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During accommodation, the lens changes focus by altering its shape following
contraction and relaxation of the ciliary muscle. At the cellular level, these changes in
shape may be accompanied by fluid flow in and out of individual lens cells. We tested
the hypothesis that some of this flow might be directly modulated by pressure-activated
channels. In particular, we used the whole cell patch clamp technique to test whether
calcium-activated-chloride channels (CaCCs) expressed in differentiating lens cells are
activated by mechanical stimulation. Our results show that mechanical stress, produced
by focally perfusing the lens cell at a constant rate, caused a significant increase in a
chloride current that could be fully reversed by stopping perfusion. The time course
of activation and recovery from activation of the flow-induced current occurred rapidly
over a time frame similar to that of accommodation. The flow-induced current could be
inhibited by the TMEM16A specific CaCC blocker, Ani9, suggesting that the affected
current was predominantly due to TMEM16A chloride channels. The mechanism of
action of mechanical stress did not appear to involve calcium influx through other
mechanosensitive ion channels since removal of calcium from the bath solution failed to
block the flow-induced chloride current. In conclusion, our results suggest that CaCCs
in the lens can be rapidly and reversibly modulated by mechanical stress, consistent
with their participation in regulation of volume in this organ.

Keywords: mechanosensitive channel, TMEM16A, anoctamin-1, chloride, lens, accommodation

INTRODUCTION

The lens is an avascular, transparent organ whose primary function is to focus light on the retina. To
compensate for the absence of blood vessels, the lens has developed an unusual type of circulation
system that consists of circulating ionic fluxes that flow into the lens at the anterior and posterior
pole and out of the lens at the equator (see Mathias et al., 2010 for review). These ionic fluxes, carried
mainly by sodium, are associated with the flow of fluid into and through the lens which facilitates
the delivery of nutrients to the inner fiber cells and the removal of metabolic wastes. They also play
a critical role in volume regulation. Essential components of this lens circulation system include
gap junctions, Na-K ATPases, aquaporins, and other channels and transporters such as TRPV4 and
TRPV1 which have recently been shown to act as mechanosensors and modulate the flow of fluid
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through the lens in response to changes in intracellular
hydrostatic pressure (Shahidullah et al., 2012b; Gao et al., 2015;
Delamere et al., 2020) or mechanical loading exerted by the ciliary
zonules on the lens (Chen et al., 2019).

Chloride channels and transporters are also thought to play an
important role in volume regulation in the lens (see Donaldson
et al., 2009 for review). According to a lens circulation model
first proposed by Mathias et al. (1997), the driving force for
chloride is outward at the periphery of the lens and changes
to inward in the deeper layers of the lens. Since all of the
cells in the lens are electrically coupled by gap junctions, this
would be predicted to result in a circulating chloride current
that could regulate the volume of the entire lens. Indeed, it
has been shown experimentally that exposure of the lens to the
non-selective chloride channel blocker, NPPB, under isotonic
conditions, results in two distinct zones of tissue damage in the
outer cortex: a peripheral zone of fiber cell swelling due to block
of chloride efflux and a deeper zone of extracellular dilatation due
to block of chloride influx (Tunstall et al., 1999; Young et al., 2000;
Merriman-Smith et al., 2002; Chee et al., 2006).

Patch clamp studies, performed prior to the identification
of the TMEM16 family of calcium-activated-channels, reported
that peripheral fiber cells from the zone of chloride influx
exhibited a constitutionally active, outwardly rectifying chloride
current with slow, voltage-dependent activation kinetics, and
a low field strength selectivity series (I− > Cl− > gluconate)
(Webb et al., 2004; Webb and Donaldson, 2008, 2009). The
anion selectivity and voltage gating properties of this current
resembled those of classical calcium-activated chloride currents.
In shorter fiber cells from the zone of chloride efflux, this
chloride current was generally quiescent but could be activated by
hypotonic challenge and/or addition of the KCC blocker, DIOA.
More recently, we have shown that calcium-activated-chloride
channels (CaCCs) composed of TMEM16A and TMEM16B were
expressed in newly differentiating lens epithelial and fiber cells
in wild-type and double knockout (KO) that lack both Cx50 and
Cx46 using a combination of reverse transcript PCR (RT-PCR),
immunohistochemistry and whole cell patch clamp techniques
(Tong et al., 2019).

