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An error-aware gaze-based keyboard 
by means of a hybrid BCI system
Fotis P. Kalaganis1,2, Elisavet Chatzilari2, Spiros Nikolopoulos2, Ioannis Kompatsiaris2 & 
Nikos A. Laskaris1,3

Gaze-based keyboards offer a flexible way for human-computer interaction in both disabled and able-
bodied people. Besides their convenience, they still lead to error-prone human-computer interaction. 
Eye tracking devices may misinterpret user’s gaze resulting in typesetting errors, especially when 
operated in fast mode. As a potential remedy, we present a novel error detection system that 
aggregates the decision from two distinct subsystems, each one dealing with disparate data streams. 
The first subsystem operates on gaze-related measurements and exploits the eye-transition pattern to 
flag a typo. The second, is a brain-computer interface that utilizes a neural response, known as Error-
Related Potentials (ErrPs), which is inherently generated whenever the subject observes an erroneous 
action. Based on the experimental data gathered from 10 participants under a spontaneous typesetting 
scenario, we first demonstrate that ErrP-based Brain Computer Interfaces can be indeed useful in the 
context of gaze-based typesetting, despite the putative contamination of EEG activity from the eye-
movement artefact. Then, we show that the performance of this subsystem can be further improved by 
considering also the error detection from the gaze-related subsystem. Finally, the proposed bimodal 
error detection system is shown to significantly reduce the typesetting time in a gaze-based keyboard.

Brain-Computer Interfaces (BCIs) have been widely employed for providing alternative communication and con-
trol options to both disabled and able-bodied people. Several relevant applications were emerged, including infor-
mation recommender systems1, spellers2,3, robotic devices4 and wheelchair controllers5. Supported by advances 
in machine learning, and in conjunction with the ever-increasing availability of consumer EEG scanners, BCIs 
are currently incorporated into multi-modal systems as well, leading to improved, adaptable, versatile and natural 
interfaces.

A hybrid, also referred to as multi-modal, BCI (hBCI or mmBCI) establishes a pathway between the user and 
the computer based on distinct types of brain activity or by combining brain signals with other physiological 
signals, such as eye gaze, electrocardiography and electromyography6. The hBCIs are considered as capable of 
alleviating the restrictions of BCIs associated with the detection of patterns in noisy neural data and, hence, they 
are more suitable for non-clinical applications.

Over the last years, research in BCIs has managed to achieve significant improvement in terms of detect-
ing the users’ intentions7. However, in a real-world setting, the interpretation of brain commands still remains 
an error-prone procedure leading to inaccurate interactions, probably due to the underlying oversimplification 
that the brain is occupied at most by the task we are trying to detect patterns for which constitutes a major bar-
rier for the wider deployment of BCIs. Even for multi-modal interaction schemes, the attained performance 
is far from optimal. As a means to overcome these debilities, and apart from developing more sophisticated 
machine-learning techniques or adding further modalities, scientists have also exploited the users’ ability to per-
ceive errors. The principal idea is that a BCI system may incorporate, as feedback, the user’s judgement about its 
function and use this feedback to correct its current output. Towards this direction, the most common approach 
is to detect Error-Related Potentials (ErrPs), a special type of Event-Related Potentials (ERPs) that appear shortly 
after the user recognizes an error. Previous studies have shown that ErrPs can be utilized to correct spelling errors 
in P300 spellers8, as well as to adapt the classifiers, reduce the calibration time and improve the performance of 
BCIs based on code-modulated Visual Evoked Potentials (c-VEP)9.

The vast majority of BCI systems employs electroencephalography (EEG), that is designed to record the 
electric potential signals produced by the synchronous action of neurons with parallel geometric orientation10. 
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However, EEG also captures the electrical activity from sources other than the brain. It seems, therefore, difficult 
for EEG to be effectively combined with other modalities that involve ocular or muscular movement, such as the 
eye-gaze captured by an eye-tracking device. Despite the fact that ocular artefacts may contaminate the recorded 
brain activity, EEG and eye-tracking have been successfully combined during the last years. One such application 
concerns the identification and removal of artefacts in EEG signals using the eye-activity traces11 and the differ-
entiation between intentional and spontaneous eye movements12. Another one, combines EEG and eye tracking 
to disentangle perceptual/attentional/cognitive factors affecting reading. Neural activity is associated with the 
displayed items by tracking the eye movement and isolating the neural signal around the gaze fixation onsets13,14.

In the presented work, we investigate whether EEG can be used in conjunction with an eye-tracker towards 
the development of a high-speed gaze-based keyboard. Our study proceeds in two distinct directions. Firstly, 
we demonstrate that a specific neurophysiological event associated with error perception is elicited just after the 
user realizes a typesetting error. An associated activation pattern, free from eye-related artefacts, can be robustly 
detected and used to flag the errors. Secondly, we provide evidence that this event, which is a special case of an 
ErrP, can serve as the basis for an automated Error Detection System (EDS) that is operated directly by the user’s 
brain responses and may be complemented by information extracted from the eye-movement patterns to further 
boost its performance. Apart from verifying the theoretical improvement in the typing speed of a gaze-based 
keyboard, we also provide experimental results from an on-line simulation, where the proposed approach is 
compared against a regular gaze-based typesetting scenario, without any error-detection assistance. To the best of 
our knowledge, this is the first study that attempts to combine gaze-based typesetting with ErrPs’ decoding and 
demonstrates that such an integration holds promise for an enhanced user experience.

