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In the context of kidney injury, the role of Bregs is gaining interest. In a number of
autoimmune diseases, the number and/or the function of Bregs has been shown to be
impaired or downregulated, therefore restoring their balance might be a potential
therapeutic tool. Moreover, in the context of kidney transplantation their upregulation
has been linked to tolerance. However, a specific marker or set of markers that define
Bregs as a unique cell subset has not been found and otherwise multiple phenotypes of
Bregs have been studied. A quest on the proper markers and induction mechanisms is
now the goal of many researchers. Here we summarize the most recent evidence on the
role of Bregs in kidney disease by describing the relevance of in vitro and in vivo Bregs
induction as well as the potential use of Bregs as cell therapy agents in kidney
transplantation.
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INTRODUCTION

B cells are traditionally described to show a primarily effector phenotype: antibody-producing cells
with the capacity to present antigen and stimulate T cells through cytokine production (Janeway
et al., 1987; Ochsenbein et al., 1999; Harris et al., 2000). However, nowadays it is widely accepted the
existence of B cell subsets with regulatory phenotypes (Bregs) involved in suppressing the immune
response, inducing tolerance and maintaining homeostasis (Wang et al., 2020). Immunomodulatory
functions of Bregs could be mediated by the action of soluble molecules such as IL-10, IL-35, TGF-β
or Granzyme B or by cell contact-dependent apoptosis-inducing mechanisms such as PD-L1, FasL or
TIGIT (Flores-Borja et al., 2013; Tang et al., 2016; Cai et al., 2019; Chesneau et al., 2020).

Despite essential roles in modulating several diseases, Bregs so far are not known to have a unique
or exclusive marker that defines them as a population, but they constitute a heterogeneous cell
population that possess a regulatory phenotype and can be found at different stages of B-cell
development as reviewed in (Rosser and Mauri, 2015; Oleinika et al., 2019; Long et al., 2021).
However, several markers have been proposed as enriched or identifiers of Breg populations. Breg are
commonly identified by their expression of IL-10, with transitional phenotypes,
CD19+CD24HiCD38Hi, as the most abundant phenotype in peripheral blood. Nevertheless, since
the initial description of IL-10 + Breg, other populations such as plasmablast (CD19+CD27HiCD38+),
regulatory B1 cells (CD19+CD25+CD71+CD73+) and memory IL-10+ B cells
(CD19+CD24HiCD27+IL-10+) have been described as Breg subsets, and different effector
molecules have been linked to regulatory B cells identification and function, such as Tim-1,
CD5, CD1d, CD25, GMZB, FasL, CD71, etc. as summarized in Table 1.

The classic conception of the role of B cells in the field of transplantation was called into question
in the last decade, following the publication of two simultaneous studies in 2010, highlighting the
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relevance of B cells in the development of tolerance in renal
transplantation. Both studies involved transplant recipients who
had developed spontaneous tolerance and stable patients
receiving immunosuppressive therapy. The results obtained in
“spontaneously tolerant” patients showed the presence of a higher
percentage of B cells in peripheral blood, especially naïve and
transitional B cells. At the same time, a higher expression of genes
involved in B-cell development was also detected in these tolerant
patients compared to stable patients on immunosuppressive
therapy (Newell et al., 2010; Sagoo et al., 2010).

Since the emergence of these breakthrough results in 2010, the
effect of Breg on the development of tolerance has been described
several times as reviewed in (Peng et al., 2018; Cherukuri et al., 2021;
Long et al., 2021).

The putative tolerance-inducing power of Bregs makes them an
interesting target for the development of therapies to combat
transplanted kidney rejection. Among the possible treatment

strategies that could be considered, two main groups can be
distinguished: those aimed at boosting the natural population of
Bregs in the donor and, alternatively, therapy based on the transfer
of previously expanded or modified Breg in vitro. Here we summarize
themost recent evidence on the role of Bregs in kidney transplantation
by describing the relevance of in vitro and in vivo induced Breg (iBreg)
as well as the potential use of Bregs as cell therapy agents.

IN VIVO BREGS INDUCTION

Several therapeutic strategies have been proposed or found to induce
Breg in vitro and in vivo in human patients, both in preclinical and
clinical trials, despite the aforementioned difficulty of accurately
identify Breg. In the following section we discuss the different drugs
and therapies involved in Breg induction in vivo.