In the present study, we used the whole cell patch
clamp technique to test the hypothesis that these CaCCs are
mechanosensitive in lens cells isolated from double KO mouse
lenses. One of the main advantages of using this preparation to
perform electrophysiological experiments is that the isolation of
fiber cells from lens of these KO mice can be performed using
milder dissociation conditions than those used in past attempts
to dissociate fiber cells, possibly due to alterations in cell adhesion
properties (Wang et al., 2016; Hu et al., 2017). Another advantage
is that the double KO fiber cells lack large, calcium-sensitive
connexin hemichannel currents and can tolerate exposure to
calcium-containing solutions without requiring the addition of
non-specific cation channel blockers such as 1 mM Gadolinium
to prevent fiber cell vesiculation and death (Ebihara et al.,
2011; Tong et al., 2019). Our results demonstrate that CaCCs
in dissociated lens can be rapidly and reversibly modulated
by mechanical stress, consistent with their participation in
regulation of volume in this organ.

MATERIALS AND METHODS

Chemicals
Ani9 and CaCCinh-A01 were obtained from Tocris Bioscience
(Bristol, United Kingdom). GSK1016790A was obtained from
Sigma-Aldrich Chemicals Company (ST. Louis, MO, United
States). All other chemicals were purchased from Sigma-
Aldrich Chemicals Company (St. Louis, MO, United States) or
Thermo Fisher Scientific (Waltham, MA, United States) unless
otherwise specified.

Mice
Transgenic Cx46(−/−) Cx50(−/−) double KO mice were
generated as previously described (Ebihara et al., 2014). The
transgenic mice were in a C57 genetic background. For tissue
harvesting, 4–8-week-old mice were euthanized and eyes were
extracted using procedures approved by the Rosalind Franklin
University Animal Care and Use Committee.

Dissociation of Differentiating Lens Cells
Lens cells were dissociated from double KO mouse lenses as
previously described (Tong et al., 2019). Briefly, the capsule
was removed from double KO mouse lenses and incubated in
dissociation buffer (DB) containing 0.0625% collagenase (type
IV; Worthington Biochemical, Lakewood, NJ, United States)
and 0.025% protease (type XXIV; Sigma-Aldrich, St. Louis, MO,
United States) at room temperature for 15 min. The capsule was
washed once with DB and resuspended in DB. The epithelial
and young fiber cells were then mechanically removed from
the capsule by gentle trituration with a Pasteur pipette, pelleted
(1,000 rpm for 2 min) and resuspended in DB. The isolated cells
were plated out on the bottom of a plastic tissue culture dish.
Once the cells attached to the bottom of the dish (∼10 min), they
were overlaid with standard bath solution and used immediately
for patch-clamp experiments.

Patch Clamp Experiments
Membrane currents were recorded from isolated epithelial cells
and newly differentiating fiber cells using the whole cell patch
clamp technique. The cells ranged from 50 to 300 µm and had
membrane capacitances measuring between 25 and 100 pF. All
of the cells contained nuclei indicating that they were isolated
from the outer region of the cortex near the equator (i.e.,
zone of fluid efflux of the lens). A 60 mm tissue culture dish
was used as the recording chamber. A pinch valve-controlled,
gravity driven perfusion system connected by thin tubing to a
500 µm ID millimanifold solution applicator (ALA Scientific,
Farmingdale, NY, United States) was used to provide focal
fluid flow at a rate ranging between 1.0 and 1.3 ml/min. The
applicator was positioned ∼1 mm from the cell of interest
using a micromanipulator. Only those cells that remained firmly
attached to the bottom of the dish throughout the course of the
experiment were used to investigate the effects of mechanical
stress. We chose to use fluid flow as a method to activate
mechanosensitive chloride channels primarily because of the high
degree repeatability of its effects. The bath was grounded via a
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1 mm diameter Ag/AgCl wire electrode mounted in a pipette tip
filled with 3M KCl agar.

