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Abstract

Nuclear factor kB (NFkB) activation plays a crucial role in anti-apoptotic responses in response to the apoptotic signaling
during tumor necrosis factor (TNFa) stimulation in Multiple Myeloma (MM). Although several drugs have been found
effective for the treatment of MM by mainly inhibiting NFkB pathway, there are not any quantitative or qualitative results of
comparison assessment on inhibition effect between different drugs either used alone or in combinations. Computational
modeling is becoming increasingly indispensable for applied biological research mainly because it can provide strong
quantitative predicting power. In this study, a novel computational pathway modeling approach is employed to
comparably assess the inhibition effects of specific drugs used alone or in combinations on the NFkB pathway in MM and to
predict the potential synergistic drug combinations.
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Introduction

Combined drug interventions are a common therapeutic strategy

for complex diseases such as cancer [1]. As pointed out recently for

cancer therapy [2], most therapies were initally developed as

effective single agents and only later combined clinically. It is very

important to previously predict the single drug-effect for effective

drug selection related to specific diseases due to the huge number of

drug agents. Moreover, a possible approach to the exploration of

new theapeutic activities is not only present in individual drugs but

also based on the exhaustive study of all possible combinations of

compounds [3]. However, for drug combination strategy, time-

consuming and expensive screening is needed to find promising

combinatorial candidates from the vast number of natural and

synthetic compounds available, and to see if they produce an

appropriate biochemical or cellular effect [4]. Algorithms of making

this drug combination screening faster, more effective and less

expensive are in a continual development, such as synergistic

combination screening [5], genetic algorithm [6] and floating

forward selection [1]. However, all of these methods did not take

insights into the drug effects on detailed signaling pathways. It is

well-known that drug effects are governed by the intrinsic properties

of the drug and the specific signal transduction network of the host

such as disease cells. Predictability starts to become an important

issue at the very begining of a discovery programme. Selection of a

protein target is often based on evidence that the specific protein is

significant in a pathway relevant to the disease of interest, this

evidence perhaps being in the form of a knock-out showing an effect

in changing cell physiology, and on evidence that the protein

target’s function can be affected by the binding of a drug molecule

to it. This approach is deeply ingrained in the current intellectual

furniture in drug discovery, and is characterised as the basis for

‘rational drug discovery’ [7]. Based on this concept, in this work we

take TNFa-induced NFkB signaling pathway in MM as an example

to show how to reach the aim of ‘rational drug discovery’ by

combining computational pathway modeling approach with

dynamic experimental data.

MM is the second most common hematologic malignancy, with

about 15,000 new cases per year in USA, and remains incurable

with a median survival of 3 to 5 years [8]. It is a plasma cell

malignancy characterized by complex heterogeneous cytogenetic

abnormalities. The bone marrow microenvironment promotes

MM cell growth and resistance to conventional therapies [9].

Failure of myeloma cells to undergo apoptosis plays an important

role in the accumulation of myeloma cells within the bone

marrow. Several anti-apoptotic proteins and anti-apoptotic

signaling cascades have been identified that contribute to the

anti-apoptotic phenotype of the myeloma cells [8,9,10]. Actually,

adhesion of myeloma cells to bone marrow stromal cells (BMSCs)

triggers none-cytokine and cytokine-mediated tumour cell growth,

survival, drug resistance and migration. MM cells binding to

BMSCs upregulates cytokine secretion from both BMSCs and

tumour cells. These cytokines activate major signaling pathways:

extracellular signal-regulated kinase (ERK); Janus kinase 2

(JAK2)/signal transducer and activator of transcription 3

(STAT3); phosphatidylinositol 3-kinase (PI3K)/AKT; and NFkB.

These pathways not only promote growth, survival and migration

of MM cells, but also confer resistance to conventional

chemotherapy. Targeting these mechanisms or inhibiting these

pathways offers a potential therapeutic strategy to induce the

apoptosis of MM cells and overcome drug resistance.
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It has previously shown that canonical NFkB pathway in MM

cells is mainly activated by TNFa [11,12]. Several drugs effective

for the treatment of MM, including bortezomib (BZM), thalido-

mide, lenalidomide and arsenic trioxide (ATO), have been found

to block NFkB activation [13]. Therefore, blockade of TNFa-

induced NFkB signaling by different single drugs or different drug

combinations represent a novel therapeutic strategy in MM.

However, at least to the best of our knowledge, there are no any

quantitative or qualitative results of comparison assessment on

inhibition effects between these different single drugs or drug

combinations. So, we do not know how to choose drugs to inhibit

the NFkB pathway, or we do not know which drug is the best one?

What is the best dose for specific single drug? What is the best ratio

and dose for specific drug combination? How about the inhibition

effect if the drug combination is chosen with fixed ratio and dose?

To answer these questions, a mass of biological experiments have

to be designed to compare the inhition effects. However this

tradional approach is time-consuming and expensive.

Computaional modeling is becoming increasingly indispensable

for basic and applied biological research. Essentially, a mathe-

matical model is a systematic representation of biological system,

whose analysis can confer quantitative predicting power. One of

the common applications of mathematical modeling is to analyze

cellular networks systematically and another use of mathematical

modeling has been demonstrated in devising strategies to control

cellular dynamics. Therefore, the computational modeling is

suitable for signaling pathway analysis and drug combination

response analysis in our study.

In this paper, we try to employ the computational modeling

approach to assess or predict the specific drug (used alone or in

combination) responses on inhibition of NFkB pathway in MM.