TABLE 1 | Breg Human Cellular markers and Effector molecules.

Human regulatory B cell markers

Breg subsets and
molecules

Markers Reference

Transitional or Immature
B10 cells

CD19+CD24HiCD38HiIL-10+ Blair et al. (2010); Zhang et al. (2012); Flores-Borja et al. (2013); Khoder et al. (2014);
Liu et al. (2016)

CD1dHi B10 B cells CD19+CD1dHiCD5+IL-10+ Yanaba et al. (2008); Bankoti et al. (2012); Zhang et al. (2012); van der Vlugt et al.
(2014); Khan et al. (2015a)

Memory B10 Cells CD19+CD24HiCD27+IL-10+ Iwata et al. (2011); Salomon et al. (2017); Hasan et al. (2019)
Br1 Cells CD19+CD25+CD71+CD73low Kubo et al. (2012); Kim et al. (2016)
Plasmablasts CD19+CD27HiCD38+ Matsumoto et al. (2014); Shen et al. (2014)
TIM-1+ B cells CD19+ TIM-1+(TIM-1+ B cells present in different B cell

subsets)
Ding et al. (2011); Xiao et al. (2012); Aravena et al. (2017); Cherukuri et al. (2021)

GMZB+ B cells CD19+GMZB+(GMZB+ B cells present in different
B cell subsets)

Hagn and Jahrsdörfer (2012); Hagn et al. (2012); Lindner et al. (2013); Chesneau et al.
(2015); Durand et al. (2015); Zhu et al. (2017)

CD9+ B cells CD19+ CD9+(CD9+ B cells present in different B cell
subsets)

Sun et al. (2015); Brosseau et al. (2018a), Brosseau et al. (2018b); Mohd Jaya et al.
(2021)

Circulating B cells CD19+CD25Hi Kessel et al. (2012)
CD27HiCD1dHiCD86Hi

TIGIT+ memory B cells CD24Hi CD27+ Hasan et al. (2021)
CD39Hi IgD−IgM+CD1c+ TIGIT+

Human Regulatory B Cell Effector Molecules

Breg subsets and
molecules

Key Features Reference

IL-10 Induce Treg, maintain NKT homeostasis, supress effector T cells Yanaba et al. (2009); Mauri and Bosma (2012); Lykken et al. (2015);
Lighaam et al. (2018)Modulates plasmacytoid dendritic cells and macrophage and function

CD9 and Tim-1 are strongly associated to IL-10 production
IL-35 Promotes IL-35 and Il-10 production by Treg and Breg Shen et al. (2014); Wang et al. (2014); Choi and Egwuagu (2021)

Inhibits pathogenic Th1 and Th17 responses
PD-L1 Inhibits T cell activation and differentiation by binding PD-1 Khan et al. (2015b); Wang et al. (2019)
FASL Induces T cell apoptosis by binding FAS Lundy and Boros (2002); Lundy and Fox (2009); Tang et al. (2016);

Wang et al. (2017)
TGF-β Enhances Treg and Breg induction Natarajan et al. (2012); Lee et al. (2014)

Inhibits Th1 differentiation by inhibiting STAT4
GZMB Induces T cell apoptosis and strongly suppress T cell proliferation by

degradation of the T-cell receptor ζ-chain
Hagn and Jahrsdörfer (2012); Hagn et al. (2012); Lindner et al. (2013);
Durand et al. (2015); Zhu et al. (2017); Chesneau et al. (2020)

Present in several B cell subsets, in peripheral, most commonly found in
plasmablasts

CD73 Supresses effector T cell function by producing adenosine. CD73
catalyses the dephosphorylation of adenine to adenosine

Saze et al. (2013); Kaku et al. (2014)

IDO Promotes Treg and Breg differentiation Nouël et al. (2015)

Breg: Regulatory B cell, Br1: Type 1 Regulatory B cell, B10: IL-10-producing regulatory B cells, GZMB: Granzyme B, IDO: indoleamine 2,3-dioxygenase.
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Pharmacological Interventions
The use of immunosuppressive regimes combining different
drugs has become a staple of clinical transplantation. For the
most part, classical immunosuppressive interventions have little
to no effect over B cells, and they have shown not to be active
inductors of Breg cells with few exceptions.