Methodology
In our experiments the electrical brain activity and gazing location were continuously recorded while the subject 
was performing a gaze-based typing task (Fig. 1). The data acquisition protocol was designed so as to uncover the 
physiological patterns associated with the perception of an erroneous visual key press (i.e. key registration). The 
discovered patterns that stem from the participants brain and eye activity are then exploited by a machine learn-
ing scheme in order to realize a gaze-based keyboard with an automatic error-detection capability. An extended 
overview of the experimental setup can be found in the Materials and Methods: Experimental Protocol.

Typing Task and Physiological recordings.  The recording protocol relied on a standard gaze-based key-
board paradigm that was implemented by an eye-tracker attached to a pc monitor15,16. The gazing information, 
in the form of a densely sampled sequence of x-y coordinates corresponding to the eye trace on the screen, was 
registered simultaneously with the participant’s brainwaves. The purpose of this experiment was to provide data 

Figure 1.  (Top) Schematic outline of the error-aware keyboard. A hybrid BCI system, relying on brain 
activity patterns and eye-movement features, detects and deletes characters that are mistyped. The depicted 
Machine Learning (ML) modules correspond to linear SVMs. (Bottom) Timeline describing the sequence of 
events during the typesetting experiment. Initially, the participant starts gazing at the desired letter. When he 
completes a 500 ms time-interval of continuous gazing, the key is registered and simultaneously the associated 
visual indication is presented. The physiological responses following this indication are used to detect 
typesetting errors. We note that the “eye” icon was not presented in the experiments and it is only shown here 
for presentation clarity purposes.
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where patterns in the physiological activity, of either brain or/and eyes, could be associated with the case of a 
typo (due to either the inaccuracy of the eye-tracker or a human mistake). In the study of event-related neuro-
physiological responses, the precise timing is of paramount importance. For this reason, the functionality of the 
gaze-based typesetting system had to be modified. Typical gaze-based keyboards use a visual indication, shown 
in Supplementary Fig. 2, to continuously inform the user about the gaze location. A visual key is registered, 
only, after the user has constantly gazed at it for a certain amount of time, usually referred to as dwell time. 
However, this visual feedback notifies the user on the typing result at arbitrary times and as such the ErrPs are not 
time-locked to the registration of the visual key. This option of continuous visual feedback was deactivated in our 
experimental setup in order to ensure that transient brain responses, time-locked to erroneous typesetting, would 
be elicited. It was only after a stared key had been typed (or, equivalently, gazed at for more than 0.5 seconds) that 
appeared as selected (refer to Supplementary Fig. 2). In this way, the perception of a typo could be associated with 
a specific timestamp. In other words, the onset of a wrong selection was the trigger for an ErrP-response.

Twenty sentences, which can be found in Supplementary Table 1, were provided sequentially to the subjects 
with the instruction to type them with the adjusted gaze-based keyboard. The current sentence was not accessible 
to the subjects during the typesetting, hence they had to memorize it at the beginning of each attempt. This was 
motivated by the need to bring the subject closer to the natural way of typing, where one types spontaneously. The 
only difference with the regular typesetting mode was the instructions to the participant to refrain from using 
backspace button and ignore typos since we were interested in physiological events associated with error percep-
tion and not in those related to reaction. All sentences, had to be written using lower-case letters with a full stop at 
the end. Each session, which consisted of typing one sentence, was followed by a short-time break.

Pragmatic Typing Protocol.  Since it was necessary to compare the individuals’ typesetting performance 
with and without the EDS and regarding the time needed to correctly type a given text, we included an additional 
round of control experiments. During this round each participant had to “type” the same sentences, but this time 
using the gaze-based keyboard in its regular mode (without error-detection assistance) and with the instruction 
that each sentence would be considered complete only when it had been correctly typed. In this mode, partici-
pants were allowed to use the backspace button during the typesetting; all other parameters remained unaltered.

Data Analysis.  The concurrent data streams (after the necessary pre-filtering for the EEG traces) were seg-
mented into epochs. Each epoch contained the physiological responses starting 200 ms before the onset of visual 
key pressed and lasting for 700 ms. Since the erroneous responses were much fewer than the correct ones the 
two categories were not equally represented. To alleviate this situation, we employed the SMOTE17 algorithm 
that creates synthetic patterns from the less populated category. For analysing the brain responses, the approach 
of Discriminant Spatial Patterns18 was adopted so as to improve the detectability of ErrPs. For analysing the 
gaze-related signals, the Hjorth descriptors19 were employed for characterizing the derived timeseries that incor-
porate the successive displacements of the gazing position. Two independent models based on Support Vector 
Machines (SVMs) with linear kernel20, were trained to discriminate between correct and erroneous typesetting. 
The one operated on feature vectors extracted from the single epochs of brain activity and the other on the feature 
vectors extracted from the associated epochs of gaze-related activity. The individual outputs were fused to realize 
the final error detection. Technical details are presented in the corresponding Materials and Methods sections.