We firstly develop the computational model qualitatively, and then

collect some specific experimental data to estimate the model

parameters, and further design specific simulation protocols to

predict the responses for single drugs and drug combinations. The

workflow is presented in Figure 1. At first, a qualitative system for

NFkB pathway is constructed based on the procedure beginning

from qualitative pathway to graphical model and then to the

ordinary differential equations (ODEs) system description. Then

dynamic experimental data are collected, and optimization

method is employed to estimate the unknown model parameters

based on the dynamic experimental data. So, the quantitative

system is built after the procedure of parameter estimation, and

then parameter sensitivity analysis is used to asses the stability of

the constructed system. After that, the considered drugs are

modeled into the quantitative system based on specific mecha-

nisms of actions and the complete ODEs system with or without

drug treatments is constructed after the modification of ODEs

with input of drugs. Then the simulation protocols are designed to

predict the drug effects based on the quantification methods.

Therefore, predicted drug profiles are presented for specific single

drugs and drug combinations from model simulations, especially

for the prediction of synergy on drug combinations based on Bliss

combination index or Loewe isobologram quantification methods.

Results

Construction of qualitative system for general NFkB
pathway

To understand the interaction mechanisms of various molecular

species in the NFkB activation module, we model this dynamical

system using a set of ODEs, which can be used to systematically

describe the time dynamics of concentrations for all the

components in the pathway. For this purpose, the primary step

is usually to construct the qualitative system. Firstly, the qualitative

NFkB pathway collected from biological literatures is described

(see Figure 2). Based on the qualitative pathway, the graphical

model is then constructed (see Figure 3), and this model give us all

of the details about the considered NFkB pathway including all of

the reactions and all of the molecules related to the pathway and

also all of the symbols of parameters in the ODEs model. In fact,

this model provides us a clear idea on how to build the whole

ODEs system for this model. Further, the detailed computational

model with ODEs system is developed based on this graphical

model (see Materials and Methods).

To facilitate the development of the computational model for

NFkB pathway in MM, the following basic assumptions are made

firstly.

Figure 1. Workflow of the systematic procedure to predict drug-effects. (A) A qualitative system for general NFkB pathway is constructed
based on the procedure from qualitative pathway, graphical model, to ODEs system description. (B) Dynamic experimental data are collected, and
then optimization method is employed to estimate the unknown model parameters based on the dynamic data. (C) The quantitative system for
specific NFkB pathway in MM is built after parameter estimation procedure, and then parameter sensitivity analysis is used to assess the stability of
the constructed system. (D) The considered drugs are modeled into the quantitative system based on specific mechanism of actions. (E) The
complete ODEs system with or without drug treatments is constructed after the ODEs modification for drug input. (F) Simulation protocols are
designed to predict the drug effects based on the quantification methods. (G) Predicted drug profiles are presented for specific single drugs and drug
combinations from model simulation.
doi:10.1371/journal.pone.0014750.g001

Drug Prediction from Modeling
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(a) The cytoplasm can be considered as a uniform mixture in

which all component molecules are uniformly distributed

and they can access to each other with equal probability.

And this assumption reduces the complexity of biochemical

reaction modeling by considering only temporal changes of

molecules rather than their localization.

(b) The law of mass action was used for presentation of all of the

reactions in our model mainly including the binding-

dissociation reactions and the enzymatic reactions. Although

the commonly used reaction model for enzymatic reaction is

the Michaelis-Menten equation which is the famous

simplification of the law of mass action, we only use the

classic law of mass action for all of the enzymatic reactions in

the pathway modeling.

(c) In the pathway, IKKa and IKKb were called the same

name IKK and we did not explore their different functions

no matter what in canonical or noncanonical NFkB

activation pathway.

Figure 2. Qualitative NFkB pathway along with description of considered inhibitors. Firstly, the key cytokine TNFa binds to its receptor,
leading to the recruitment of its adaptors and TRAFs, to form a complex which phosphorylates and activates IKKK, and the phosphorylated IKKK
further activates IKK, leading to the phosphorylation and subsequent degradation of IkBa by 26 s proteasome. The direct consequence is the
translocation of NFkB from the cytoplasm into the nucleus, leading to transcription of target genes. Meanwhile, NFkB also activates its own inhibitor,
IkBa, giving rise to a negative feedback control [28]. By the way, four kinds of specific inhibitors with different targets are also described along with
the qualitative NFkB pathway for the purpose of simulation protocols.
doi:10.1371/journal.pone.0014750.g002

Drug Prediction from Modeling
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(d) We did not consider the effects of inhibitor proteins IkBb
and IkBe because, under constitutive activity of IKK, NFkB

does not directly induce re-synthesis of these proteins.

Therefore, their presence becomes negligible in the steady

state [14].

(e) We did not consider the reactions of the binding and

dissociation between NFkB and the complex of IkBa and

IKK which were also mentioned in [15].

(f) We did not specify the components about NFkB heterodi-

mer isoforms and we just simply considered the single NFkB

isoform p50/p65 in our model similarly as considered in

other literatures [14,15,16].

Construction of quantitative system for specific NFkB
pathway in MM

From the description of Figure 3, using the law of mass action,

we can build the whole ODEs system for the considered NFkB

model in MM. Generally, there are total 26 components in the

model and 26 ODEs, and the total number of the parameters in

the model is 39. It is worth noting that this ODEs model is

motivated, but different, from various computational models for

NFkB pathway in literatures [14,15,16]. By referring to these

literatures, we collect the parameter values and initial concentra-

tions of the components on the model. As expected that the

simulation results from this ODEs model with these parameters

and initial value sets for cytoplasmic IkB and nuclear NFkB

presented an oscillation phenomenon as shown in Figure S1. The

model consists of a series of ODEs describing the time evolution of

concentrations of various molecules and molecular complexes of

interest. The ODEs model involving four sub-systems are

described in Materials and Methods.