Starting from classical immunosuppressive regimes,
corticosteroids and calcineurin inhibitors (CNI) mildly reduce
the number of total naïve and transitional B cells in renal
transplant patients, with the exception of tacrolimus having no
effect on B cell subsets (Latorre et al., 2016; Rebollo-Mesa et al.,
2016; Tebbe et al., 2016; Bottomley et al., 2017).

In patients with IgA vasculitis that had impaired Breg
function, the treatment with glucocorticoid prednisolone,
promoted an increase in CD5+CD1d+, CD5+CD1d+ IL-10+,
and IL-10+ B cell subsets, accompanied by an increase in the
serum IL-10 concentration (Hu et al., 2016). However, in Lupus
Nephritis patients, same treatment with prednisolone correlated
with lower percentages of IL10+ B cells (Heinemann et al., 2016).

While low to medium doses of mycophenolate mofetil
increase Breg subsets, high doses of mycophenolate reduce
both B cell IL-10 and CD80/86 expression on B cells in kidney
transplant patients. (Matz et al., 2012; Joly et al., 2014; Rebollo-
Mesa et al., 2016; Bottomley et al., 2017).

The effect of mTOR inhibitors over Breg subsets has not been
clearly stablished. In kidney transplanted patients sirolimus
reduced Transitional B cell populations, while in another
report in liver transplant patients, it was described to induce
Breg when patients were converted to sirolimus from a tacrolimus
based regime (Latorre et al., 2016; Song et al., 2020).

Also the effect of the 6-mercaptopurine analog, Azathioprine,
on Bregs has been studied, and it’s know to reduce total, naïve and
transitional B cells (Rebollo-Mesa et al., 2016; Bottomley et al.,
2017).

The B cell depleting agent rituximab induces rapid depletion
of CD20+ B cells after administration in a dose-dependent
manner, lasting as long as 6 months, followed by a slow
recovery (Bergantini et al., 2020). Breg frequencies decrease
after administration of the drug, while long term effect of
rituximab seems to indirectly stimulate bone marrow to
produce transitional B cells when B cells are depleted, coupled
with a substantial reduction in CD27+ B (memory) cells at long-
term follow-up (Moller et al., 2009; Rehnberg et al., 2009).

The costimulation blocker Belatacept has shown promising
results in kidney transplanted patients regarding Breg induction.
Belatacept increases IL-10 expression and transitional
populations, while reducing plasmablast differentiation (Leibler
et al., 2014; Xu et al., 2020).

Finally, common induction therapies, such as basiliximab
(chimeric anti-CD25) and Thymoglobulin (anti-thymocyte
globulin) show no effect over transitional B cells (Longshan
et al., 2014; Alfaro et al., 2021) while CAMPATH-1H (anti-
CD52) increased transitional B cells and reduced memory B cells
(Thompson et al., 2010; Heidt et al., 2012; Cherukuri et al., 2021).

Other immunomodulatory drugs have been described to
induce Breg, such as tocilizumab (anti-IL-6) (Assier et al.,
2010; Snir et al., 2011), Fingolimod (sphingosine-1-phosphate

receptors modulator) (Grützke et al., 2015) and Laquinimod
(quinolone-3-carboxiamide) (Toubi et al., 2012).

Cell and Extracellular Vesicles Therapies
Cell therapies earned a lot of interest as a new approach to induce
immunosuppression and tolerance, with an increased presence in
clinical trials during the last decade.

Mesenchymal stromal/stem cells (MSC) therapy has been at
the forefront of cell therapies in the field of transplantation due to
their immunomodulatory and regenerative properties (Pittenger
et al., 2019). MSC interact with several cell types, including B cells,
inducing regulatory B cells while abrogating plasmablast
induction, B cell terminal differentiation and inhibiting
antibody production (Comoli et al., 2007; Asari et al., 2009;
Guo et al., 2013; Franquesa et al., 2015; Gupte et al., 2017;
Perico et al., 2018; Chen et al., 2019, 23). The effect and
mechanisms of MSC immunomodulatory action on Bregs has
been extensively reviewed (Liu et al., 2020).