System Adjustment and Evaluation.  Accuracy is typically employed in classification tasks to evaluate 
the performance of the system. However, in class imbalance situations (like it is the most probable scenario for 
our EDS), sensitivity/specificity pairs offer a more reliable evaluation of a given classification model. The Utility 
metric21 is a suitable composite measure, which in addition to specificity and sensitivity incorporates the dwell 
typing time modulated by the mistyping probability as well. It is widely used for describing the performance of 
BCI-spellers, and here it was used for tuning the EDS and providing the final unbiased justification of it’s gain via 
a Monte Carlo cross-validation scheme.

After the classification scheme was decided, on data obtained from the first typing task (i.e. using the 
error-aware keyboard), an error-aware simulation took place. During the simulation the time interval for typing 
a given sentence in error-aware mode was calculated and then compared against the time interval using the 
regular gaze-based keyboard. To avoid biases, in the former case, we first trained the incorporated EDS in a 
“Leave-One-Sentence-Out” (LOSO) manner (i.e. using the epochs from the rest 19 sentences) and, then, sim-
ulated “off-line” the operation of the error-aware keyboard on the sentence. Finally, taking into consideration 
both the false positives and negatives of the EDS system (and the associated gain/loss in time), we predicted the 
necessary time interval for our typesetting approach. The simulation and time calculation procedures are detailed 
in Materials and Methods: Typing Time Estimation.

Results
Physiological Findings.  Among the principal objectives of this study was to understand and characterize 
the physiological responses associated with the perception of an error during the gaze-based typing procedure. 
Figure 2 conceptualizes our main empirical findings about the neural correlates and the eye-motion patterns that 
served as the basis for deriving error-detection signatures from the recording data streams. Using single-subject 
data, the averaged responses for both brain activity and an eye movement descriptor are presented for the case of 
correct and erroneous typesetting. Regarding the brain activity patterns, it becomes apparent that the main com-
ponents of the error-followed response is a negative deflection around 300 ms (with a frontocentral scalp distribu-
tion) followed by a positive peak 100 ms later (with a centro-parietal scalp distribution). These latencies have been 
defined with respect to stimulus onset, which is the time instant that the gazed letter is registered and its preview 
is shown to the user in the corresponding ribbon. The shown activation pattern is topographically in accordance 
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with the relevant ErrP literature22, but differs slightly in the timing. In the case of correct typesetting, the brain 
activation shows a pattern that deviates from the anticipated null response. Specifically, a moderate biphasic 
response can be seen, consisting of a positive deflection around 200 ms and a negative one around 300 ms. Its 
topographical representation points to a cortical source located centrally. The explanation for the observed neural 
patterns is naturally suggested by the temporal patterning of the associated eye activity. As it can be seen (Fig. 2; 
bottom-most traces), the averaged profile of eye-movement speed is suggestive of apparent eye-motion only in 
the case of a correct typesetting, and specifically well after the gazed letter is typed. It becomes obvious that after 
a typing error subjects adjusts slightly their gaze, since their intention has been marginally misinterpreted, while 
in the opposite case they have to type the next letter which is most probably located, on the screen, far from the 
previously gazed position. Nevertheless, the successive typesetting of nearby letters is a possible scenario as well 
(e.g. in the case of word “was”). Finally, it should be underlined that the scalp topographies (included in right 
most panels) after the correct typesetting comply with cortical generators lying in a brain region that is known to 
causally relate with the eye-movements23. More importantly, they cannot be attributed to ocular artefacts gener-
ated by the eye movement.

To further investigate the association between the EEG activity and gaze shifts, we adopted a data analytic 
procedure, in which the variability in eye-movement directionality was first coarse grained and then utilized to 
condition the grouping of brain activity traces. Figure 3 includes the results from analysing the single epoch data 
of the same participant as in Fig. 2. Using the aggregated gaze displacement, from −200 ms to 500 ms around each 
correct letter registration, we applied k means algorithm to group the eye movements into k = 4 distinct directions 
(Fig. 3; most left). The derived grouping was then applied to the eye movement speed profiles and, also, to the 
corresponding EEG traces. Finally, the four distinct prototypical traces, for both types of physiological activations 
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Figure 2.  Single-subject averaged brain activation traces for the correct (blue) and wrong (red) selections 
of buttons are shown in the top middle panel. Particular latencies are indicated on these traces (E: error; C: 
correct) and the corresponding topographies have been included in the top left/right panels. The traces shown 
in the bottom middle panel reflect eye-movement activity (derived by averaging correspondingly across the 
epochs of gaze-related signal). Zero time indicates the instant that the typing of the current letter has been 
completed and the eyes are free to move towards the next letter.