A direct attempt to use the existed model parameters to describe

our experimental data obtained from the human MM.1S cell line

as described in Materials and Methods did not yield satisfactory

result and the result is shown in Figure S2, which was not

unexpected since different experimental models can yield different

model parameters, and also the determination of the model

parameters of signaling pathways is subject to uncertainty and

non-identifiability of kinetic parameters of the enzymes involved in

signaling as mentioned in [17]. We therefore carried out

parameter fitting of the model to the dynamic experimental data

described in Materials and Methods. The whole parameter

estimation procedure in this study is referred to the method

presented in [17] and the optimization procedure is implemented

using DBsolve software with the version 7.48 [18,19]. We use the

following formula for parameter estimation.

X̂X~

arg min
X[V

XM
i~1

v1 Y
thð Þ

1 ti ,Xð Þ{Y
expð Þ

1 tið Þ
h i2

z
XN

i~1

v2 Y
thð Þ

2 (t
0
i ,X ){Y

expð Þ
2 (t

0
i )

h i2

( )
,
ð1Þ

where Y
thð Þ

1 ti,Xð Þ and Y
expð Þ

1 tið Þ represent the theoretical and

experimental data on the concentrations of IkB with time-points

M~6, at ti~0, 5, 10, 15, 20 and 30 minutes; similarly,

ð1Þ

Figure 3. Graphical model for the reactions of NFkB pathway. Based on the different functions of components in the pathway, the whole
system can be divided into four sub-systems. Different sub-systems in the pathway are shown in different colors. Yellow represents the TNFa receptor
sub-system, pink represents the IKK phosphorylation cascade sub-system, green represents the cytoplasmic IKK-IkB-NFkB sub-system, and blue
represents the nuclear IkB-NFkB sub-system, respectively. All of the model parameters are also shown at the side of the corresponding reaction
arrows, and the symbols are chosen based on the different meanings, for example, symbol ‘a’ means association or binding rate, ‘d’ means
dissociation rate, ‘c’ means catalysis rate, and so on.
doi:10.1371/journal.pone.0014750.g003
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represent the theoretical and

experimental data on the concentrations of nuclear NFkB with

time-points N~6, at t
0
i~0, 10, 20, 30, 60 and 120 minutes. The

weights v1 and v2 are used to scale the two square errors

into the equal level, herein they are set as v1~

1

,
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1 tið Þ
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,
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i
Y
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respectively. V represents the candidate of parameter space for

optimization procedure, in which the search space for each

parameter is fixed between 0 and 1.

In this procedure, the square error between the experimental

and theoretical data is adopt for the cost function and then the

Hook-Jeevse algorithm [20] is adopt to minimize the cost function

in Equation (1). It is worth noting that all of the parameters for

TNFa receptor and IKK phosphorylation cascade sub-systems

and all of the initial concentration values in the pathway are kept

the same as those in the literatures, and we use this procedure to fit

the parameters to the experimental MM data for cytoplasmic

IKK-IkB-NFkB sub-system and nuclear IkB-NFkB sub-system,

because the reactions in these two sub-systems are specifically

dependent on the type of cell line. Therefore, the total number of

estimated parameters in this study is reduced to 21 from 39. In the

procedure of optimization, the initial values of 21 estimated

parameters are generated randomly between 0 and 1, and the

desired square error is set at 0.01. In order to analyze the

convergence of the optimization algorithm and to obtain the

optimal estimation results, we execute the program for twenty

times with different initial values. All of the results perform good

convergence targeting the desired error, although the speed of

convergence is not so fast with the average convergence time being

about 7 hours. The final estimation results for the parameters are

obtained by using the average of all the runs with the average

square error being 0.0088. The fitting curves on the model can be

seen from Figure 4 which shows the satisfied fitting results for the

cytoplasmic IkB and nuclear NFkB concentration data after

parameters estimation. The summary for all of the parameters is

listed in Table S1, and Table S2 shows the summary for all of the

initial concentrations in the model. Although there exist some

differences on the model parameters between our fitted model and

the model collected from literatures, the fitted model can reflect

the experimental data well. Therefore, we will use this model for

the further analysis in our study.

Parameter sensitivity analysis is a tool to quantitatively

determine the effect that specific parameters on the output. To

understand the relationship between system responses and

variations in individual model parameter values, local parameter

sensitivity analysis was performed. The sensitivity coefficient (S) is

defined as follows:

SO
P ~

LO=O

LP=P
%

DO=O

DP=P
for small DP: ð2Þ

Where O is the system output, i.e. the nuclear NFkB expression,

and P is the set of model parameters involving 39 kinetic

parameters and 11 initial concentrations. Individual parameters

were altered (i.e. increased or decreased) a little bit individually by

1% from their estimated values, and resulting changes in system

output (DO) were determined. The resulting expression essentially

denotes the percentage change in output resulting from 1%

change in parameter Pj . The results of sensitivity analysis on total

39 kinetic parameters and total 11 initial concentrations are shown

in Figure 5. The results show that the model is more sensitive to a

few parameters, i.e. a8, c8, a9, a10, d10, i1, dg3, tr2 and tr3, than

the other parameters, and the results also show that the model is

more sensitive to a few initial concentrations, i.e. IKKK, IKK, the

complex IkB:NFkB, and cytoplasmic NFkB, than the other initial

concentrations, which give us some suggestions on what are the

key kinetic parameters and molecules in the system. Note that the

percentage changes of nuclear NFkB expression in all cases are

less than 0.04%, which shows the constructed pathway model is

very stable, especially for TNFa receptor sub-system and IKK

phosphorylation cascade sub-system corresponding to the param-

eter set from a1 to c7 in Figure 5(A), which shows the rationality

that all of the parameters in these two sub-systems are fixed before

parameter estimation. All of the results for sensitivity analysis are

shown in Figure 5.