A promising alternative to MSC cell therapies are
extracellular vesicles (MSC-EVs), reviewed in (Gomzikova
et al., 2019; Gowen et al., 2020). EVs emulate parental cell
properties, MSC-EVs stimulate tissue regeneration and
immune modulation and have been proposed to tackle
many diseases including kidney diseases and kidney graft
rejection. MSC-EVs have been described in vitro to be
mediators of Breg induction in a dose dependent manner
(Budoni et al., 2013). However, MSC-EV involvement in Breg
induction is a complex topic as the EV isolation method used
might produce opposite effects as we previously described
(Carreras-Planella et al., 2019). Highly purified MSC-EV
displayed reduced immunomodulatory capabilities on
B cells compared to MSC soluble protein enriched fractions.

In addition to MSC, other cell therapies have been tested and
described to induce Breg. Regulatory T cells (Treg) therapy using
autologous T cells in kidney transplant patients has been
associated with a long-lasting dose-dependent increase of
marginal B zone B cells, which are associated with IL-10
production and regulation (Harden et al., 2021). In a different
study in a mouse model, CAR-Treg specific to the B cell marker
CD19 (Imura et al., 2020) suppressed IgG antibody production
and differentiation of B cells in a TGF-β–dependent manner.
Regulatory T and B cells work in harmony to stablish
homeostasis, and both promote each other induction and
expansion as seen in different mouse models (Lee et al., 2014;
Wang et al., 2015; Chien and Chiang, 2017) via IL-10 and TGF-β.

Tolerogenic Dendritic cells (tolDC) are essential for the
induction of Breg in humans and their administration has
been described to induce Breg (Boldison et al., 2020). No
clinical trials have been performed in kidney transplant
patients, but in a phase one safety study in diabetic patients,
tolDC increased the frequency of regulatory B cells
(Giannoukakis et al., 2011).

Indirect Intervention: TheRole ofMicrobiota
Previous methods described to induce Bregs focus on tackling the
specific either cellular or molecular pathways involved in the
maintenance or induction of Breg, but a different approach with
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growing interest during recent years is to promote balanced
stress-free metabolic and immune balance.

In this context, an alternative approach to promote graft
tolerance and improve patients’ quality of life, most likely in
combination with previous drug interventions and/or cell
therapies, would be focus on metabolic interventions by
modulation of gut microbiota or other metabolic pathways.

Gut microbiota and dysbiosis are linked to adverse events,
reduced quality of life, and an increase of graft rejection in kidney
transplanted patients (Lee et al., 2019; Swarte et al., 2020; Pacaud
et al., 2021). Gut microbiota interacts with the immune system
generating a balance of inflammatory and regulatory responses
that maintain the homeostasis with metabolic and immune
system effects outside the gut, including the generation of
Bregs. B cells have the capability to recognize different
bacterial and viral elements by the BCR and TLRs (Gallego-
Valle et al., 2018; Mu et al., 2020; Pacaud et al., 2021) and also
cytokines and metabolites derived from these microbes, such as
short chain fatty acids (SCFAs) (Rosser et al., 2020; Daïen et al.,
2021; Pacaud et al., 2021; Zou et al., 2021) expanding Breg
subsets. Recent studies have elucidated the role of the SCFA
pentanoate in the modulation of mTOR activity, leading to a
significant boost of IL-10 production by LPS or CpG stimulated
Breg, and a substantial reduction of B cell apoptosis, in addition to
reducing expression of IL-17A in effector T cells by inhibiting
HDAC (histone deacetylase) activity via epigenetic modulation
(Luu et al., 2019). In a different study, direct inhibition of HDAC
by Entinostat, an HDAC inhibitor, increased IL-10 production by
LPS-stimulated B cells. Entinostat activity prevented HDAC
binding to the proximal region of the IL-10 expression
promoter, increasing binding of NF-κB p65, and enhancing
IL-10 expression (Min et al., 2021).

