upregulated (red) and downregulated (green) proteins from NE1 vs. Ctrl
(left), NE7 vs. Ctrl (middle), and NE1 vs. N7 (right). (d) Heat map analysis showing upregulated (red) and downregulated (green)
proteins from NE1 vs. Ctrl (left), NE7 vs. Ctrl (middle), and NE1 vs. NE7 (right).
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2.14. Statistical Analysis. Data are presented as mean ±
standard deviation. Average ABR thresholds and immunore-
activity and protein expression obtained before and 1 and 7
days after noise exposure were compared using one-way
ANOVA. If significant differences were observed from one-
way ANOVA, the Tukey test or Kruskal-Wallis test was per-
formed to delineate the nature of the differences using SPSS
version 19.0 (SPSS, Inc., Chicago, IL, USA). P ≤ 0:05 was
considered statistically significant. The ratio of number of
cells with nuclear malformations (fragmented or condensed)
to total number of cells was calculated.

3. Results

3.1. Noise Exposure Causes Loss in Cochlear Sensitivity. We
established a swine model of permanent hearing loss induced
by noise exposure. One-month-old pigs (5 kg) with normal
hearing ability (Figure 1(b) top panel) were exposed to
120 dB (A) white noise for 3 h on 2 consecutive days. ABR

measurements to monitor acute hearing loss and hearing
recovery were performed on days 1 and 7 after noise expo-
sure (Figure 1(a)). Noise exposure caused loss in cochlear
sensitivity. All experimental animals underwent ABR-click
to test baseline hearing level before noise treatment. ABR-
click and tone burst were performed in three groups of
animals (prenoise exposure and days 1 and 7 after noise
exposure). The different ABR-click waveforms in the three
groups are shown in Figure 1(b). There were 10 pigs
(n = 20 ears) in the control group, 10 pigs (n = 20 ears) in
the 1 day postnoise exposure group, and 5 pigs (n = 10 ears)
in the 7 days postnoise exposure group. The average ABR-
click threshold was 39:4 ± 2:6 dB SPL in prenoise exposure
animals, 67:1 ± 4:1 dB SPL in 1 day postnoise exposure ani-
mals, and 50:8 ± 4:7 dB SPL in the 7 days postnoise exposure
group (Figure 1(c)). Hearing loss was most severe at 4 kHz,
and hearing loss at high frequency was more severe than at
low frequency, which was consistent with human hearing
performance in acute NIHL [15]. Average hearing threshold

(c)

Figure 3: Activation of metabolic (red frame) and immune (blue frame) pathways in pig cochleae were prominent during the acute response
to noise exposure. GO (a) and KEGG (b) analyses show that metabolic (red frame) and immune (blue frame) function were prominently
enriched among proteins that changed in levels between control (Ctrl) and day 1 after noise exposure (NE1) pig inner ears. (c) The NF-κB
(p65) signaling pathway was primarily activated at day 1 after noise exposure (NE1) in pig inner ears.
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could be recovered to 14 ± 4:9 dB SPL higher than the normal
level after 7 days from noise exposure, and hearing loss
recovery from 4kHz and higher frequencies was worse com-
pared with the low frequency (Figure 1(d)).

3.2. Comparative Proteomic Analysis of Cochleae Prenoise
Exposure and during the Acute and Recovery Stages Postnoise
Exposure. Proteomic data were collected from miniature pigs
of the control (n = 2), 1 day postnoise exposure (n = 3), and
7 days postnoise exposure groups (n = 3). Principal compo-
nent analysis showed good distribution between the three
groups (Ctrl, NE1, and NE7) (Figure 2(a)). Correlation anal-
yses of samples from the same groups were over 98%
(Figure 2(b)), indicating samples from the same groups had
high similarity. Changes in protein expression induced by
noise exposure are shown in a volcano plot and heat map
analysis in Figures 2(c) and 2(d). 68 proteins were downreg-
ulated (green) and 7 proteins were upregulated (red) between
the 1 day postnoise exposure and control groups. Between
the 7 days postnoise exposure and control groups, 125 pro-
teins were downregulated (green) and 26 proteins were upreg-
ulated (red). Between the 1 day postnoise exposure and 7 days
postnoise exposure groups, 73 proteins were upregulated (red)
and 88 proteins were downregulated (green).

