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The study of patterns and evolutionary processes in neotropical fish is not always
an easy task due the wide distribution of major fish groups in large and extensive
river basins. Thus, it is not always possible to detect or correlate possible effects
of chromosome rearrangements in the evolution of biodiversity. In the Astyanax
genus, chromosome data obtained since the 1970s have shown evidence of cryptic
species, karyotypic plasticity, supernumerary chromosomes, triploidies, and minor
chromosomal rearrangements. In the present work, we map and discuss the main
chromosomal events compatible with the molecular evolution of the genus Astyanax
(Characiformes, Characidae) using mitochondrial DNA sequence data, in the search for
major chromosome evolutionary trends within this taxon.

Keywords: cytotaxonomy, molecular evolution, chromosomal rearrangements, mtDNA, chromosomal
symplesiomorphy, chromosomal synapomorphy, chromosomal autapomorphy

INTRODUCTION

The role of chromosomal rearrangements in the evolution of organisms has been a matter
of debate for many years. The initial observations that closely related species differ in their
karyotypes was later supported by evidence that unbalanced rearrangements can interfere with
gametogenesis, decrease gene flow, and reinforce reproductive isolation leading to speciation
(Rieseberg, 2001; Navarro and Barton, 2003). On the other hand, some organisms tolerate a certain
amount of chromosomal rearrangement, which is often referred to as karyotypic plasticity (Jónsson
et al., 2014; Havelka et al., 2016). This complicates the task of explaining the possible role of
rearrangements in the evolution of organisms, since the variation may result in speciation or stay
as polymorphism within populations.

Since Moreira-Filho and Bertollo (1991), who proposed Astyanax scabripinnis as a species
complex based on cytogenetic and morphometric data, chromosome variation has been regarded
as part of speciation processes in Astyanax. Before that, however, it was already acknowledged
that some populations could differ in their karyotype formulae and diploid numbers (Morelli
et al., 1983). Thus, it is now known that populations currently assigned to A. scabripinnis and
to the other nominal species are characterized by some degree of inter- or intra-population
chromosome variation, with diploid numbers ranging from 46 to 50 chromosomes; such is the case
of Astyanax fasciatus (Pazza et al., 2006). Molecular cytogenetics (i.e., satellite DNA and ribosomal
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genes localization) has also provided further taxonomically
informative data (for a review, see Pazza and Kavalco, 2007).

Although little is known about the cause and effect
of the rearrangements during the evolutionary process, the
correlation between independent data sets such as molecular
and chromosomal data suggest that some karyotypic signatures
are associated with organismic evolution. Based on Cytochrome
B (CytB) sequences, Mello et al. (2015) found three genetically
distinct clades out of 17 Astyanax nominal species from the
Iguaçu and adjacent river basins. Likewise, using Cytochrome
Oxydase I (COI) sequences, Rossini et al. (2016) found five clades
out of 64 nominal species plus 12 provisionally identified taxa.
Based on DNA barcoding criteria, these authors identified only 21
morphological species. These studies also suggest the possibility
of horizontal transfer that affects some species within otherwise
cogent taxa. Indeed, hybridization may play a fundamental role
in the genus speciation, especially when these events involve
chromosomal characteristics. The matter is particularly difficult
since the claims of possible natural hybrids in the specialized
literature are rare (Artoni et al., 2006; Pazza et al., 2006; Sassi et al.,
2018).

Thus, we analyzed mitochondrial sequences from individuals
with known chromosome characteristics within the five clades
proposed by Rossini et al. (2016) to describe the relations
between DNA sequences and chromosomal rearrangements.
We obtained a phylogenetic tree that depicts chromosomal
characteristics that are strongly associated with the proposed
clades.

MATERIALS AND METHODS

In the present study we sequenced samples of 195 individuals
from 16 nominal species of the genus Astyanax, deposited in the
tissue collection of the Laboratory of Ecological and Evolutionary
Genetics (LaGEEvo), of the Federal University of Viçosa, Rio
Paranaíba campus. The species were chosen based on their
chromosomal data as analyzed in previous works and because
they were included in Rossini et al. (2016) clades. Geographic
coordinates, Vouchers, and GenBank sequence access numbers
are summarized in Supplementary Table S1. This study was
carried out in accordance with the recommendations of the
Guide for the Care and Use of Laboratory Animals by the
Conselho Nacional de Controle de Experimentação Animal
(CONCEA). Tissue samples of fish of the genus Astyanax
deposited in the tissue bank of the Laboratory of Ecological
and Evolutionary Genetics (LaGEEvo). All the specimens used
had their chromosomal data analyzed in previous works. No
additional animals were sacrificed to this study.