IBREG CELL THERAPY: IS IT FEASIBLE

Cell therapy is not a new concept anymore and protocols and
clinical trials are being set up to promote tolerance in
autoimmune diseases and transplantation in the absence or in
a minimized immunosuppressive regime. MSC therapy has taken
the lead in this area with several clinical trials already published.
In parallel, regulatory immune cell types such as Tregs or tolDCs
are the main not-modified immune cell types being studied and
used for cell therapy in immune mediated diseases and
regenerative approaches. Therefore, the idea of a cell therapy
product involving Bregs might sound promising although, to this
moment, there are no trials on the use of Breg as a cell therapy.
The incomplete knowledge on Breg induction and or expansion,
stability, and functional potential and the lack of a consensus Breg
signature are just some of the hurdles to be bypassed to generate a
safe and efficient cell product. Moreover, we might be dealing
with different subsets of Breg depending on the induction cocktail
and system used that might present different stability and
functionality. We are going in depth on it in the next In Vitro
Breg induction (iBregs).

Another matter of concern is the antigen specificity of Breg.
Recent studies provide evidence for an essential role of antigen

recognition by B cells to generate allograft tolerance in murine
models (Kimura et al., 2020; Mohib et al., 2020) and in this line,
the critical role of BCR and CD40 expression for Breg
development and in transplant models is proven. On the other
hand, TGF-β seems to mediate a prominent role in allograft
survival (Kimura et al., 2020) while IL-10 essentiality in
mediating Breg tolerogenic action is questioned. Insight in the
role of Breg antigen specificity may bring the development of
chimeric antigen receptor (CAR)-lymphocyte generation to
produce cellular therapies with targeted Bregs.

Bregs have also been shown to represent a significant source of
serum IgM and IgG during adoptive transfer experiments, and
produce antigen-specific, polyreactive and autoreactive antibody
specificities (Lo-Man, 2011). However, their role in solid organ
transplantation still needs to be defined and new technical
advances in nanosciences might bring new opportunities into
that area.

The effect that donor or recipient-derived Breg could have in
modulating the immune reaction remains unknown if we
envision a therapy with autologous or allogeneic Breg in
autoimmune diseases or organ transplantation. And as in
every cell therapy donor origin (autologous or allogeneic)
needs to be carefully considered. The age of the patient
appears to be a relevant factor in the capacity of Bregs to
produce IL-10 since it is impaired in CD38HiCD24Hi B cells
from old individuals (Duggal et al., 2013). Also, autoimmune
diseases have been related to disfunctional Bregs where patient’s
Breg numbers are normal but they lack the immunomodulatory
properties related to this cell “subset” and furthermore, Bregs
isolated from patients who had suffered renal graft rejection lost
their inhibitory capacity (Nouël et al., 2014). This might be a
major problem if we think of autologous cell treatment. There are
other mechanistic issues that would have to be addressed such as
the time needed to produce enough Breg, infusion timing and
dosage, route of administration, and GMP compliance.

In Vitro Breg Induction (iBregs)
The implementation of a reliable and reproducible method of
in vitro Breg induction and expansion from human B cells is
highly required for the development of Breg-based cell therapies.
The application of a standardized in vitro induction method
which generates a well-characterized subset of induced
Bregs could compensate for the absence of a human Breg
biomarker.

Traditional mechanisms of iBregs induction are mostly based
on the stimulation of Toll-like receptors 4 and 9 (TLR4 and
TLR9) by bacterial-derived LPS and CpG molecules and the
ligation of B-cell antigen receptor (BCR) and CD40 to agonist
molecules. In this sense, signaling pathways triggered by TLRs
and CD40 accompanied by BCR stimulation might lead to IL-10
production, a conventionally used cytokine for the assessment of
in vitro Breg induction, via activation of transcription factors
such as STAT3 (Baba et al., 2015). However, there is also evidence
of B cell activation towards effector and/or memory phenotypes
when using such strong stimulation methods, and therefore
inflammatory cytokines should also be carefully monitored in
these induction systems (Lighaam et al., 2018).
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Besides IL-10, several groups have described other molecules
as key mediators of iBreg regulatory potential. Several “non-
classic” Breg markers have been explored, such as the Granzyme
B (GZMB) molecule. Currently, the population of GZMB-
expressing B cells is represented as a particular subset of
Bregs. In addition, a reproducible protocol for the in vitro
expansion of this cell subset is already reported in the
literature (Chesneau et al., 2020).

As we mentioned in Indirect Intervention: The Role of
Microbiota, the use of SCFAs is being developed in an attempt
to mimic the gut microbiota action. This method would be
considered an additional novel form of in vitro Breg induction
as an alternative to boosting the patient’s natural gut microbiota.