Figure 3.  (Left) Scatter-plot of gaze centre displacements (derived by integrating the derivatives of eye position 
coordinates within a time interval that includes the key registration at 0 latency). Each dot indicates the main 
direction of the eye after a correct typesetting of a single letter. The point swarm has been partitioned into 4 
groups, and the membership of each dot is indicated by colour. The associated brain-signal and eye-movement 
activity traces have been grouped accordingly and their (sub)averages are indicated in top right and bottom 
right respectively using the colour code defined in scatter-plot.
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were presented in a contrasting manner (Fig. 3; right bottom and top). It becomes evident that EEG-traces do 
not show any polarity inversion with the change of eye-movement direction (blue/red waveform corresponds to 
right/left) that would have been the case if contaminated by ocular activity artefacts. On the contrary, the tempo-
ral patterning at Cz sensor seems to follow the profile of eye-movement speed.

SVM classification for predicting typesetting errors from physiological activity.  Having justified 
the potential of brain activity and gaze-movement patterns for distinguishing between correct and mistyped 
letters, we proceeded towards implementing the idea of error detection by way of a machine learning algorithm. 
Features from the EEG-related epochs or/and the concurrent gaze-based traces were used in the context of an 
SVM-classification scheme. Depending on the type of the features and the way they were combined, four different 
classification schemes were realized and validated using the standard performance metrics of sensitivity and spec-
ificity. In the first scheme only EEG features were considered, while in the second only eye movement descriptors 
were employed. In the other two schemes, denoted as “early” and “late” fusion, the error detection was based on 
both data streams. The corresponding features were treated jointly by a single SVM classifier in the former case, 
while in the latter case they were fed separately into two distinct SVM classifiers where the most dominant confi-
dence score indicated the classification result. As Table 1 indicates, the classification using brain activity pattern 
tends to emphasize specificity, while eye movement descriptions emphasize sensitivity.

Incorporating the SVM classifier(s) in the gaze-based keyboard.  The detection of error responses is 
the key procedure in the realization of an error-aware gaze-based keyboard. Therefore, the classification accuracy 
of the incorporated SVM-algorithm, alone, was not enough for the full justification of the developed error detec-
tion system. This is because typesetting errors occur at low probability (roughly in 1 out of 10 characters) and 
hence the SVM-model has to deal with an imbalanced classification task. The Utility metric offers a meaningful 
way, to weight appropriately both the sensitivity and specificity and, simultaneously, to incorporate the cost of 
typing time and the error chance. This metric served as a (inverse) cost function to optimize the functionality of 
the linear SVM, by adjusting the position of the separating hyperplane. As a result, the classifier incorporated in 
the error-aware keyboard did not perform optimally regarding the accuracy in error detection task, but led to 
higher Utility gain (the ratio UtilityEDS/Utilityregular). Figure 4a includes the standard ROC curves for the four clas-
sification schemes, using as threshold a value within [−1, 1] for classifying an instance as erroneous or correct. 
It is evident that the late fusion scheme shows always superior performance regarding specificity and sensitivity. 
Figure 4b shows the associated Utility gain as a function of the threshold. A constantly increasing gain, is associ-
ated with lowering the threshold in all four schemes. This trend in gain is followed by an increase in specificity, 
which is apparently more important than the sensitivity in error detection. As expected, lowering the threshold 
beyond −1 results into a gain decrement. In summary, when the two SVMs in the late fusion scheme, uses the 
most negative threshold value, that is −1, the best performance of the error-aware gaze-based keyboard will be 
achieved.

A more detailed picture is provided in Table 2 where the results obtained at the optimal threshold by means 
of Utility gain, for all participants, have been included. The following empirical facts needs to be underlined. EDS 
based on features from the EEG, but not from the eye-activity, may lead to enhanced user’s experience in terms 
of time (utility gain higher than one). The late fusion EDS scheme systematically provides the best results, which 
on average correspond to a 4% increase in Utility gain. Finally, all accuracies are well above the random chance 
(which is defined by the typing error chance).

Simulated implementation of the EDS.  In an attempt to compare the time efficiency of the error-aware 
gaze-based keyboard against the regular one, we contrasted the time that it would be needed for users to type 
a given sentence with our EDS system erasing the erroneously typed letters and them re-typing the letters 