Development of a complete system for NFkB pathway in
MM with or without drug treatments

Once we have built the quantitative mathematical model for

NFkB pathway, different drugs with different targets should be

modeled into the constructed ODEs system by specific mecha-

nisms in order to study the different inhibition profiles on single

drugs or drug combinations by simulating the model, meanwhile

these protocols of simulation are also able to predict the optimal

combination on the considered drugs. In this study, we just focus

on the following four kinds of drugs, i.e. Infliximab, Aresenic

tricide (ATO), Bortezomib (BZM) and A238L and we call them

D1, D2, D3 and D4 for the purpose of simplification, and the

corresponding targets are TNFa, IKKp, IkBa degradation and

cytoplasm NFkB, respectively. Figure 2 provides the graphic idea

for these inhibitors in NFkB pathway. The details for the

mechanisms of actions and drug modeling procedure are

presented in Materials and Methods.

Inhibition percentage curves and single-drug evaluations
Once the considered drugs have been modeled into our ODEs

system, we can simulate the whole model by changing the input of

single drug dose, and then to predict the different steady output

values for nuclear NFkB concentration corresponding to the input.

By comparing these values with the control values (i.e. the nuclear

NFkB concentrations in the case without drug input), the

inhibition percentage curves on different single drugs can be

calculated, meanwhile this kind of inhibition curve can be used as

reference to assess the single drug effect. In detail, given the input

of the specific single drug with dose x, the corresponding

inhibition percentage or inhibition rate I xð Þ is defined as follows,

I xð Þ~ Onormal{Odrug xð Þ
Onormal

, ð3Þ

where Onormal is the system output in the normal case, i.e. the

nuclear NFkB expression in the case without drug input, which is

fixed at 0.055 mM in this study according to the previously

estimated model; Odrug xð Þ is the system output in the case with

drug input, which can be obtained from the simulation of model.

It is shown from the simulation of single drug D1 with the

normal binding rate that the inhibition effect is negligible

regardless of the huge and unreasonable dose 1000 mM, as it

can be seen from the bottom curve in Figure 6(A). It can be

guessed spontaneously that this result may be due to the low rate of

drug binding, so we magnify the binding rate by 5, 10 and 100

times higher than the normal one, then run the simulation again.

The results in Figure 6(A) show that the inhibition effects are still

very low and just about 2%, 4%, 8% and 34% corresponding to

Drug Prediction from Modeling
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the different binding rates at fixed 500 mM dose. So, the influence

of the binding rate is not significant to explain the ineffectiveness of

D1. By another simulation, we try to seek the relationship between

the nuclear NFkB concentration and the initial concentration of

ligand TNFa. The predicted result shows that about 0.0003 mM,

0.001 mM and 0.0048 mM TNFa, i.e. about 0.15%, 0.5% and

2.4% of normal initial TNFa dose 0.2 mM, can sufficiently lead to

50%, 70% and 90% nuclear NFkB output comparing to the

normal case, as it can be seen in Figure 6(B). This result suggests

that the stimulus of TNFa with 0.2 mM concentration is largely

redundant to stimulate the production of the nuclear NFkB, which

is consistency with the clinical result of high expression of TNFa in

MM. Therefore, we claim that D1 is nearly no effect to inhibit the

NFkB pathway in MM due to the large redundancy of TNFa
expression.

It is shown from the inhibition profiles in Figure 7 that there

exist different types of profiles for D2, D3 and D4. It can be

concluded that D2 and D4 share the similar inhibition profile with

hyperbolic type function, but D3 has the different inhibition

profile with sigmoidal type function. Note that there exist some

extremely different properties between these two types of

functions, as pointed out in Figure 7 that tripling dose just

increases the inhibition effect 20% and 30% for D2 and D4, but

increases 15 fold of the effect for D3. From this character, to

certain extent we can conclude that D3 is much better than D2

and D4 if we want to choose a single drug to inhibit the NFkB

pathway. Of course, we omit some other factors, such as side-

effect, economical consideration, and so on. It is worth noting that

this drastic difference between these two types of inhibition profiles

underscores the difficulty to predict by inspection what would be

the ‘‘additive effect’’ when two drugs are combined at a given

ratio. By the way, from this kind of profile, we can easily get the

predicted IC values for different inhibition percentages, like IC25,

IC50 and IC75, for example, IC50 represents the concentration of a

Figure 4. Data fitting results. This is the data fitting results for cytoplasmic IkB (A) and nuclear NFkB (B). Black box and solid curve represent the
experimental data point and simulated results from the model after parameter estimation, respectively. In the coordinate system, X and Y axes
present time and concentration, respectively.
doi:10.1371/journal.pone.0014750.g004
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drug that is required for 50% inhibition. These IC values will be

used in the drug combination study.

Combination index and drug combination evaluations
It is well-known that, for drug combination, two drugs working

together maybe can produce an effect greater than the expected

combined effect of the same agents used separately, and we call

this case as synergy combination. Otherwise, we call the

combination as additive effect (i.e. equivalent effect) or antagonism

(i.e. less effect). In addition, different ratio combinations of dose for

the same two drugs sometimes can produce totally different effects,

such as one combination is synergistic but another is antagonistic.