Leaving aside the traditional methods and the use of bacterial
compounds, our group described the co-culture of tonsil derived-
B cells and MSCs from subcutaneous fat as a method of inducing
the development of Bregs (Franquesa et al., 2015; Luk et al., 2017).

Common to all the aforementioned methodology, it would be
necessary to establish a protocol for the generation of iBregs with
a stable phenotype over time. In this regard, the Breg marker CD9
has already been shown to be highly modulated (Mohd Jaya et al.,
2021). Therefore, phenotypic and functional stability is a
challenge considering the transient nature of some of the Breg
phenotypes described (Table 1).

DISCUSSION

In this mini-review we aimed to summarize the most relevant and
recent evidence on the role of Bregs in kidney disease by
discussing the relevance of in vitro and in vivo Breg induction
as well as the potential use of Bregs as cell therapy agents

(Figure 1). Bregs have been described as major drivers of
tolerance in kidney transplantation and in autoimmune
diseases. Their upregulated expression has been related to
spontaneous tolerant kidney transplant patients, while
impaired function and low numbers of Bregs have been
associated to several autoimmune diseases.

Breg homeostasis appears to be a cornerstone for immune
regulation and tolerance, so several tactics are being approached
to reestablish the equilibrium lost in several pathological
situations.

One approach is to boost natural Breg populations in patients.
Regardless of the limited knowledge of markers, there is already a
description of the effect of every immunosuppressant used in
kidney transplantation and other anti-inflammatory drugs on
Breg populations, allowing for a possible optimization of Breg-
induced tolerance. In this line, some immunosuppressants such
as Belatacept or Campath, have shown to boost Breg in kidney
transplant patients.

Such Breg boosting therapies could be coadjuvant of cellular
therapies with MSC or Tregs which have shown capacity to
induce Bregs in kidney transplant patients. TolDC have shown
similar results in diabetic patients, but have not been tested in
clinical trials for kidney transplant. Furthermore, indirect
metabolic interventions are slowly gaining track on the field,
with increasing publications about the role of gut microbiota and
dysbiosis in the maintenance of homeostasis and immune
balance, opening new fields of research and clinical research.

On the other hand, Breg application as adoptive cellular
therapy is a contentious topic, with no clinical trials on the
horizon, due to their difficult identification and expansion. In
human, Breg are niche populations in peripheral blood with low
expression, with most of them being localized in the spleen, so

FIGURE 1 | Summarized workflow of Breg-based therapy for kidney transplanted patients, steps and points of concern.
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in vitro expansion would be necessary to achieve significant
therapeutic effects. The lack of consensus on several key
points such as; Breg signature, antigen specificity,
alloreactivity, expansion system, stability after administration
and dosage, would be critical in the efficacy of such therapy.

In recent years, there has been extensive progress in the
understanding of Bregs, many researchers are pursuing the
definitive human Breg signature, however this seems rather
utopic. Many different markers have been associated to Bregs
as reviewed in (Rosser and Mauri, 2015; Shang et al., 2020;
Catalán et al., 2021), highlighting the fact that they are found
across all B cell subsets.

The differences in phenotype and in secreted factors is not just
a make-up signature but it affects Bregs’ mechanism of action,
claiming for proper read-outs for the regulatory activity of Bregs.
For long time, IL-10 has been the gold-standard to discern
between regulatory and non-regulatory B cells, but evidence
has shown that, on one hand IL-10 alone is not enough to
truly describe Bregs and iBregs, as IL-10 is also an activation
marker, and the ratio between inflammatory markers and IL10
(anti-inflammatory cytokine) might be the real hallmark of Bregs.
On the other hand, other secreted factors such as GZMB or the
expression of FasL or PD-L1 have also been described as key
markers of Bregs and iBregs, opening new doors for their
mechanistic paths of regulation.

However, the development of improved in vitro Bregs
induction systems from human B cells, such as the use of

SCFAs or MSCs, opens up the possibility of re-educating the
patient’s B cells towards a regulatory phenotype and presents a
small ray of hope in the context of adoptive Bregs therapy. The
ideal in vitro induction system should generate, from donor
B cells, a sufficient number of iBregs with a stable phenotype
and a demonstrable immunodulatory capacity.
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