Currents were recorded using an Axoclamp 200B patch clamp
amplifier (Molecular Devices, San Jose, CA, United States) or
MultiClamp 700A patch clamp amplifier (Molecular Devices,
San Jose, CA, United States), filtered at 1 kHz with a low-
pass filter and digitized at 10 kHz using a Digidata 1440A
or 1550B digitizer (Molecular Devices, San Jose, CA, United
States) and a PC computer equipped with commercial software
(PCLAMP 10; Molecular Devices, San Jose, CA, United States)
The standard sodium chloride bath solution contained (in mM):
150 NaCl, 10 CsCl, 4.7 KCl, 1 MgCl2, 1 CaCl2, 5 glucose, and
5 HEPES, with pH adjusted to 7.4 with NaOH. The cesium
chloride pipette solution contained (in mM): 140 CsCl, 10 EGTA,
1 MgATP, 10 HEPES (pH 7.4) to which various amounts of
calcium were added to obtain a final free [Ca2+]i ranging
between 200 and 600 nM, as calculated with the program
EQCAL for Windows (BioSoft, Cambridge, United Kingdom).
The N-methyl-D-glucamine (NMDG) chloride bath solution
contained (in mM): 150 NMDG-Cl, 4.7 KCl, 1 MgCl2, 1 CaCl2,
and 5 glucose, 5 HEPES (pH 7.4). The standard NMDG chloride
pipette solution contained (in mM): 140 NMDG-Cl, 10 EGTA,
1 MgATP, and 10 HEPES (pH 7.4) to which various amounts of
calcium were added to obtain a final, free calcium concentration
ranging between 100 and 600 nM. All the experiments were
conducted at room temperature (22–24◦C).

Statistical Analysis
Statistical analysis was performed with SigmaPlot 11 (Systat
Software, San Jose, CA, United States) or Origin 2017 data
analysis and graphing software (OriginLab, Northampton, MA,
United States). The Student’s t-test was used to determine
significant (p < 0.05) differences between means (as indicated
by ∗ symbols). Error bars in line and bar graphs indicate the
mean ± standard error of the mean (SEM). The number of
observations (n) is included to allow assessments of standard
deviations (multiply the SEM by

√
n) and 95% confidence

intervals (multiply the SEM by 1.96). Points in each bar graph
indicate individual data points.

RESULTS

Effects of Shear Stress
Figures 1A,B show representative families of current traces and
mean steady-state I–V curves recorded from lens cells under
standard whole cell conditions in the absence and presence of
mechanical stress which was induced by focally perfusing the
fiber cell at a constant rate with standard NaCl bath solution.
CsCl internal solution containing ∼300 nM [Ca2+]i was used
in the pipette solution to activate endogenous calcium-activated
chloride currents and block potassium currents in lens fiber cells
(Tong et al., 2019). Under basal (pre-flow) conditions, most lens
cells expressed a calcium-activated chloride current that slowly
activated on depolarization. On repolarization to −60 mV, an
inward tail current was observed that gradually deactivated over
time. Fluid flow resulted in a significant increase in the size of the

outward current (and corresponding inward tail current) evoked
by depolarizing voltage clamp steps. The normalized steady-state
outward current at 70 mV increased by 25 ± 6.0% (n = 4)
(Figure 1B). The effects of fluid flow on the amplitude of the
outward rectifying current could be reversed by stopping flow.
Similar results were obtained when NMDG was used as the main
cation in the bath and pipette solution to block current flow
through non-selective cation channels indicating that the flow-
induced increase in current was due to changes in an anion
conductance (Figure 1C).

To further investigate this phenomenon, we monitored
changes in the amplitude of the calcium-activated chloride
current at ± 70 mV (measured during ± 100 mV voltage
clamp ramps) as a function of time (Figure 2). As shown in
Figure 2A for a representative cell, application of flow induced
an increase in whole cell current that could be reversibly
blocked by the TMEM16A specific CaCC blocker, Ani9 (Seo
et al., 2016). Figure 2B shows the I–V relationship measured
pre-flow (a), during flow (b), after application of Ani9 (c),
and following washout of Ani9 (d), for the same cell as
shown in Figure 2A. Both the pre-flow currents and the flow-
induced currents displayed the characteristic outwardly rectifying
shape of TMEM16A currents and had a reversal potential of
approximately 0 mV. Following application of 5 µM Ani9, the
current was reduced to a level below that of the pre-flow current
suggesting that both components of the current were due to
TMEM16A channels. The effects of Ani9 on the amplitude of
the chloride current at +70 and −70 mV are summarized in
Figures 2C,D. A similar reduction in the current was observed
in response to the CaCC blocker, CaCCinh-A01 (De La Fuente
et al., 2008; Namkung et al., 2011), as illustrated in Figures 2E,F.