Subject 
ID

EEG Eye Motion Early Fusion Late Fusion

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

S01 73.41 83.19 97.82 51.39 78.95 85.96 91.51 78.00

S02 75.54 87.97 90.14 71.94 80.48 89.34 85.55 87.00

S03 85.52 93.20 89.36 82.83 87.40 94.00 89.50 93.13

S04 74.76 85.18 87.45 70.26 80.13 85.18 83.84 81.92

S05 76.38 85.90 88.34 75.71 82.58 89.83 85.25 89.96

S06 76.69 80.09 95.68 63.95 88.92 75.82 92.65 73.69

S07 61.61 78.79 83.98 67.89 71.71 77.79 79.37 75.57

S08 69.31 83.76 94.21 71.35 89.87 85.30 90.26 83.76

S09 67.39 82.36 87.73 77.18 78.64 83.94 82.71 83.70

S10 70.47 81.41 80.77 80.56 79.35 80.80 79.76 82.69

Average 73.10 84.18 89.54 71.30 81.80 84.79 86.04 82.94

Table 1.  Performance metrics for the classification task of discriminating between correct and erroneous 
typesetting based on EEG traces and gaze-movement patterns (used both separately and jointly). Tabulated are 
the results averaged from 100 repetitions of Monte-Carlo cross validation. Four implementation scenarios have 
been validated, for each subject independently.
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immediately (T1 task), with the time needed for them to use backspace to correct the errors (T2 task). Table 3 
presents the average (AVG) necessary times regarding the regular gaze-based keyboard, for each participant sep-
arately, and the corresponding difference with the error-aware typesetting. It becomes apparent that, on average, 
users require 2.7 s less to type a sentence which would require 29.36 s approximately. This leads to a 9.3% increase 
in typing speed (which is statistically significant with a p-value = 0.032 based on Wilcoxon signed rank test), that 
remarkably differs from the theoretical gain of 4% that was calculated through the Utility metric. The reason for 
this deviation lies on the fact that the utility metric assumes identical key press times for letter and backspace but-
tons, which is not the case according to our empirical results (exact times are included in Supplementary Table 2). 
In addition, of interest is the correlation between the obtained time gain and the user’s probability of making a 
typo. Actually, the gain from the EDS is upper bounded by the misinterpretation probability of the eye-tracker24. 
In other words, users prone to errors during gaze-based typesetting tend to benefit more from our hybrid BCI 
system.

Discussion
Eye tracking systems have been greatly improved and, nowadays, offer a viable and affordable communication 
channel, especially for people lacking fine motor skills. However, input by eye-gaze is challenging due to several 
technical issues that may introduce ambiguity and compromise the accuracy in detecting the eye-position25. 
Therefore, an interaction-context specific optimization of the eye tracking procedure is considered necessary 
for achieving a satisfactory experience for the user. In this work, we adopt a different strategy in order to achieve 
a more natural incorporation of the eye-gaze input. We introduce a hybrid BCI system that takes advantage of 
humans’ inherent ability to perceive an erroneous action and their behavioral reaction for revising it, in a very 
intuitive and effortless way. The novel error-detection system pieces together the ErrP-response (that reflects the 
first cortical reaction to an error) with the eye-movement patterning (that reflects re-attempting to typeset the 
character), and may be readily adopted in gaze-based keyboards in order to offer higher typing rates.

Figure 4.  The grand average sensitivity and specificity values (a) along with the Utility gain (b), after 100 
Monte-Carlo cross validation repetitions, with respect to threshold moving within the normalized SVM 
margins.

Subject 
ID

Typing 
Error 
Chance

Utility Gain

specificity sensitivity accuracyEEG
eye 
motion

early 
fusion

late 
fusion

S01 11.60% 1.02 0.69 1.05 1.05 98.64 45.60 92.48

S02 7.92% 1.01 0.93 1.02 1.03 98.55 45.40 94.33

S03 6.36% 1.04 0.99 1.04 1.04 99.28 71.00 97.48

S04 11.60% 1.04 0.93 1.04 1.05 98.53 46.50 92.48

S05 8.87% 1.02 0.91 1.04 1.04 98.94 50.60 94.66

S06 13.67% 1.03 0.92 1.03 1.03 96.68 39.20 88.81

S07 13.50% 0.99 0.92 0.99 1.02 97.97 24.10 87.99

S08 9.24% 1.00 0.94 1.03 1.03 98.89 28.70 92.39

S09 6.16% 0.98 0.91 0.99 1.01 97.66 35.40 93.82

S10 13.84% 1.03 1.01 1.05 1.05 98.84 31.20 89.44

Average 10.27% 1.02 0.92 1.03 1.04 98.40 41.77 92.38

Table 2.  Columns 2–6: chance that the eye-tracker will interpret user’s intention falsely and utility gain for the 
four classification schemes. Columns 7–9: classification performance metrics at the optimal threshold for the 
late fusion classification scheme. Tabulated are the results averaged from 100 repetitions of Monte-Carlo cross 
validation.
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Our experimental data showed that even though the interpretation of user’s eye movements may allow for 
detecting typos with relatively high accuracy, it is only the decoding of EEG patterns that can lead to sufficiently 
high detection rates so as to improve the user experience. More importantly, it is the hybridization of the two 
modalities that ultimately offers the most promising solution. Apparently, the suggested scheme may appear 
unconventional since in the majority of neuroscientific studies the participants are instructed to confine the ocu-
lar movements as much as possible, and whenever eye-activity is registered this is mostly done for EEG-denoising 
purposes. In our case, nevertheless, the eye movements are an integral part of the process underlying the typeset-
ting and, hence, the eye-activity information complements the ErrPs-event detection.