Therefore, it is also significant to predict the synergy combinations

of dose ratios using computational model. Although a number of

available mathematical combination indexes can be used to assess

the effect of drug combination, in this study we prefer to select

Bliss independence [21], because it is not only a famous synergy

quantification method but also extremely convenient for calcula-

tion. Firstly, we briefly introduce the Bliss independence idea as

follows. Let f 1, f 2 and f 12 denote the effects for single drug 1,

single drug 2 and the drugs 1&2 combination respectively, then it

is firstly defined the combination as Bliss synergy if

f 12wf 1zf 2{f 1 � f 2, Bliss additive if f 12~f 1zf 2{f 1 � f 2,

and Bliss antagonism if f 12vf 1zf 2{f 1 � f 2. In this study,

following the Bliss independence idea mentioned above, we then

define a Bliss combination index as follows, CIBliss~

f 1zf 2{f 1 � f 2ð Þ=f 12. Given threshold_up and threshold_

down, the effect of drug combination is defined as synergy if

CIBliss , threshold_down, and antagonism if CIBliss . thresh-

old_up, otherwise additive. In this study, the thresholds are fixed

as threshold_down = 0.99 and threshold_up = 1.01, i.e. 1%

perturbation by noise is tolerated. In the simulation procedure,

the Bliss combination index will be used to assess the synergy of

drug combinations. In this study, the inhibition rate I defined in

Equation (3) will be applied as the index of the drug effect. So, we

give the definition of the Bliss combination index in details here.

For drug 1 and drug 2, given the system input with dose

combination x,yð Þ, the corresponding Bliss combination index

CIBliss(x,y) is defined as follows,

CIBliss x,yð Þ~ I1 xð ÞzI2 yð Þ{I1 xð ÞI2 yð Þ
I12 x,yð Þ , ð4Þ

where I1 xð Þ and I2 yð Þ are the inhibition rates for the single drug 1

with dose x and the single drug 2 with dose y, respectively, which

are defined in Equation (3); I12 x,yð Þ is the inhibition rate for the

drug 1 & drug 2 combination with dose x,yð Þ, which has similar

definition as mentioned in Equation (3).

Based on the prediction of inhibition profiles for D2, D3 and D4

shown in Figure 7, we choose suitable ranges of dose for each drug

Figure 5. Parameter sensitivity analysis of the model. The above subfigure (A) shows the result of model sensitivity on total 39 kinetic
parameters, and the below subfigure (B) shows the result of model sensitivity on 11 initial concentrations of corresponding molecules in the model.
The results show the stability of the constructed pathway model and also give some suggestions on what are key kinetic parameters and molecules
in the model.
doi:10.1371/journal.pone.0014750.g005
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to analyze the drug combinations, i.e. 0,4 mM for D2,

0,0.02 mM for D3 and 0,1 mM for D4. It is worth noting that

the chosen dose ranges are consistent with biological consideration

at least for D2 (ATO) and D3 (BZM). We evenly divide each range

into 100 equal portions and then calculate the corresponding Bliss

combination index defined previously for each combination. Note

that the total number of dose combinations for each two-drug

combination is equal to 10,000. The simulation results for heat-

maps of Bliss combination index are shown in Figure 8. Note that

the threshold parameters, i.e. threshold_up and threshold_down

previously defined in the Bliss evaluation are fixed at 1.01 and 0.99

respectively, of course, other perturbations with more or less

intensity are also considered for testing and the similar results also

can be obtained. It can be found from Figure 8 that all of three

Figure 6. Nearly no effect for D1. (A) Several inhibition profiles of D1 on nuclear NFkB corresponding to different binding rates; (B) Normalized
nuclear NFkB concentration curve on the initial concentration of TNFa. We change the drug dose in a huge range from 0 uM up to 1000 uM to look
over the inhibition percentage. The red inhibition curve is based on the normal drug binding rate. It shows, throughout the dose range, the inhibition
percentage is less than 3%, almost no effect. Then we magnify the binding rate by 5, 10 and 100 times, but the inhibition results are still not
significant. So we claim it is nearly no effect for D1, it means that it is not a good idea using D1 to inhibit the NFkB pathway. Note that this result is
consistent with the clinical result of very high expression of TNFa in MM.
doi:10.1371/journal.pone.0014750.g006
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drug combinations, i.e. D2&D3, D2&D4 and D3&D4, have

different inhibition profiles corresponding to different dose

combinations. For D2&D3, most of the dose combinations are

detected as antagonistic effect because most regions display in red

color in the corresponding heat map in Figure 8, and other small

parts of combinations are detected as additive effect, and this result

is also applicable if we just focus on the region within IC50 values.

For D2&D4, synergistic effect is detected for most dose

combinations fortunately, meanwhile no antagonistic effect has

been detected and all the remains are additive. Moreover, almost

all of the dose combinations within IC50 region are shown as

synergistic. For D3&D4, all of three types of combination effects

have been detected, but just additive and antagonistic effects are

shown within IC50 region. From these combination profiles, it can

be concluded that the D2&D4 drug combination is the best

choice, D2&D3 is the worst one and D3&D4 is the mediacy,

meanwhile the predicted synergistic regions in D2&D4 and

D3&D4 combinations are potentially helpful to conduct the

clinical drug combination experiment.

Discussion

As we mentioned in the previous text, inhibition of NFkB

activation has been proposed as a potential therapeutic strategy in

the treatment of MM. Although different drugs, such as the drugs

considered in this work, with different targets can be used to

inhibit the NFkB pathway, no detailed drug-effect profiles have

been reported in literatures. So, the aim of this work is to

comparably assess the inhibition profiles for specific single drugs

and drug combinations, especially for the prediction of synergy on

drug combinations. We used the computational pathway modeling

combining with dynamic experiment data to do this work. At first,

the dynamic experimental data are used to build the computa-

tional pathway system. Then the simulation protocols are figured

Figure 7. Different types of inhibition profiles on single drugs D2, D3 and D4. Different inhibition profiles on nuclear NFkB production by
different single drugs D2 (A), D4 (B) and D3 (C). The above figures show two types of functions on the inhibition profiles, that is, hyperbolic type
function for both D2 and D4, but sigmoidal type function for D3. It also shows that there exist extremely different characters between these two
types of functions. For example, triple the D2 dose from 1 uM to 3 uM, the inhibition effect only increase 20%. Triple the D4 dose, it also only increase
30%. But, triple the D3 dose, it can produce 15 fold increase. By the way, from this profile, we can easily get the IC value prediction for different
inhibition percentages, like IC25, IC50, and IC75. For example, IC50 represents the concentration of a drug that is required for 50% inhibition. These
IC values will be used for the drug combination study.
doi:10.1371/journal.pone.0014750.g007
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out for this model simulation. For the study of single drug profile,

we put single drug with adjustable dose one by one into the system,

check the output, then compare it with the control case to get the

profile. For the study of drug combination profile or synergy study,

we put two drugs together with adjustable dose combination into

the system, check the output, and then compare it with the control

case to get the profile based on Bliss independence evaluation

quantification method. Finally, the simulation results for the study

of single drugs show that it is nearly no effect for D1 to inhibit the

NFkB pathway, and it also show that there exist different types of

functions for the inhibition profiles of single drugs D2, D3 and D4.