Our hypothesis on chromosome evolution was based
on the following chromosome characters: diploid numbers,
fundamental number (FN), location of 5S DNA ribosomal sites,
presence/absence of a 5S rDNA site in a specific submetacentric,
referred to as the “marker” chromosome by Almeida-Toledo
et al. (2002) and Kavalco et al. (2005), and finally, the
amount and distribution of the repetitive DNA As-51 probe
(Mestriner et al., 2000).

Total DNA extraction from muscle or liver samples was
carried out using commercial kits (PureLink Genomic DNA
minikit, InvitrogenTM), according to the manufacturer’s
instructions. Amplification of mitochondrial (mtDNA)
subunits 6 and 8 of the ATP synthase enzyme gene (ATPase
6/8) was accomplished using the primers ATP8.2-L8331
(5′-AAAGCRTTRGCCTTTTAAAGC-3′) and CO3.2-H9236
(5′-GTTAGTGGTCAGGGCTTGGRTC-3′) (Sivasundar et al.,
2001). PCR was performed in a final volume of 25 µL, with
2.5 µL of 10× Taq buffer, 1 µL of MgCl2, 1 µL of each primer,
0.2 µL Taq DNA polymerase, 12.8 µL ultrapure water, 1.5 µL
of dNTP, and 5 µL of DNA. The amplification reactions were
performed in a thermocycler at 95◦C for initial denaturation
(2 min) and 30 cycles of 94◦C (30 s), 58◦C (30 s), and 72◦C
(1 min). The PCR product was visualized on 1% agarose gel;
purification and sequencing was performed by a third-party
company (Macrogen, Korea).

Sequence editing was performed using Chromas Lite v2.01
and sequence identity was checked with BLASTn1. Sequences
alignment was carried out with ClustalW v1.6 (Thompson et al.,
1994) as implemented in MEGA v7 (Kumar et al., 2016).
A Maximum Likelihood was obtained using the best model fit
with MEGA v7 (Kumar et al., 2016), and chromosome characters
were plotted on this ML phylogram. Phylogenetic signal was
estimated using bootstrap (Felsenstein, 1985).

RESULTS

A total of 195 mitochondrial DNA sequences were obtained
from individuals with known chromosomal characteristics,
corresponding to 16 nominal species of Astyanax from the
Neotropical region. The ATPase 8 gene yielded a 530 bp partial
sequence without insertions, deletions, or stop codons, and the
substitution model was Tn93 + G. The maximum likelihood
phylogram indicated four main clades with strong bootstrap
support. The main events of chromosome differentiation were
plotted on a simplified phylogenetic tree (Figure 1) according
to the trends observed in the analyzed specimens and data from
the literature. At its root, and according to the chromosomal
characteristics of closely related species, we propose a most recent
common ancestor with a karyotype with 2n = 50 chromosomes,
low FN, one or two pairs of chromosomes bearing 5S ribosomal
rDNA sites at the terminal region, and multiple 18S rDNA
sites.

Clade 1
The first clade, composed of 36 individuals, corresponds to
exclusively coastal species, here represented here by A. ribeirae,
A. intermedius, A. giton, and A. hastatus (Figure 2), which have
been recently proposed as members of the Probolodini (Silva,
2017). In this group, all individuals have 2n = 50 chromosomes;
low FN; absence of repetitive DNA As51 and the 5S rDNA marker
chromosome; little constitutive heterochromatin, distributed
mainly in the pericentromeric region; a greater number of 5S

1http://www.ncbi.nlm.nih.gov
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FIGURE 1 | Molecular Phylogenetic analysis by Maximum Likelihood Method (MCL) with synapomorphies of each clade. The evolutionary history was inferred by
using the Maximum Likelihood method based on the Tamura 3-parameter model. The tree with the highest log likelihood (–3974.2120) is shown. Initial tree(s) for the
heuristic search were obtained automatically by applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the MCL approach,
and then selecting the topology with superior log likelihood value. A discrete Gamma distribution was used to model evolutionary rate differences among sites [five
categories (+G, parameter = 0.4001)]. The condensed tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis
involved 196 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 531 positions in the final dataset.
Evolutionary analyses were conducted in MEGA7. Value of bootstrap related to 500 replicates is below of branches.

rDNA sites (ranging from 6 to 10 sites) distributed in terminal
regions; and a variable number of Ag-NORs and 18S rDNA sites.