A further justification of this finding should be attempted at this point. First of all, the eye movement related 
artefacts are not seen in the formed averaged responses (both for the correct and erroneous typesetting; refer to 
Fig. 2). In the case of erroneous typesetting, and according to the data stemming from the eye tracking, there is 
very limited eye movement activity associated with the perception of typos, that does not affect the brain response 
in the electrodes where ErrPs are typically met. On the contrary, in the case of a correct key registration, the eye 
movement is significant and could, in principle, affect the EEG responses. To rule this possibility out, we studied 
the brain responses with respect to the direction of the eye movement (Fig. 3). Having in mind that opposite eye 
movements (e.g. eye moving upwards versus downwards) produce electrical activity patterns with reversed polar-
ity26 and such an effect would disappear after averaging, we confined averaging within the subset of trials that are 
related with eye-movements towards the same direction. By comparing the (sub)averaged brain responses from 
different eye-movement directions, we verified that the eye-related artefacts do not contaminate the brain-activity 
signal at the electrodes of interest. This does not mean, though, that oculographic artefacts are not present at 
recording sites over the pre-frontal cortex. Moreover, a spatial filter is designed to enhance the ErrP detection and 
diminish artefact-related effects, using data segments within the examined temporal window, that is [−200, 500] 
ms around the latency of a character registration. This filter, that conditions the data for the SVM, is activated 
only during the [0, 500] ms interval. Finally, we underline here that the signals from the two modalities were, also, 
used independently (within the same data-learning framework) for building an EDS and the performance was 
inferior in both cases (Table 2).

Having in mind to investigate the physiological events associated with the perception of an error during 
gaze-based typing, we implemented an experiment that ensured the elicitation of error-related potentials and 
their subsequent robust detection. The developed EDS may seem contradictory to the established typing mode, 
where every erroneous key press is typically followed by an immediate backspace press. A less common, but also 
quite effective, typing mode involves successive key presses, during which mistypes are ignored and collectively 
corrected at the end of each period. This mode, along with the optimal hybrid EDS, appears as the most promising 
typing paradigm that could be fully benefited from the introduced approach.

The proposed error detection system could be incorporated in any gaze-based keyboard. Although eye track-
ers provide a convenient and relatively reliable way for registering users’ gaze they are still extremely error-prone 
in the case of certain target groups, such as those who are suffering from eyelid ptosis or diplopia27. The proposed 
EDS seemingly benefits from high error chances, since our experimental data indicate an association between 
typing speed gain and typing error chance, as Table 3 shows. Consequently, it is expected to have a significant 
merit for the users who face difficulties in operating an eye-tracking device.

The main aim of this study was to introduce a novel Error Detection System for gaze-based keyboard that has 
the potential to improve the overall typing speed. We have shown that certain physiological events, associated 
with both brain and eye activity, can mark an unintended visual key press and therefore serve as the basis for an 
error correction system. It is important to note at this point, that the essence of our work lies in detecting users’ 
intentions. From this perspective, there is a major difference between the presented Error Detection System and 
an automatic Error Correction System (i.e. proofing) that may offer even higher typing speed. There will be, 

Subject ID

Typing Error Chance Gain (T2-T1) Average Sentence Time

T1 T2
Time 
(seconds) Percentage T1 (seconds) T2 (seconds)

S01 11.60% 6.48% 1.23 4.51% 26.07 27.30

S02 7.92% 4.14% 4.17 13.99% 25.64 29.81

S03 6.36% 8.74% 7.33 22.96% 24.60 31.93

S04 11.60% 8.44% 7.53 21.68% 27.21 34.74

S05 8.87% 9.05% 4.92 16.12% 25.61 30.53

S06 13.67% 3.56% −0.78 −2.90% 27.72 26.94

S07 13.50% 5.83% 0.44 1.52% 28.51 28.95

S08 9.24% 3.36% −0.11 −0.42% 26.20 26.09

S09 6.16% 2.55% −1.38 −5.41% 26.88 25.50

S10 13.84% 9.50% 3.74 11.74% 28.11 31.85

Average 10.27% 6.17% 2.70 9.23% 26.67 29.36

Table 3.  Chance that the eye-tracker will interpret user’s intention falsely in the two typesetting procedures 
(T1 and T2), the average gain in time (accompanied by the respective percentage) that is obtained by the EDS 
system taking advantage of the late fusion classifier and the average time required to type one sentence in both 
tasks. The results are obtained according to a Leave-one-Sentence-out cross validation manner.
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however, certain occasions that an automatic spell proofing tool will be less reliable since it enforces the users to 
write “correctly” by preventing them from using shortened language expressions and idiosyncratic writing style. 
Having said that, we need to mention, also, the possibility that, in a future implementation, such a spell proofing 
system could be activated occasionally by our error-aware gaze-based keyboard.

Materials and Methods
This section includes additional details on all technical aspects of this work. Initially the experimental protocol 
and it’s reasoning are explained. Next, the methodological framework for processing the eye motion and EEG 
signals is introduced, followed by a detailed description of the classification procedure and its verification. Finally, 
the method for calculating the time required to write the sentences in both error-aware and regular keyboard 
settings is explained. This method served as the basis for the final justification of the introduced error-aware 
gaze-based keyboard.