The time course of these flow-induced changes in chloride
current were investigated by applying two 1 s ramps from
−100 to + 100 mV in secession, separated by a variable time
interval at a holding potential of −60 mV. A continuous stream
of fluid was applied to the cell from the end of the first
voltage clamp ramp to the end of the second ramp. Typical
results are shown in Figure 3A. Application of a 2 s fluid
pulse resulted in a significant increase in the amplitude of
the current during the second (test) ramp. In contrast, no
changes in the amplitude of the current were observed during
the test ramp relative to the first ramp in the absence of flow
(Figure 3B). Increasing the duration of the fluid pulse from 2
to 62 s failed to cause a further increase in the amplitude of the
current during the test ramp suggesting that the flow-induced
increase in chloride current had already reached steady-state
by 2 s. The results of these experiments are summarized in
Figure 3C.

In order to better define the time course of the flow-induced
changes in chloride current, the cell was held at a constant
holding potential of −60 mV while applying a fluid pulse of
defined duration as illustrated in Figure 3D. When an 8 s fluid
pulse was applied to the cell, the holding current rapidly increased
to a new steady-state value. The time course of current increase
could be described by fitting the holding current, following
a short initial lag, to a single exponential with a mean time
constant of 396.198 ± 74.5 ms (n = 5). Following cessation of
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FIGURE 1 | Shear stress induces changes in whole cell chloride current in differentiating lens cells. (A) Representative families of current traces recorded before,
during and after fluid flow. Bath solution contained NaCl solution; patch pipette contained CsCl internal solution to which calcium was added to give a final free
calcium concentration of ∼300 nM. The voltage clamp protocol consisted of a series of sequential steps from a holding potential of –60 mV to potentials ranging
between –60 and 80 mV in 10 mV increments. The dashed line represents zero current level. (B) Effect of flow on the normalized steady-state I–V curve in standard
NaCl solution (n = 4). The steady-state current measured at the end of the 20-s pulse was normalized to the steady-state current at +70 mV pre-flow and plotted as
a function of voltage before (open squares), during flow (filled circles) and after cessation of flow (open triangles). (C) Effect of flow on the normalized steady-state I–V
curve in NMDG-Cl solution (n = 6). Pipette solution consisted of NMDG-Cl containing 300 nM [Ca2+]i . The steady-state current measured at the end of the 20-s
pulse was normalized to the steady-state current at +70 mV pre-flow and plotted as a function of voltage before (open squares), during flow (filled circles) and after
cessation of flow (open triangles).

flow, the holding current returned to its original baseline value.
The time course of recovery could be described by the sum
of two exponentials: a fast component with a time constant of
852.2 ± 217.2 ms and a slow component with a time constant
of 11.26 ± 2.37 s (n = 5). The amplitude of the fast component
relative to the slow component was 1.39± 0.27 (n = 5).

To investigate the possible role of calcium influx through
mechanosensitive channels in the generation of flow-induced
calcium-activated chloride currents, we examined the effect of
flow on the calcium-activated chloride current using a paired
ramp protocol either in the nominal absence of external calcium
or following application of gadolinium (Gd3+), a non-specific
cation channel blocker which has been previously reported
to block piezo channels (Coste et al., 2010), gap junctional
hemichannels (Eskandari et al., 2002), L-type calcium channels
(Biagi and Enyeart, 1990; Lacampagne et al., 1994), and some
TRP channels (Yang and Sachs, 1989; Gunthorpe et al., 2002;
Hamill, 2006). Removal of external calcium (Figure 4A) or
application of 10 µM Gd3+ (Figure 4B) did not alter the

response of the chloride current to fluid flow. To further test this
hypothesis, we increased the concentration of Gd3+ to 100 µM
Gd3+ and still saw no effect. The results of these experiments are
summarized in Figure 4C. These findings suggest that calcium
influx through mechanosensitive channels is not essential for the
flow-induced response of the TMEM16A currents in lens cells.