Clade 2
This clade is composed of five individuals of Astyanax mexicanus
(Figure 3). This species has a few repetitive As51 DNA sites and
5S rDNA is distributed on six sites, including the submetacentric,
marker chromosome pair.

Clade 3
This clade comprises 71 individuals with oval humeral spots
distributed in coastal, Upper Paraná, Paraguay, and São Francisco
river basins, belonging to the Astyanax bimaculatus species
complex, such as A. altiparanae, A. aff. bimaculatus, A. lacustris,
A. assuncionensis, and A. abramis (Figure 4). They all have
50 chromosomes, with a predominance of submetacentric
chromosomes, and consequently high FN numbers. The presence
of As51 repetitive DNA in a few sites and the presence of
5S rDNA restricted to the submetacentric marker chromosome
is remarkable. The distribution of heterochromatin and rDNA
18S/Ag-NORs is variable.

Clade 4
This clade encompasses species widely distributed in the Upper
Paraná, São Francisco, and coastal river basins. Eighty four
individuals of A. paranae, A. rivularis, A. bifasciatus, A. fasciatus,
and A. bockmanni are represented in this clade (Figure 5). Species
of this clade present high intra and interspecific chromosome

variability, with 2n = 46 to 2n = 50 chromosomes. Chromosomes
carrying As51 satellite DNA sites vary from none to 14 sites.
Most species have four 5S rDNA sites, which may include
the chromosomal marker pair. As in Clade 3, they have FN
numbers, relatively few acrocentric chromosomes, 18S rDNA
sites and variable Ag-NORs, and highly variable constitutive
heterochromatin distribution.

DISCUSSION

The phylogram obtained in the present work using the
mitochondrial DNA sequence (ATPase subunit 6) is mostly
congruent with that obtained by Mello et al. (2015) using
the mitochondrial DNA sequence of the cytochrome b gene,
as well as that obtained by Rossini et al. (2016) using the
mitochondrial COI sequence. Karyotypical data allow to give
further support to at least some monophyletic groupings within
the current genus Astyanax, corresponding to the major clades,
as it was proposed by Travenzoli et al. (2015) in Bryconidae.
Despite this cohesion, some species seem to have haplotypes
distributed in different clades, as demonstrated by Rossini
et al. (2016). According to the authors, the COI sequence is
not an appropriate tool to recover phylogenies, but rather to
identify species (Hebert and Gregory, 2005). For the Astyanax
genus, this sequence also seems to be unsuitable for species
identification, since of the more than 70 nominal species
analyzed by Rossini et al. (2016), only 21 were unequivocally
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FIGURE 2 | Molecular Phylogenetic of the Clade 1 analysis by Maximum Likelihood Method. Parameters described in Figure 1. Clade 1 is formed by species
distributed only in coastal drainages as A. hastatus, A. ribeirae, A. intermedius, and A. giton.

FIGURE 3 | Molecular Phylogenetic of the Clade 2 analysis by Maximum
Likelihood Method. Parameters described in Figure 1. Clade 2 is formed by
A. mexicanus.

identified by barcoding. The low genetic distances observed
in the mitochondrial analyses among species of the Astyanax
genus are often explained by the rapid divergence between
them (Ornelas-García et al., 2008; Carvalho et al., 2011; Rossini
et al., 2016). Therefore, multidisciplinary approaches may be
more effective for reconstructing phylogenies within this genus.
In lower systematic levels, molecular data associated with the
chromosomal features were particularly effective to understand
evolutionary patterns in A. aff. bimaculatus (Kavalco et al., 2011)
and A. fasciatus (Pansonato-Alves et al., 2013; Kavalco et al.,
2016).

Overlapping cytogenetic onto molecular phylograms offers
an insight on large-scale chromosome evolutionary Astyanax.
This analysis allows us to point out as the main specific
chromosomal markers to be explored: the distribution patterns
of 5S rDNA and As51 repetitive DNA, as they show signatures

within the genus Astyanax. On the other hand, other characters
such as location of the Nuclear Organizing Regions and
C-banding shows patterns seem more informative at population
level, as demonstrated by Jacobina et al. (2011) in Hoplias
malabaricus (Erythrinidae). Although other markers have been
used sporadically in chromosome studies of the genus Astyanax
(Barbosa et al., 2015, 2017; Silva et al., 2015; Piscor and Parisi-
Maltempi, 2016), their informative value will require intensive
sampling in an array of species.