Experimental Protocol.  This study includes experimental data from 10 subjects aged 20 to 45 years (mean 
32 ± 4; 4 female). The participants joined the experiments voluntarily, had no known prior or current pathologi-
cal neurological condition and their vision was normal or corrected to normal. All participants were familiar with 
physical keyboard devices and therefore aware of the qwerty keyboard layout.

Initially, the experimenter shortly described the experiment and its purpose to the participants. It was stressed 
to the participants that these experiments had been designed so as to explore their activity during erroneous 
actions and not to test their ability in typing tasks. For this reason, a challenging function-mode was used for the 
keyboard, in which the letters were being “locked” relatively fast (i.e. after detecting an eye fixation within the area 
of the letter for just 0.5 seconds) and not progressively as in the standard mode.

It was made clear to the participants that in case of an unintentionally typed letter, they should ignore the 
erroneous key press and retry typing the correct letter until the whole sentence is completed. This would lead to a 
sentence that contains, among typos, all the letters of the intended sentence in the correct order (i.e. the corrected 
version should be readily recovered by simply deleting the mistyped letters). The adopted strategy offered us as 
a way to ensure that the erroneous visual key presses had been perceived as such by the user. Finally, the subjects 
had been instructed to refrain from head and other type of body movements, as much as possible, in order to 
avoid artefacts (such as jaw clenches and hand/feet movements) that would distort the EEG signal.

Brain’s electrical activity was registered via the EBNeuro EEG device, which offers 64 wet electrodes placed 
according to the 10-10 international system (Supplementary Fig. 1). Gaze-related information was registered 
via the SMI myGaze eye-tracker. The sampling frequency was 256 Hz and 30 Hz for the EEG and eye-tracker 
device respectively. The Lab Streaming Layer28 software supported the synchronization of the streams with a 
sub-millisecond accuracy.

The experimental procedure was designed and performed in accordance with the relevant guidelines and 
regulations, particularly those set out in the Declaration of Helsinki pertaining to the ethical treatment of human 
subjects. Participants signed informed consents, and were instructed on their rights as participants, including 
the right to withdraw from the experiment at any time without fear of negative consequences. The study protocol 
has been approved by the Ethics Committee of the Centre for Research & Technology Hellas (REF NO: ETC.
COM_28).

Eye Motion Descriptors.  Exploiting the successive eye-position coordinates, we calculated the length of the 
trajectory that eyes had traversed on the screen along time. The derived “accumulated distance” timeseries, con-
stituted the basis for the feature extraction step regarding the gazing information. Hjorth parameters19, served as 
the final descriptors for the aforementioned timeseries. These descriptors are often employed to describe the 
dynamical behaviour of a signal by incorporating its statistical properties within the time domain. In general, for 
an initial signal x(t), the corresponding Hjorth descriptors are defined as follows: activity(x(t)) = var(x(t)), 
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∂ . In our case, these three descriptors described not 
only the time course of successive displacements, but also encapsulated the speed and acceleration (first and sec-
ond order derivatives of distance) in a sophisticated way. More specifically, the Activity parameter (that expresses 
total power of the signal29) was associated with the total length of the trajectory. The Mobility parameter (that is 
interpreted as an estimate of the signal’s mean frequency) was reflecting the alterations of the eye motion speed. 
Finally, the Complexity (that is known to reflect the bandwidth of the signal) was reflecting the motion 
irregularities.

EEG Spatial Filtering.  Event Related Potentials (ERPs) are among the most popular brain signatures 
for establishing brain-computer interaction. The wide range of ERP-BCIs extend from P300 spellers30 and 
Error-Related Potential based auto correction systems31 to fixation-related potentials for relevant target identifi-
cation32. Actually, an ERP signal is a recorded brain response that is the direct after-effect of a specific event (e.g. 
the perception of an erroneous action). ERPs typically are of low Signal-to-Noise-Ratio (SNR) brain responses 
therefore an averaged response across a large number of trials is presented. The averaging procedure guarantees 
that the noise is eliminated and the produced signal is “practically” free of noise. There are two certain conditions 
that should hold so that the averaging produced noise-free signal. Firstly, the signal of interest should consist 
of phase-locked responses with invariable latency and shape. Secondly, the background noise should follow a 
random Gaussian process of zero mean, uncorrelated between different recordings and not time-locked to the 
stimulus33. We know that EEG measures the electric potentials on the scalp. The neural responses of interest are 
reflected in several electrodes placed over the scalp. Utilizing the spatial information and in an effort to increase 
the SNR of the ERPs we employ the spatial filtering approach. More specifically, we seek the linear combination 
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that will maximize the Fisher’s separability criterion18. Assuming two groups of epochs, ErrPs and non ErrPs, 
denoted by {X} and {Y}, the optimal spatial filter can be obtained by solving the following optimization problem:

¯ ¯ ¯ ¯

+
=

− −∗w w(X Y)(X Y) w
w C C )w

argmin
( (1)w X Y

T T

T

where X and Y denote the average responses and CX and CY the average noise level for the groups X and Y 
respectively.