Interactions Between TRPV4 and
Ca2+-Activated Chloride Currents
Previous studies have shown that TRPV4 is expressed in the
lens epithelial and peripheral fiber cells and can be activated by
tension exerted by the ciliary zonules on the lens capsule (Chen
et al., 2019). Thus, we hypothesized that another mechanism for
regulating calcium-activated chloride currents in lens cells might
involve calcium influx through TRPV4 channels. To test this
hypothesis, whole cell patch clamp experiments were performed
on dissociated lens cells using the selective TRPV4 agonist
(GSK 1016790A; GSK) (Thorneloe et al., 2008) as illustrated in
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FIGURE 2 | Effect of chloride channel blockers on the flow-induced current. (A) Representative experiment showing that fluid flow invoked an increase in current at
± 70 mV (measured during ± 100 mV voltage-clamp ramps) that could be blocked by 5 µM Ani9. Holding potential was –60 mV. Ramps from –100 to + 100 mV
with a duration of 2 s were applied every 55 s. (B) Currents in response to ramps at points indicated by a, b, c, and d are shown in panel (A). Bar graphs show the
mean and standard error of the mean (SEM) (n = 4) for Ani9 and CaCCinh treatments. (C,D) The effect of 5 µM Ani9 on the amplitude of the flow-induced current at
± 70 mV normalized with respect to the value of the current at ± 70 mV pre-flow. Significant differences (*) are relative to Ani9 condition (n = 4). (E,F) The effect of
50 µM CaCCinh on the amplitude of the flow-induced current at ± 70 mV normalized with respect to the value of the current at ± 70 mV pre-flow. Significant
differences (*) are relative to the CaCCinh condition (n = 4). In all cases, the bath solution consisted of standard NaCl external solution. Pipette solution consisted of
CsCl internal solution containing 600 nM [Ca2+]i .

Figure 5. NMDG chloride bath and pipette solutions were used
to prevent contamination of the chloride current by non-selective
cation currents; the bath contained 1 mM calcium and the pipette

solution contained 100 nM free calcium. To distinguish effect of
GSK from the effect of shear stress, the cell was first perfused
with control solution for 2–5 min prior to application of GSK.
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FIGURE 3 | Time course of development and recovery of the flow-induced,
chloride current. (A) Representative experiment showing the effect of fluid flow
on the whole cell current using a paired ramp protocol. In this protocol, two
1 s ramps from –100 to + 100 mV were applied in succession from a holding
potential of –60 mV. The time interval between the two ramps was 1 s.
Application of fluid flow (gray bar) resulted in a significant increase in the
amplitude of the current during the second (test) ramp pulse. (B) Whole cell
currents recorded from the same cell in the absence of fluid flow. (C) Bar
graph summarizing the effect of fluid flow on the amplitude of the membrane
current peak at 100 mV recorded during the second ramp (P2) normalized
with respect to the current peak at 100 mV recorded during the first ramp
(P1). The number of cells tested is indicated within parentheses. Significant
differences (*) are relative to the no flow condition. The bath solution consisted
of NaCl external solution. The pipette consisted of CsCl internal solution
containing 200–300 nM [Ca2+]i . (D) Representative experiment showing the
effect of an 8 s fluid pulse on the holding current at –60 mV. Solid lines drawn
through the data are single and double exponential fits to the rising (light gray)
and declining (red) phase of the current, respectively. Bath solution consisted
of NMDG-Cl external solution. Pipette solution consisted of NMDG-Cl internal
solution containing ∼300 nM [Ca2+]i . Dashed line represents zero current
level.

Upon activation of TRPV4 with 30 nM GSK, a robust increase
in an outwardly rectifying, chloride current was observed whose
I–V relationship became progressively more linear over time.
Following washout of GSK, the membrane current partially
returned to its original level prior to application of GSK. A similar
increase in chloride current was observed in approximately half
of the cells that were tested using this protocol. In the remainder
of the cells, no response to GSK was observed.