The simulation results for drug combination study show that there

exists strong synergy effect for D2&D4 combination, however

strong antagonism effect has been predicted for D2&D3

combination. Note that the result for D2&D3 combination is

consistent with our previous study in [22,23] which suggested that

although the synergy occurred on proliferation inhibition of

human MM cells for D2&D3 drug combination treatment, this

synergy effect was mainly reflected in JNK pathway rather than

NFkB pathway. It is also worth noting that the D2&D4

combination has the potential to work in synergism by our model

simulation although this predicted result has not been reported,

and the validation by further biological experiment in our

laboratory should take long time due to the procedure of cell

Figure 8. Synergy prediction on D2&D4 combination based on Bliss combination index. Heat maps of different drug combinations, i.e.
D2&D3, D2&D4 and D3&D4, based on Bliss combination index to predict the synergistic region for combination. Different types of combination
effects are shown in different color in the heat maps, and the description of definitions for Bliss combination index and three types of combination
effects are also shown in the bottom-left.
doi:10.1371/journal.pone.0014750.g008
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culture. These predicted results can be used to instruct the

experiment in biology.

In order to test the consistency of the predicted results for drug

combinations, another synergy quantification method has also

been employed for this purpose. As we know, the two most used

reference models for quantifying synergy are Bliss independence

[21] and Loewe additivity [24]. And, the Loewe additivity model,

along with the associated graphical concept of the isobologram, is

usually used by combining with Bliss independence to explore

more information for the prediction of drug combinations. Herein,

we briefly introduce the concept of Loewe synergy. The general

visualized description of Loewe synergy can be seen from Figure

S5, in which the combination index of Loewe synergy for drug 1 &

drug 2 is defined as CI~d1

.
IC

1ð Þ
x

zd2

.
IC

2ð Þ
x

, where d1,d2ð Þ is the

drug combination dose located in the combination contour line or

isobologram, IC
ið Þ

x (i = 1, 2) denotes the x% percentage-based

inhibition concentration of drug i and IC50 is the classic one as we

mentioned previously. As mentioned in the sub-figure box of

Figure S5, CIv1,~1 andw1 indicate Loewe synergism, additive

effect, and antagonism, respectively. As it can be shown from

Figure S5, as an example of Loewe synergy, that the red solid

contour line is a 50% isobologram, i.e. the locus of d1,d2ð Þ
combination points producing the 50% inhibition, and we say that

it has Loewe synergy for all the combination of drug 1 & drug 2 at

all the combination ratios since the contour bows inward.

From the simulation of mathematical model, we calculate the

Loewe isobolograms for different drug combinations based on

different inhibition percentages. The results are presented in the

Figure S6 for drug combinations D2&D3, D2&D4 and D3&D4 at

inhibition concentrations IC25, IC50 and IC75. Using the concept

of Loewe synergy, we can obtain some results from the Figure S6

that for drug combination D2&D3, only strong antagonism is

presented because all the isobolograms IC25, IC50 and IC75 are

outward strongly; for drug combination D2&D4, the weak

antagonism is presented at IC25 and IC50, fortunately the strong

synergism is presented in the case of IC75 because the 75%

isobologram is inward strongly; for drug combination D3&D4, the

strong antagonism is presented at IC25 and IC50, however all of

three kinds of drug combination effects, i.e. synergism, additive

effect and antagonism, are presented in the case of IC75, which

means that it is able to produce different effects corresponding to

different dose combinations. We conclude from the Loewe synergy

analysis that both of the drug combinations D2&D4 and D3&D4

can produce synergy effect, but not for the combination D2&D3.

This kind of result is consistent with that from Bliss independence

quantification method, which may be potentially useful for the

selection of drug combinations in the chemical therapy.

There exist two limitations in this current work. One is that only

one key pathway (in this case, NFkB pathway induced by TNFa
treatment) is considered here, and another is that the molecular

output in the pathway (in this case, nuclear NFkB expression) is

not linked to specific cell phenotypic behaviors in MM. At first, a

pathway-centric approach remains incomplete because of the

intricate cross talks among cell regulatory pathways [25]. Indeed, a

given molecular component can be identified to be associated with

or interact with multiple signaling. Pathways thus cannot properly

be considered to operate in isolation of one another, as an

alteration of one pathway can lead directly or indirectly to changes

in others. To address this problem, a specific growing approach

has been proposed in our laboratory used to expand the seed

pathway (in this case, NFkB pathway) by combining protein-

protein-interactions (PPI) information with Microarray data of

MM cell line. In brief, given the set of interested genes and

proteins as the seeds, we can construct the generic pathway map

by growing those seeds based on the interaction database. Further,

we will integrate the experimental data to determine the signaling

process and positive/negative feedback loops in the expanded

network. Finally, the single NFkB pathway can be expanded to

multi-pathways in order to solve this problem. For the second

limitation, most of the current work-like system modeling efforts

aimed at predicting the effects of therapeutic perturbations of cell

regulatory pathways, i.e. restricted its attention to predict

molecular-level processes (in this case, nuclear NFkB expression).