The genus Astyanax is currently incertae sedis in the
Characidae family, and the evolutionary relations within the
genus, as well as its phylogenetic relation to other genera of
the family are quite challenging both from the morphological
point of view (Mirande, 2009, 2010), and from the molecular
systematic (Oliveira et al., 2011; Rossini et al., 2016). Despite the
incomplete database, others genera related to Astyanax usually
show more conservative cytogenetic characters, such as steady
patterns of 50 chromosomes, multiple NORs and 5S ribosomal
genes located in one or more pairs of chromosomes at the
terminal region. These suite of characteristics have been reported
in the genus Oligosarcus (Kavalco et al., 2005; Hattori et al., 2007;
Barros et al., 2015), Deuterodon (Mendes et al., 2011; Coutinho-
Sanches and Dergam, 2015), Hollandichthys and Ctenobrycon
(Carvalho et al., 2002), plus the absence of the homology with the
As51 repetitive DNA (Kavalco et al., 2005), suggesting that these
characters are close to the evolutionary origins of Astyanax, being
symplesiomorphies in clade 1.
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FIGURE 4 | Molecular Phylogenetic of the Clade 3 analysis by Maximum Likelihood Method. Parameters described in Figure 1. Clade 3 is formed by species with
humeral oval spot like the A. bimaculatus complex and the related species.

Clade 1
The clade 1 obtained by our molecular analyses corresponds
to clade 5 of Rossini et al. (2016). In the specimens analyzed
we can observe the plesiomorphic chromosome characteristics
(as a karyotype with 2n = 50 chromosomes and a low FN)
and with good structure in A. ribeirae (Kavalco et al., 2010),
A. intermedius, and A. giton (Kavalco and Moreira-Filho, 2003;
Kavalco et al., 2004). In A. hastatus, different cytotypes with
2n = 50 chromosomes have been observed, constituting yet
another species complex within the genus Astyanax (Kavalco
et al., 2009), as corroborated by the present study (Figure 2).
Also, a combination of molecular and chromosomal data suggests
that the current A. hastatus may encompass more than one
OTU (operational taxonomic unit) and so, more than one ESU
(evolutionarily significant unit). The Astyanax species distributed
in the coastal basins were added to the Probolodini group with
species from the genus Probolodus, Deuterodon, and Myxiops
and Hyphessobrycon luetkenii (Silva, 2017). These other species
are less studied by cytogenetic methods, but until now, the
chromosome characteristics seems to be shared (Mendes et al.,
2011; Coutinho-Sanches and Dergam, 2015), bringing new
evidence supporting the group. Unfortunately, As51 repetitive
DNA in these coastal distribution species has not been confirmed
so far (Kavalco et al., 2007, 2009).

Smaller variations in the number of 5S rDNA sites can be
observed among these species, although they are always located

in the proximal or distal region of acrocentric chromosomes,
reaching up to 10 markings in A. intermedius and A. giton,
which differ by a pericentric inversion (Kavalco et al., 2004).
The hypothesis that these characteristics are a symplesiomorphy
can be corroborated in independent chromosome data, such
as those obtained for A. taeniatus (Cunha et al., 2016),
which is also included in the same clade 5 by Rossini et al.
(2016). The evolutionary dynamics of this gene are related
not only to variations in non-transcribed spacers, but also to
syntenia with long and short interspersed nuclear elements,
non-long terminal repeat retrotransposons, U-snRNA families,
and microsatellite polymorphisms (Rebordinos et al., 2013).
According to these authors, polymorphisms in non-transcribed
regions are observed in fish. Polymorphisms in transcribed
regions do not appear to interfere with the cellular activity of
5S rDNA, and the molecular diversity of the 5S rDNA gene
families is greater than the chromosome diversity (Rebordinos
et al., 2013).