The time- and voltage-dependent properties of chloride
currents evoked by GSK resembled those of the calcium-activated
chloride current, TMEM16A. To determine if TMEM16A
contributes to the chloride currents evoked by GSK, the
TMEM16A specific inhibitor, Ani9, was tested. The GSK-
stimulated chloride currents were rapidly and completely
inhibited following application of 5 µM Ani9 as shown in
Figures 6A,B. To demonstrate that the effect of GSK on CaCCs
was due to influx of calcium through TRPV4 channels, cells were
first stimulated with the TRPV4 agonist, GSK, in the nominal
absence of external calcium and then in presence of 1 mM

FIGURE 4 | Application of shear stress caused a significant increase in
chloride currents even in the absence of external calcium. Representative
experiments showing the effect of fluid flow on the whole cell current recorded
using a paired ramp protocol in panel (A) the nominal absence of external
calcium or (B) the presence of 10 µM Gd3+. (C) Bar graph summarizing the
effect of zero-added calcium and 10 µM Gd3+ on the amplitude of the
membrane current recorded at 100 mV during the second ramp peak (P2)
normalized with respect to the current recorded at 100 mV during the first
ramp peak (P1) calculated as mean ± standard error of the mean (SEM). The
number of cells tested is indicated within parentheses. Significant differences
(*) are relative to the absence of flow. The bath solution contained NMDG-Cl
solution. The pipette solution consisted of NMDG-Cl internal solution
containing ∼300 nM [Ca2+]i . Dashed line represents zero current level.

[Ca2+]o. A representative experiment is shown in Figure 6C.
The lens cell exhibited only small changes in chloride current
in the absence of external calcium but developed robust, GSK-
stimulated chloride current in the presence of 1 mM [Ca2+]o.
Similar results were obtained in 2 other experiments.

DISCUSSION

The mechanisms of regulation and physiological functions of
CaCCs in the lens are poorly understood. Here we show
that mechanical stress created by focal perfusion resulted in
an increase in an outwardly rectifying membrane current in
differentiating lens epithelial cells and newly elongating fiber
cells. This flow-induced current reversed polarity at the chloride
equilibrium potential and could still be observed when NMDG-
chloride was used as the main ion in the bath and pipette solution
indicating that the flow-induced current was primarily carried
by anions. In addition, both the flow-induced component and
the basal component of the chloride current could be blocked
by TMEM16A specific CaCC blocker, Ani9, suggesting that
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FIGURE 5 | TRPV4 agonist-induced current response in dissociated lens cells. (A) Representative experiment showing the effect of 30 nM GSK (red bar) on the
amplitude of the chloride current measured at + 100 mV (open circles) or –60 mV (solid line) in a lens cell. NMDG-Cl bath and pipette solutions were used to prevent
contamination of the chloride current by non-selective cation currents. Holding potential was –60 mV. Ramps from –100 to + 100 mV with a duration of 2 s were
applied every 55 s. (B) Currents measured in response to ramps at points indicated by a, b, c, and d in panel (A). (C) Bar graph with individual data points (n = 6)
indicating the effect of 30 nM GSK on the amplitude of the chloride current at +100 mV normalized to the value of the current at +100 mV measured pre-flow.
Significant differences (*) are relative to the GSK condition.

FIGURE 6 | GSK-induced chloride currents can be blocked by application of 5 µM Ani9 or removal of external calcium. (A) Chloride currents evoked in response to
± 100 mV ramps of 2 s duration recorded pre-flow (black line), during flow (blue line), following application of GSK (red line) and after application of Ani9 (green line).
(B) Bar graph summarizing the effect of 5 µM Ani9 on the amplitude of the GSK-induced current at + 100 mV normalized to the value of the current at + 100 mV
measured pre-flow (n = 4). Significant differences (*) are relative to Ani9 treatment levels. (C) Representative experiment showing the effect of 30 nM GSK on the
amplitude of calcium-activated chloride current measured at + 100 mV (open circles) and –60 mV (solid line) in NMDG-Cl bath solution, first in the absence of
external calcium and then in the presence of 1 mM [Ca2+]o. A robust, GSK-stimulated chloride current was only observed in the presence of 1 mM [Ca2+]o. The
pipette solution consisted of NMDG-Cl internal solution containing 100 nM [Ca2+]i .

both components of the current were carried by TMEM16A
chloride channels.