3.3. Immune and Oxidative Stress Are Triggered during the
Acute Acoustic Injury Period. To identify physiological
changes in pig cochleae during the acute period following
noise exposure, we compared dysregulated proteins between
the NE1 and Ctrl groups. GO analysis (Figure 3(a)) showed
that oxidative stress (red frame) and immune response (blue
frame) were the two groups primarily annotated in response
to noise-induced cochlear damage. Consistent observations
were made following analysis of enriched proteins in KEGG
analysis (Figures 3(b) and 3(c)). Moreover, we found that
p65, part of the NF-κB transcription factor family, was
increased following noise exposure and contributed to induc-
ing the acute period of cochlear damage (Figure 3(c)).

3.4. Accumulation of ROS and Activation of NF-κB Signaling
in Pig Hair Cells during the Acute Acoustic Injury Period. Pro-
tein expression of NF-κB (p65) was examined by Western

blot. Noise exposure significantly increased p65 on 1 day after
noise exposure, which gradually recovered by 7 days after
noise exposure (Figures 4(a)–4(c)). The subcellular location
of p65 in cochleae was examined using immunofluorescence.
Nuclear translocation of NF-κB (p65) was detected in outer
hair cells after noise exposure (Figure 4(d)). Moreover, IL-6
and TNF-α were detected by Western blot and showing they
are upregulated in NE-1 and partly decreased in NE-7
(Figures 5(a)–5(c)). The initiation of downstream inflamma-
tory factors may be because of a significant accumulation of
ROS in the hair cells on the 1st day after the noise treated
(Figure 4(e)).

3.5. Cholesterol Metabolism Pathways Are Involved in
Recovery from NIHL. To evaluate protein expression during
the recovery stage of NIHL, we analyzed dysregulated proteins
between the NE7 and Ctrl groups. Both GO (Figure 6(a)) and
KEGG (Figure 6(b)) analyses showed that the PPAR and
insulin pathways (green frames), involved in cholesterol
metabolism, were involved during this stage. We also found
that Apo AI was increased in NE7 cochleae (Figures 6(c)
and 7) and may contribute to hearing recovery. Additionally,
other proteins involved in inflammation were increased (blue
frames). Through comparing NE7 with NE1 group, we found
that some of these differential proteins were enriched in the
negative regulation of humoral immune response (blue
frame) (Figure 8), which suggested negative immune regula-
tion pathways were involved in the hearing recovery stage.
These results demonstrate that gene expression differed
between stages after noise exposure. During the acute stage,
inflammatory and oxidative stress-related pathways were
involved in mediating cochlear damage, while during the
recovery stage, inner ear damage induced by inflammation
was resolved gradually via cholesterol metabolic pathways.

To determine whether our results were similar to those
from prior studies in rodent models, we analyzed these
studies and appropriate databases and found that the Apo
A and Apo E genes were previously shown to be expressed
in adult mice by inner and outer hair cells (Table 1). How-
ever, no genes were commonly increased between mouse
and rat transcriptomics (Figure 9(a)). Apo E was unique in
that it was upregulated in both mouse cochlear sensory
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Figure 5: IL-6 and TNF-α were upregulated in the NE1 compared with the control group, and downregulated in the NE7, as determined by
Western blot (a). Statistical analysis using Image Gallery software (b, c) based on (a). Asterisk indicates a significant difference (∗p < 0:05,
∗∗p < 0:01, one-way ANOVA, Tukey test).
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epithelium and pig cochleae (Figure 9(b)). These observa-
tions demonstrate differences in gene regulation between
pigs and rodents, although the cholesterol metabolic pathway
may represent a common pathway involved during the hear-
ing recovery stage of NIHL in different animal models.