Clade 2
At the root of clades 2, 3, and 4, it is possible to hypothesize
two main chromosomal events: the occurrence one of the 5S
rDNA sites to the proximal position of a specific submetacentric
chromosome pair, which has been considered as a marker
(Almeida-Toledo et al., 2002) and the presence of As51 repetitive
DNA in the Astyanax genome.
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FIGURE 5 | Molecular Phylogenetic of the Clade 4 analysis by Maximum Likelihood Method. Parameters described in Figure 1. Clade 4 is formed by red-tailed
species and their related group as A. fasciatus, the A. scabripinnis group, A. bockmanni, and A. bifasciatus. This group is the most chromosome diverse in the
genus and shows little mitochondrial divergence.

The 5S rDNA in clade 2 appears on a pair of two-arm
chromosomes in the proximal region of the centromere (Kavalco
and Almeida-Toledo, 2007). This marker may have arisen by
pericentric inversion from an acrocentric chromosome bearing
the 5S rDNA site, which should represent the most basal character
state.

In addition to this site, A. mexicanus also presents four
more 5S rDNA sites on acrocentric chromosomes, being distal
markings on one pair and proximal markings on another
(Kavalco and Almeida-Toledo, 2007). The isolation of the
group represented by the A. mexicanus is congruent with some
molecular data that relate ichthyofauna invasions in Central
America with the genesis of the Panamá Isthmus (around
3.3 Mya; Ornelas-García et al., 2008), as well as with clustering
with DNA barcoding (Rossini et al., 2016). Unfortunately,
cytogenetic data for the species of this group are scarce, but it
would not be surprising to have independent autapomorphies of
the karyotype evolution of the cisandine species of Astyanax.

As51 satellite DNA is partly repetitive tandem DNA and holds
similarities with transposable elements that were isolated from a
population of A. scabripinnis carrier of chromosome B (Mestriner
et al., 2000). In this population, this DNA was located mainly

in the B chromosome, besides two to four sites in the distal
region of acrocentric chromosomes. Considering the possible
origin from transposable elements, it is appropriate to assume
that their distribution was initially restricted to a few sites and
subsequently spread in the genome by intrinsic mechanisms of
the repetitive sequence amplification. In fact, the individuals of
A. mexicanus that form clade 2 in the present work have few sites
that carry this satellite DNA, and that it is shown more diffusely
than in other species, which suggests a smaller number of copies
or even only partial homology (Kavalco and Almeida-Toledo,
2007). This divergence might be related to independent evolution
of A. mexicanus relative to the A. scabripinnis strain that donated
this probe.

Clade 3
The increase of As51 satellite DNA sites characterizes the
common ancestral root of clades 3 and 4, in contrast to the
loss of 5S rDNA sites on acrocentric chromosomes observed
in members of Clade 3. Clade 3 is composed of the species
complex “A. bimaculatus,” represented herein by A. altiparanae,
A. aff. bimaculatus, A. lacustris, A. asuncionensis, and A. abramis.
Specimens from this clade present 2n = 50 chromosomes,
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with a higher FN, multiple Nucleolar Organizing Regions, and
consequently multiple sites of 18S rDNA, according to the
samples analyzed (Kavalco et al., 2011) and others independent
studies (Almeida-Toledo et al., 2002; Fernandes and Martins-
Santos, 2004, 2006; Peres et al., 2008; Hashimoto et al., 2011;
Giongo et al., 2013).

Clade 3 is characterized by a synapomorphy: only one pair
of chromosomes carrying a rDNA 5S site on its pericentromeric
region (Kavalco et al., 2011) and in the literature (Almeida-
Toledo et al., 2002; Fernandes and Martins-Santos, 2006; Peres
et al., 2008, 2012; Hashimoto et al., 2011; Paiz et al., 2015).
One exception is A. abramis, which presents in addition to the
site of the chromosomal marker pair, a pair of extra-acrocentric
chromosomes with proximal marking (Paiz et al., 2015; Piscor
et al., 2015). This differentiated pattern may be an autapomorphy
of A. abramis, whose molecular distinctiveness within the group
was also evident in our analysis (Figure 5). Additionally, the
pattern of occurrence of a 5S rDNA carrier pair can be seen
in other species related to the A. bimaculatus group, as in
A. janeiroensis (Vicari et al., 2008), A. goyacensis (Santos et al.,
2013), and A. elachylepis (Santos et al., 2016).