Preprocessing and Epoching.  It is known that ErrPs are embedded into low frequency components34, 
so zero-phase bandpass filtering within (1–16)Hz range was applied to the EEG recordings. Then the record-
ings, both from EEG and eye-tracker devices, were segmented into epochs that were aligned with the visual 
key presses. Each epoch (single trial response) contained the segments of brain activity and eye-position trace 
corresponding to the time window [−0.2 0.5] seconds around a visual key press. In order to assign the proper 
label (correct or erroneous) to each epoch we compared the pressed letter with the one that should be pressed in 
order for the sentence to be typed correctly having in mind that previous errors should be ignored. For instance, 
consider that the sentence the subject should type was “my dog is brown” and the participant wrote “muyb dog ias 
browqn” instead. In this case the epochs corresponding to the letters u, b, a and q would be labelled as erroneous, 
while the rest ones as correct.

Coping with Class Imbalance.  Since the number of erroneous visual key presses is much lower than the 
number of correct ones we had to deal with a classification problem of imbalanced classes. This could lead to a 
classifier that classifies all observations as correct (i.e. the majority class). To tackle this, we followed the oppo-
site tactic. From the minority class we generate new observations, referred to as minority oversampling, until 
the number of observations in both classes was equal. To perform this approach we employed the well-known 
Synthetic Minority Oversampling Technique (SMOTE)17. We must note that the SMOTE algorithm was per-
formed on the band-pass filtered EEG data, in case of the brain activity. Spatial filtering is a data driven procedure 
that takes labels into account and therefore benefits form the oversampling. Similarly, in the case of eye-motion 
epochs, the SMOTE algorithm operated on the associated distance timeseries.

Classification.  Each single epoch was associated with two feature vectors; one from the eye-tracker and one 
from the EEG scanner. In the latter case, the feature vector corresponded to the temporal pattern that was mined 
by means of spatial EEG filtering. This step was accomplished by synthesizing a “virtual sensor” that would reflect 
the ErrP response with SNR higher than the individual sensors. The first discriminant component was extracted 
via eigen-analysis of the problem formulated in eq. (1) and utilized as the spatial filter. For the eye-motion sig-
nals, each epoch was described by means of Hjorth descriptors acting on the trajectory of the on-screen dis-
placements. The choice of Hjorth descriptors was motivated by the assumption that when users managed to 
type a letter correctly their gaze would shift fast towards the next desired letter, while in the opposite case, they 
would slightly adjust theirgaze in order to type the intended letter. Initially the data, were split into train and test 
sets. The train set was used in order to create the augmented train set with synthetic data. Then, the augmented 
train set was used in order to calculate the Discriminant Spatial Patterns (DSP) weights and Hjorth descriptors. 
Thereafter, three separate SVMs were trained that operated on normalized (zero mean; unit variance) features. 
Two regarding each modality and a third one for the concatenation of features (“early fusion”)35. An additional 
“late fusion” scheme was also realized, that combined the output of the two uni-modal SVMs in order to form 
the final classification decision. The test set consists of ten erroneous responses and a specific amount of correct 
responses so as to maintain the initial ratio of correct over incorrect visual key presses. Both normalization and 
DSP parameters where elusively mined from the train set and then applied on the test set. In order to evaluate the 
classifier performance, a monte-carlo cross validation approach was performed where the splitting and testing 
procedures were repeated 100 times.

Typing Time Estimation.  It was straight forward to calculate the required time that each participant needed 
to type each sentence using the regular keyboard (T2). Initially the average time needed in order to press the 
backspace key was calculated empirically by T2 recordings and is denoted as bavg. Then the edit distance between 
the typed and the intended sentence was calculated, denoted by d. Typically, the edit distance was 0 since the indi-
cations to subjects stated that the sentence should be typed correctly (or perceived as such). However, there were 
certain occasions that subjects ignored the erroneous key press. Then the time difference between the first and the 
last key press, t2, is calculated. Finally, the total time for T2 task is computed as t2  + d bavg.

In case of the first task (error-aware keyboard), time difference between the first and the last key press, denoted 
by t1, is calculated based on the times derived during the recording procedure. Then through the simulation each 
key press is assigned with a label denoting whether it was classified as a correct or an erroneous. There are two 
cases that are of interest. In the first, a correctly typed letter is classified as wrong and therefore the users should 
retype it. These cases should be penalized by the average time required to press a letter button, denoted by lavg. 
The second case concerns erroneous key presses that are classified as such and therefore should not be penalized 
since the error-aware keyboard would automatically erase them. Finally, the total time for T1 task is calculated 
as t1 + (d − k1)bavg + k2 lavg, where k1 corresponds to the number of times that the classifier indicates an erroneous 
response is successfully detected, k2 corresponds to the number of times that a correct response was indicated as 
an erroneous and d denotes the edit distance between the typed and the intended sentence.
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Data Availability
The physiological data used in the current study are available at figshare, https://doi.org/10.6084/m9.figshare. 
5938714.v1.
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