4. Discussion

In the present study, proteomic analysis showed that activa-
tion of metabolic and innate immune signaling pathways
may be involved in noise-related acute hearing loss. We also
detected accumulation of ROS and nuclear translocation of
NF-κB (p65) by immunofluorescence which was consistent
with previous studies demonstrating that the inner ear
produces a large number of free radicals, including ROS
and reactive nitrogen species following potent noise stimula-
tion [27]. Endogenous antioxidant enzymes were insufficient

to remove excessive free radicals, which resulted in lipid
peroxidation and damage to the structure of DNA, proteins,
and mitochondria [28, 29]. Many recent studies also showed
that the inner ear has strong immune ability. Cumulative
evidence has indicated that NF-κB is a key transcription fac-
tor driving inflammation and that TNF-α, ROS, and NF-κB
are inextricably tied together in inflammation and immunity
of noise-induced hearing loss [30]. ROS interacts with NF-
κB signaling pathways in many ways. However, it is not
yet understood how accumulation of ROS activates NF-κB
in the cochlea, but it is assumed that ROS influence the
activation of NF-κB pathway mainly by inhibiting the phos-
phorylation of IκBα [30, 31]. Moreover, some of NF-κB
downstream inflammatory factors, including IL-6 and
TNF-α, were also detected by Western blot and showed that
they are upregulated in NE1 and partly decreased in NE7
(Figures 5(a)–5(c)), which is consistent with the changes of

(c)

Figure 6: Activation of cholesterol transport pathways in pig cochleae was prominent during the recovery stage after noise exposure. GO (a)
and KEGG (b) analyses show cholesterol transport (green frame) function was prominently enriched among proteins that changed in levels
between control (Ctrl) and day 7 after noise exposure (NE7) pig inner ears. (c) Cholesterol metabolism signaling pathways were primarily
activated in day 7 after noise exposure (NE7) pig inner ears.
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the NF-κB (p65) (Figures 4(a) and 4(b)). A report analyzing
cochlear sensory epithelium using RNA sequencing showed
that most upregulated genes were related to immunity,
inflammation, and defense response after noise exposure
[32], indicating that the immune/inflammatory response is
an important mechanism in NIHL and the primary reaction
of the cochlea to noise stimulation.

We also found that proteins involved in cholesterol
metabolism, Apo E and Apo AI, were increased 7 days after
noise exposure. Epidemiological evidence indicated that high
levels of apoA-1/apoA-2 and Apo-E are associated with pro-
tection against atherosclerotic disease and negative regula-
tion of cytokine secretion involved in immune responses.
However, the mechanisms involved in these beneficial effects
are not well established [33]. A recent study showed that Apo

E gene variants may have been associated with sudden senso-
rineural hearing loss in an Iranian population [34]. These
studies indicate that cholesterol metabolism may be impor-
tant in hearing loss recovery after noise exposure. Moreover,
as shown in Table 1, the Apo-E, Apo-AI, and Apo-AII genes
were expressed in adult mouse cochlear inner and outer hair
cells, indicating that these genes have related biological func-
tions in the inner ear. Notably, the involvement of Apo AI
and Apo A II in NIHL has seldom been reported.

RNA transcriptomic analysis has been wildly used in the
hearing research fields to identify the differentially expressed
genes [35–41]. Compared with previous studies that ana-
lyzed RNA transcriptomics, differential genes related to
NIHL involve inflammation mediated by chemokines, cyto-
kine pathways of the stress response, and immune pathways
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Figure 7: Apo A1 was upregulated in the NE7 group compared with the normal control and NE1 groups, as determined by Western blot (a).
Statistical analysis using Image Gallery software (b) based on (a). Asterisk indicates a significant difference (∗∗p < 0:01, ∗p < 0:05, one-way
ANOVA, Tukey test). (c) Cholesterol metabolic pathways may play an important role in recovery from hearing loss after noise exposure.
Immunofluorescence image shows that fluorescence intensity of Apo A1 in hair cells increased at 7 days after noise exposure. Statistical
analysis of fluorescence intensity using Image J software (d) based on (c). Asterisk indicates a significant difference (∗∗p < 0:01, one-way
ANOVA, Tukey test).
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enriched by KEGG [32, 42]. These observations are consis-
tent with this study. However, compared with the present
study, only a small number of common differentially
expressed genes were found in previous molecular profile
studies of acoustic trauma in rodent cochleae. Apo-E was a
common gene included in both subsets in this study (NE7
vs. Ctrl and NE7 vs. NE1) and in mouse normal cochlear
sensory epithelium. However, no genes were found to be
commonly expressed in all three species (rats, mice, and
pigs) (Figure 9(a)) [33]. Possible explanations are as follows:
(1) the noise processing conditions used in this study were
different from previous studies; (2) pigs are large animals
and may differ significantly from rodents in gene expression
patterns; and (3) previous studies used RNA-seq transcripto-