In turn, there is little data on the distribution of As51 satellite
DNA in this group, besides previous reports (Kavalco et al.,
2011). In these species, small sites are observed, suggesting
relatively lower number of in tandem copies and more restricted
distribution through the karyotype, except for A. bimaculatus
from coastal basins, in which As51 satDNA is absent (Kavalco
et al., 2011). On the other hand, in Astyanax janeiroensis, a
considerable number of very conspicuous sites are observed
(Vicari et al., 2008; Kantek et al., 2009b). Although the Catalog
of Fishes (Eschmeyer et al., 2017) characterizes the distribution
of A. janeiroensis as being “in Brazil”, Melo (2001) suggests that
its distribution is restricted to the basins of the Paraíba do Sul
and other coastal drainages. These discrepant and independent
occurrences in A. janeiroensis and A. bimaculatus can be a result
of the historical biogeography of coastal drainages, affected by
stream capture from continental basins and complex dispersal
due to marine regressions and transgressions (Pereira et al.,
2013). Fish faunas in these regions are characterized by a high
degree of endemism and low species richness (Albert and Reis,
2011).

Clade 4
Clade 4 comprises a group of species with the highest
chromosomal variability in the genus, with 2n ranging from
46 to 50 chromosomes and including the species complexes
A. scabripinnis (encompassing A. rivularis and A. paranae) and
A. fasciatus, as well the species A. bockmanni and A. bifasciatus
(formerly referred to as Astyanax sp. B). Equally variable among
the species of this clade is the number of NOR/rDNA 18S sites
and the constitutive heterochromatin distribution patterns. The
molecular divergence among these species is apparently quite
recent, with low genetic distance indices as observed in the
clade 1 and by Rossini et al. (2016) using the COI gene. Despite
some level of structuring, low bootstrap indexes preclude further
hypotheses on the genetic diversification of the group. There
is no detailed chromosome information on the other species

analyzed by Rossini et al. (2016) belonging to this clade, except
for A. parahybae (Kavalco and Moreira-Filho, 2003; Kavalco et al.,
2004) presenting 2n = 48 chromosomes, and A. schubarti (Morelli
et al., 1983) presenting 2n = 36 chromosomes. Unfortunately, we
were unable to obtain the mitochondrial DNA sequence from
A. parahybae in the present work.

Among the specimens analyzed, this clade presents some
species with a conserved chromosome number, always with
2n = 50 chromosomes, such as A. bockmanni and A. bifasciatus
(Fazoli et al., 2003; Kavalco et al., 2009; Hashimoto and Porto-
Foresti, 2010). On the other hand, the others species present high
levels of numerical chromosome variation.

This diploid number (2n = 50) was also observed in
the A. paranae specimens from the Paranaíba and some
A. rivularis specimens from the São Francisco river basin,
although other specimens of the Paranaíba river basin also had
2n = 46 chromosomes (data not shown, in preparation). Both
species belong to the historical A. scabripinnis species complex,
characterized by broad sympatric and allopatric karyotype
variation (Moreira-Filho and Bertollo, 1991, among others).

Finally, a diploid number that varies from 2n = 46 or 2n = 48
was observed among the analyzed specimens of A. fasciatus
(Pazza et al., 2006; Kavalco et al., 2016) that was also observed
in other populations (Artoni et al., 2006; Medrado et al.,
2008; Pansonato-Alves et al., 2013). This variation is considered
common in the species, although 2n = 50 chromosomes have
already been reported (Artoni et al., 2006).

In relation to rDNA 5S, most of the species/populations
already analyzed have the same following pattern: one site on
the marker chromosome plus a pair of acrocentric chromosomes
with a rDNA 5S site in the proximal region; this was also
observed in the specimens analyzed in the present work
(Kavalco et al., 2004, 2007, 2009, 2016; Pazza et al., 2006)
and in the literature available for A. bockmanni, A. fasciatus,
and A. parahybae (Almeida-Toledo et al., 2002; Hashimoto
et al., 2011; Silva et al., 2013; Daniel et al., 2015). Despite
this relatively conserved pattern, there are two autapomorphies
in the 5S rDNA phenotype in A. fasciatus. Medrado et al.
(2015) reported the occurrence of a small variation in the
distribution of 5S rDNA sites from a population of Astyanax aff.
fasciatus where the marker site of the metacentric chromosome
is absent, an evident populational autapomorphy. We also
considered the additional occurrence of two 5S rDNA sites
of A. aff. fasciatus from the Paraíba do Sul river basin an
autapomorphy. In total, six 5S rDNA-bearing chromosomes are
detected, represented always by the marker chromosome pair
plus two st/a chromosomes pairs in this sample (Kavalco et al.,
2016).