The kinetics of development and recovery of the
calcium-activated chloride current from mechanical stress
were very rapid, occurring in less than a second which
closely parallels the time course of disaccommodation and
accommodation previously described in humans and monkeys
(Campbell and Westheimer, 1960; Croft et al., 1998). It is
intriguing to speculate that these two processes might be
correlated. The mechanism for chloride channel activation
in response to fluid flow remains unclear. However, the
lack of effect of removal of external calcium and the rapid
kinetics of this response suggests that it might be due to
tethering of the channel to the cytoskeleton. In support
of this hypothesis, Perez-Cornejo et al. (2012) showed,
using a proteomics approach, that TMEM16A associates
with the signaling/scaffolding proteins ezrin, radixin,

moesin, and RhoA, which link the plasma membrane to
the actin cytoskeleton.

Chloride channels have been previously shown to be
modulated by mechanical stress in other tissues. In vascular
endothelial cells, perfusion activates a chloride current which
causes endothelial depolarization. However, the molecular
identity of these chloride channels is still not known and the
flow-induced response had a slow time course of development
suggesting that it was unlikely to be due to a direct action of
membrane or cytoskeletal strain on the chloride channel (Olesen
et al., 1988; Barakat et al., 1999; Gautam et al., 2006). More
recently, shear stress has been shown to stimulate TMEM16A
chloride channels in biliary epithelial cells indicating that these
channels were mechanosensitive (Dutta et al., 2011, 2013).
However, once again the time course of this response was much
slower than that observed in lens cells and depended on ATP
and P2Y receptors.
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Another potential mechanism for activation of CaCCs in the
lens involves an increase in cytosolic calcium due to calcium-
influx through transient receptor potential cation channel,
subfamily V member 4 (TRPV4) channels which are thought to
act as mechanosensors in the lens and modulate lens intracellular
hydrostatic pressure (Shahidullah et al., 2012a,b, 2015; Gao et al.,
2015; Chen et al., 2019; Delamere et al., 2020). Our results show
that pharmacological activation of TRPV4 by GSK results in a
marked enhancement of the calcium-activated chloride current
at both positive and negative potentials in fiber cells isolated from
DblKO mice that lack Cx50 and Cx46. Removal of calcium from
the extracellular solution blocked this response suggesting that
it was due to calcium-influx through TRPV4 channels. In lenses
from wild-type mice, the response to GSK is likely to also be
reinforced by release on calcium from internal stores by a process
involving the opening of Cx50 hemichannels (Delamere et al.,
2020). Similar pathways involving coupling between TMEM16A
and TRPV4 have been shown to stimulate TMEM16A channels
in other tissues such as the choroid plexus, salivary glands and
lacrimal glands and contribute to fluid secretion (Takayama et al.,
2014; Derouiche et al., 2018).

Previous immunohistochemical studies have shown that
TMEM16A and B are expressed in the zone of fluid efflux
of lens (Tong et al., 2019) along with aquaporins (Petrova
et al., 2018, 2020), TRPV4 (Nakazawa et al., 2019), and K+-Cl−
cotransporters (Chee et al., 2006) suggesting that CaCCs might be
involved in the regulation of fluid efflux from the lens in response
to mechanical stress caused by an increase in zonular tension. In
this scheme, direct mechanical strain and local entry of calcium
through TRPV4 channels would activate nearby CaCCs in the
peripheral most lens cells and result in chloride efflux due to the
outwardly directed electrochemical gradient for chloride in these
cells. This chloride efflux and accompanying potassium efflux
would in turn osmotically drive water efflux through aquaporins.
In contrast, in the deeper cell layers where the driving force
for chloride is inward, activation of CaCCs would result in
chloride influx and fluid gain. Since all the cells in the lens
are connected by gap junctions which allow the flow of ions
and water, this would be expected to cause the redistribution
of free water throughout the lens and might contribute to the

changes in changes in lens volume and water content that occur
in response to changes in surface pressure or zonular tension.
In addition, changes in the water content of the lens would be
expected to alter the gradient of refractive index (GRIN) and
change the optical properties of the lens (Donaldson et al., 2017).
Over the long term, modulation of the activity of CaCCs could
also direct phenotypic changes, such as fiber cell elongation or
epithelial cell proliferation. These changes could contribute to
the global alterations in eye function observed in myopia and
presbyopia. Further studies are required to better understand the
physiological and pathophysiological role of mechanosensitivity
of calcium-activated-chloride-channels.
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