mics, while proteomic analysis (iTRAQ) was used here. Pre-
vious studies showed that the consensus between differential
gene expression analyzed by transcriptomics and proteo-
mics under the same experimental conditions was less than
30% [43]. Therefore, it is possible that the results of proteo-
mics analysis obtained herein will not overlap with differen-
tial genes from transcriptomics screenings of previous
related studies of noise exposure in rodents. This indirectly
reflected the necessity and advantages of using large animals
and proteomics technology to study the mechanisms of
auditory diseases. Large animals are more closely related
to humans in terms of gene homology and regulation. In
addition, proteins are the ultimate effector molecules for
mediating biological processes. Therefore, analysis of disease
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Table 1: Expression of ApoA and ApoE genes in adult mice assessed by inner (IHC) and outer Hair cells (OHC).

Probeset ID IHC (mean ± sd) OHC (mean ± sd) [OHC replicate] Fold change (OHC/IHC) False discovery rate (FDR)

ApoE 17487381 54:65 ± 1:55 43:14 ± 11:82 [65.40] 0.79 0.504

ApoA1 17516901 13:98 ± 0:00 16:00 ± 2:11 [12.85] 1.14 0.536

ApoA2 17219242 10:89 ± 0:00 11:15 ± 0:19 [10.89] 1.02 0.501
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mechanisms using proteomics combined with large animal
models may be promising for future studies.

We showed that cholesterol metabolic pathways are
involved in recovery from NIHL. In the inner ear of pigs
exposed to noise, both Apo E and Apo AI protein were
increased at day 7 and were accompanied with simultaneous
30 dB threshold recovery. Through the previous studies, it
has been confirmed that Apo A-I and Apo E were down-
regulated by NF-κB activation, while Apo A-I and Apo E
expression suppressed NF-κB-mediated inflammation [44].
Apo A-I, as well as Apo E, has been shown to regulate lipid
metabolism and inflammation [45–47], and Apo A-I and
Apo E exert anti-inflammatory properties that protect
against atherosclerosis and other inflammatory diseases
[45]. In addition, the absence of them increased inflamma-
tion and oxidative stress through activation of NF-κB [47,
48]. In our study, significantly increased NF-κB (p65) were
observed in day 1 after noise exposure (Figures 4(a) and
4(b), NE1 vs. Ctrl) and dramatically downregulated in day
7 (Figures 4(a) and 4(b), NE1 vs. NE7), although not yet fully
restored to normal levels (Figures 4(a) and 4(b), NE7 vs.
Ctrl). It indicated that NF-κB was activated in acute stage
after noise exposure (day 1) but gradually recovered in day
7 (Figures 4(a)–4(c)). In addition, Apo A-I was increased in
NE7 but not in NE1 cochleae. We speculated that although
NF-κB (p65) protein expression are still higher in NE7 com-
pared with that in Ctrl, in fact, the NF-κB-mediated inflam-
mation has been gradually suppressed by ApoA-I. This
suggests Apo E and Apo A-I are hearing protective factors
involved in alleviating oxidative stress and inflammation
induced during the acute phase of noise-mediated hearing
impairment (day 1 after noise exposure). More notable was
that the involvement of Apo AI in NIHL has not been
reported previously. However, the specific mechanism still
requires further investigation.

In conclusion, this study further verified that inflamma-
tion and oxidative stress are the main causes of noise-
related deafness. Induction of cholesterol metabolic path-
ways may represent an important mechanism for alleviat-
ing noise-induced inner ear impairment. We propose that
antioxidation and anti-inflammatory therapy may be effec-
tive treatment options for clinical NIHL. However, the find-
ings in this study represent a small part of the very complex
mechanism underlying NIHL, involving multiple molecular
networks. Therefore, there remains much to be learned.
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