What is vital, of course, is to predict the effects of these

perturbations on cell phenotypic functions at the very least. The

most difficult problem is to connect the molecular-level pathway

activities to the cell-level functional behaviors, even in absence of

therapeutic perturbations. Fortunately, relational modeling meth-

ods, such as partial least squares regression [26] and quasi-non-

parametric/generalized model [27], which both link the key

phosphorylated proteins to the cell fate decisions using specific

linear/non-linear functions, can be employed as the most effective

approaches to solve this problem.

Materials and Methods

Dynamic experimental data
Although there were a few computational models for the NFkB

pathway and most of the model parameters have been identified

[14,15,16], all of these models did not focus on the specific MM

cell line. In this study, we focus on the specific NFkB pathway in

MM. So it is necessary to validate and rectify the model obtained

from the literatures based on the experimental data produced from

the specific human MM cell line. For this purpose, we have

collected different types of data from literatures [11,12] and also

from our laboratory. We firstly point out that all of these data are

produced from human MM.1S cell line stimulated with 0.2 uM

TNFa, which is consistent with our model in this study because

our model is also focused on MM with 0.2 uM TNFa stimulation.

Herein we obtained some time-course experimental data on

protein expression for key components of NFkB pathway in MM,

including the cytoplasmic IkB data with 6 time-points at 0, 5, 10,

15, 20, and 30 minutes from western blot experiment in [11,12],

and the nuclear NFkB data with 6 time-points at 0, 10, 20, 30, 60,

and 120 minutes from electrophoretic mobility shift assay (EMSA)

in [11,12] and flow cytometry experiment in our laboratory, which

are shown in Figure S3. These dynamic time-course data are

obtained by calculating the mean of all the corresponding data at

each time-point. It is worth noting that the same time-points for

the cytoplasmic IkB data and the nuclear NFkB data is not

essential in the procedure of parameter estimation because the

proposed optimization algorithm is able to handle this kind of data

by minimizing the sum of square errors between the experimental

data and the simulation data for all of the considered time points,

as described in the section of parameter estimation in the previous

text.

ODEs system of NFkB pathway in MM
Here we describe the details for the ODEs system, but just list

the equations for TNFa receptor sub-system as an example and

the details for other three sub-systems are provided in Text S1 of

Suppoting Information.

Module 1- TNFa receptor sub-system

This module describes the process from the binding of TNFa
with its receptor to the formation of complex after recruitment.

TNFa: Equation (5) describes the changes on the concentration

of TNFa due to binding (with rate a1) to its receptor TNFR1 and

dissociation (with rate d1) from the complex TNFa:TNFR1
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(TNFR1C).

d TNFa½ �
dt

~{a1 � TNFa½ � TNFR1½ �zd1 � TNFR1C½ �; ð5Þ

TNFR1: Equation (6) describes the changes on the concentration

of TNFR1 due to binding (with rate a1) to its ligand TNFa and

dissociation (with rate d1) from the complex TNFR1C.

d TNFR1½ �
dt

~{a1 � TNFa½ � TNFR1½ �zd1 � TNFR1C½ �; ð6Þ

TNFR1C: Equation (7) describes the changes on the concentra-

tion of the complex TNFR1C due to association & dissociation

mechanism between two teams of proteins, in which one is

between TNFa and TNFR1 (with rates a1 and d1) and another is

between TNFR1C and TNFR1 adaptor (TNFR1A) (with rates a2

and d2).

d TNFR1C½ �
dt

~a1 � TNFa½ � TNFR1½ �{d1 � TNFR1C½ �{

a2 � TNFR1C½ � TNFR1A½ �zd2 � TNFR1AC½ �;
ð7Þ

TNFR1A: Equation (8) describes the changes on the concentration

of TNFR1A due to binding (with rate a2) to the complex

TNFR1C and dissociation (with rate d2) from the complex

TNFR1:TNFR1A (TNFR1AC).

d TNFR1A½ �
dt

~

{a2 � TNFR1C½ � TNFR1A½ �zd2 � TNFR1AC½ �;
ð8Þ

TNFR1AC: Equation (9) describes the changes on the concentra-

tion of the complex TNFR1AC due to association & dissociation

mechanism between two teams of proteins, in which one is

between TNFR1C and TNFR1A (with rates a2 and d2) and

another is between TNFR1AC and TRAFs (with rates a3 and d3).

TRAFsC represents the complex TNFR1AC:TRAFs.

d TNFR1AC½ �
dt

~

a2 � TNFR1C½ � TNFR1A½ �{d2 � TNFR1AC½ �{

a3 � TNFR1AC½ � TRAFs½ �zd3 � TRAFsC½ �;

ð9Þ

TRAFs: Equation (10) describes the changes on the concentration

of TRAFs due to binding (with rate a3) to the complex TNFR1AC

and dissociation (with rate d3) from the complex TRAFsC.

d TRAFs½ �
dt

~

{a3 � TNFR1AC½ � TRAFs½ �zd3 � TRAFsC½ �;
ð10Þ

TRAFsC: Equation (11) describes the changes on the concentra-

tion of the complex TRAFsC due to association & dissociation

mechanism between two teams of proteins, in which one is

between TNFR1AC and TRAFs (with rates a3 and d3) and

another is between TRAFsC and IKKK (with rates a4 and d4). In

addition, TRAFsC is also retrieved (with rate c4) after catalysis

from the complex TRAFsC:IKKK.

d TRAFsC½ �
dt

~

a3 � TNFR1AC½ � TRAFs½ �{d3 � TRAFsC½ �{

a4 � TRAFsC½ � IKKK½ �z d4zc4ð Þ � TRAFsC : IKKK½ �;

ð11Þ

Mechanisms of actions and drug modeling
Firstly, we introduce the mechanisms of actions for the

considered drugs. In general, D1, D2 and D4 share the similar

mechanism to inhibit the corresponding targets by binding

mechanism. However, D3, with different mechanism, works to

inhibit the degradation of IkBa by blocking the activity of

proteasome. Based on these mechanisms, we got the drug

modeling description as follows.