In relation to the A. scabripinnis group, the most studied from
the cytogenetic point of view (Pazza and Kavalco, 2007), several
populations of the Coastal, São Francisco, and Upper Paraná
rivers show the same mentioned pattern (Mantovani et al., 2005;
Fernandes and Martins-Santos, 2006; Peres et al., 2008; Vicari
et al., 2008). However, other studies have already demonstrated,
in addition to these standard sites, more distal or proximal sites in
other pairs of acrocentric chromosomes in populations of coastal
rivers and the Upper Paraná basin (Kavalco et al., 2004).
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Although absent in our analyses, A. schubarti is a species
that has available chromosome data and is found in clade 1
of Rossini et al. (2016), the clade analogous to clade 4 of this
work. Its low chromosomal number (2n = 36) and high FN
suggest the occurrence of Robertsonian events of chromosome
fusion at its origin (Morelli et al., 1983). In fact, this species
shows the 5S rDNA sites located in the proximal region of
two pairs of metacentric chromosomes (Almeida-Toledo et al.,
2002). Interestingly, A. currentinus, a species recently described
(Mirande et al., 2015), presents 2n = 36 chromosomes and the
same distribution pattern of A. schubarti 5S rDNA, with an
additional odd site (Paiz et al., 2015). The authors suggest that
these species may belong to the same morphological group and
are phylogenetically related. Unfortunately, there are no available
phylogenetic data to support this hypothesis.

Among the specimens used in the present study, populations
of the A. fasciatus and A. scabripinnis species complexes
presented sites with homology with the As51 satellite DNA
(Kavalco et al., 2007, 2013; Pazza et al., 2008). On the other
hand, this probe showed no homology in the chromosomes of
A. bockmanni (Kavalco et al., 2009). Among the species included
in this group and in the clade 1 of Rossini et al. (2016), in
only one population of A. rivularis (cited as A. scabripinnis)
this repetitive sequence is absent (Abel et al., 2006). On the
other hand, other species belonging to clade 1 of Rossini et al.
(2016) have already presented homology with As51 satellite DNA,
such as A. parahybae (Kavalco et al., 2007) and A. serratus
(quoted as Astyanax sp.; Kantek et al., 2009a). Among these
species, the available data are mainly concentrated in the group
A. scabripinnis/paranae/rivularis (Abel et al., 2006; Kantek et al.,
2009b; Barbosa et al., 2015, 2017), and in A. fasciatus (Abel
et al., 2006; Kantek et al., 2009b; Medrado et al., 2015). The
distribution of this satellite DNA in A. fasciatus seems to follow
a biogeographic pattern, with an increase in the number of sites
in drainage populations in the interior of the continent, and a
decrease in coastal populations (Kavalco et al., 2013; Medrado
et al., 2015). This pattern does not appear to be the same in the
A. scabripinnis group and its cryptic species.

The absence of a clear biogeographic pattern of satellite
DNA distribution in the A. scabripinnis populations should be
related to the fact that these fish inhabit isolated headwaters. In
addition to facilitating the occurrence of vicariance processes, this
ecology keeps low levels of gene flow among, with consequent
reduction of population sizes and possible strong effect of genetic
drift, resulting in random of As51 satDNA. This could easily
generate the biogeographic gaps that occur in the genomic
distribution and the existence of populations in which this
repetitive DNA is absent, even being a basal characteristic for

the group. In fact, it is not yet proven if there is any adaptive
role for this DNA, even though we have evidence that it is
present in a larger amount in the species with the greatest
chromosome diversity, with extensive polymorphisms such as
A. fasciatus. The occurrence of the As51 satDNA predominantly
in supernumerary chromosomes (Mestriner et al., 2000) may
imply exogenous origin.

The data of the literature obtained in the present study still
cannot answer definitively the questions about the origin and
evolution of these sequences within the lineages of Astyanax,
only to indicate trends within specific clades. Can As51 satDNA
promote the chromosomal rearrangements that generate the
diversity in diploid numbers and karyotype formulas observed
in Astyanax; or can the genome of species with chromosomal
plasticity, such as those of the genus, facilitate the dispersion
of repetitive DNAs? To answer this question, we need more
information about the role of this DNA in the karyotype
and organismic evolution of the group. Fortunately, the genus
Astyanax, due to the great concentration of studies, is an excellent
model to answer these questions of comparative genomics.
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