For D1, we assume it competitively inhibits TNFa with the

same binding kinetics as that of the reaction involving TNFa and

its receptor, that is, the binding rate is set as a1 and the dissociation

rate is set as d1. So, we add a new equation for D1 into the system,

meanwhile we also modify an old equation for TNFa. For D2 and

D4, it is similar with D1. The details of mechanism of actions and

drug modeling for D1, D2 and D4 are provided in Text S2 of

Supporting Information.

For D3 (i.e. BZM), it is the first therapeutic proteasome inhibitor

to be tested in human and it has been approved in the US for

treating relapsed MM. D3 works to inhibit the degradation of IkBa
by blocking the activity of the proteasome. For simulating this drug’s

effect, we could not directly introduce an additional component to

the system similarly as D1 because the degradation process of IkBa
is not explicitly established in the ODEs model. By referring to [14],

we can adjust the corresponding parameters in the terms for NFkB

released after the degradation of IkBa, and the individual terms for

IkBa and NFkB:IkBa molecules rescued from degradation. In

order to describe the dose effect of D3 on the terms mentioned

above, we introduce a Hill-type function to describe the inhibition

rate for IkBa degradation by D3, which is defined as follows,

r~ D3ð Þk0
.

K0z D3ð Þk0
h i

ð12Þ

Where D3 denotes the concentration of drug D3 and k0 is set by 4

and K0 by 10e-10, and the corresponding curve can be seen from

Figure S4 in which the corresponding concentration resulted in

50% inhibition is about 0.0055 mM. Referred to Figure 3, all of four

terms related to the action of D3 are modified as follows,

d10~d ’10zr � c’10, c10~ 1{rð Þ � c’10, d8~d ’8zr � c’8 and c8~

1{rð Þ � c’8, where d ’10, c’10, d ’8 and c’8 represent the parameters

before modification, and d10, c10, d8 and c8 represent the

parameters after modification.

Supporting Information

Figure S1 Oscillation phenomenon. Oscillation phenomenon is

presented in the model that constructed from literatures for

cytoplasmic IKKp (A), cytoplasmic IkB (B) and nuclear NFkB (C).

In the coordinate system, X and Y axes present time and

concentration, respectively.

Found at: doi:10.1371/journal.pone.0014750.s001 (0.27 MB TIF)
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Figure S2 The parameters set obtained from the existed models

can not fit the experimental data. Data fitting results for

cytoplasmic IkB (A) and nuclear NFkB (B). Black box and solid

curve represent the experimental data point and simulated results

from the model with the collected parameters from literatures,

respectively. In the coordinate system, X and Y axes present time

and concentration, respectively.

Found at: doi:10.1371/journal.pone.0014750.s002 (0.66 MB TIF)

Figure S3 Dynamic experimental data. The left sub-figure

shows the western blot data for cytoplasmic IkB including five

samples with up to six time-points, and the right sub-figure shows

the EMSA data including two samples with three time-points and

flow cytometry data with six time-points for nuclear NFkB. The

above sub-figure shows the original experimental data and the

corresponding quantified data based on the mean value is shown

in the below sub-figure.

Found at: doi:10.1371/journal.pone.0014750.s003 (0.52 MB TIF)

Figure S4 Inhibition rate curve for IkBa degradation by BZM.

Based on the definition in Equation (12) of the main text under the

assumption of Hill-type function, the presented curve can be used

to describe the dose effect of BZM on the degradation of IkBa, in

which the unit of BZM concentration in the X axes is mM. Note

that the corresponding concentration resulted in 50% inhibition is

about 0.0055 mM as pointed out in the curve.

Found at: doi:10.1371/journal.pone.0014750.s004 (0.22 MB TIF)

Figure S5 Loewe synergy description based on classic IC50 -

isobologram. According to the definition of the combination index

in the right box, the drug combinations for point A, B and C

indicate Loewe synergism, additive effect and antagonism,

respectively; since the 50% isobologram from the left sub-figure

is the red solid curve rather than the black dash-line or green dash-

curve, it means that all of the combinations present Loewe synergy

for drug 1 & drug 2.

Found at: doi:10.1371/journal.pone.0014750.s005 (0.38 MB TIF)

Figure S6 Loewe isobolograms for different drug combinations

in different cases of IC values. The blue contours in each sub-

figure indicate the corresponding isobolograms, in which the

column is for drug combination and the row is for inhibition

percentage. For D2&D4 combination, in the case of IC75, a

strong synergy effect can be found, however strong antagonism

always can be seen in all of the cases of different IC values for

D2&D3 combination. Note that this result is consistent with the

result based on Bliss independence.

Found at: doi:10.1371/journal.pone.0014750.s006 (0.39 MB TIF)

Table S1 Summary of the total 39 kinetic parameters in model.

Found at: doi:10.1371/journal.pone.0014750.s007 (0.14 MB

DOC)

Table S2 Summary of the initial concentrations in the model.

Found at: doi:10.1371/journal.pone.0014750.s008 (0.07 MB

DOC)

Text S1 The details of ODEs system for other three sub-systems

in the model except for TNFÎ6 receptor sub-system.

Found at: doi:10.1371/journal.pone.0014750.s009 (0.30 MB

DOC)

Text S2 The details of the mechanism of actions and the drug

modeling for other three drugs in the model except for D3.

Found at: doi:10.1371/journal.pone.0014750.s010 (0.08 MB

DOC)
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