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Abstract
Traditionally, fetuin-A embodies the prototype anti-calcification protein in the blood, preventing cardiovascular calcifica-
tion. Low serum fetuin-A is generally associated with mineralization dysbalance and enhanced mortality in end stage renal 
disease. Recent evidence indicates that fetuin-A is a crucial factor moderating tissue inflammation and fibrosis, as well as 
a systemic indicator of acute inflammatory disease. Here, the expanded function of fetuin-A is discussed in the context of 
mineralization and inflammation biology. Unbalanced depletion of fetuin-A in this context may be the critical event, trig-
gering a vicious cycle of progressive calcification, inflammation, and tissue injury. Hence, we designate fetuin-A as tissue 
chaperone and propose the potential use of exogenous fetuin-A as prophylactic agent or emergency treatment in conditions 
that are associated with acute depletion of endogenous protein.

Keywords  Fetuin-A · Mineral chaperone · Biomineralization · Inflammation · Kidney injury

Chronic kidney disease and calcification

In the general population, pathological deposition of cal-
cium minerals most often occurs on heart valves, in the 
myocardium, or in the lumen of microvessels or in the wall 
of large vessels. The degree of coronary artery calcifica-
tion is closely linked to cardiovascular incidents, including 
angina pectoris, myocardial infarction, or stroke [10, 11, 
124]. Patients with chronic kidney disease (CKD) suffer 
from progressive calcification in the cardiovascular system 
and in soft tissues. It is well recognized that the severity of 
calcification is predictive of their survival [120, 121]. The 
finding in a high percentage of CKD stage 2–4 patients that 
coronary artery calcification preceded the dialysis phase 
may call for an early start of screening and therapeutic 

measures [12, 118]. By relating serum characteristics to 
outcomes in more than 300 hemodialysis patients, Ketteler 
and colleagues found that decreased serum fetuin-A levels 
were associated with significantly increased all-cause and 
cardiovascular mortality [56]. Furthermore, fetuin-A lev-
els were inversely related to CRP levels, which indicated 
that fetuin-A is a negative acute-phase protein. Smaller 
studies soon confirmed that the calcification burden was 
indeed inversely correlated with serum fetuin-A [74, 125]. 
The lowest serum fetuin-A levels were detected in patients 
with the calcific uremic arteriolopathy syndrome (calci-
phylaxis) [98], which manifests as painful ulcerated skin 
lesions associated with widespread cutaneous arteriolar 
calcification. Further hallmarks of calciphylaxis include 
local tissue ischemia and cell death, and high mortality 
rates with an estimated 1- or 5-year survival of 45% or 
35%, respectively. As calciphylaxis also triggers a strong 
inflammatory reaction, it remains unresolved if fetuin-A 
insufficiency might be cause or consequence of this severe 
calcification disease. The connection between calcifica-
tion, serum fetuin-A, and mortality is less well defined 
in patients with normal renal function: on the one hand, 
in nearly 1000 cardiovascular patients without prevalent 
kidney dysfunction, the Heart and Soul study reported 
that elevated fetuin-A was associated with the metabolic 
syndrome and hyperlipidemia, but not with hard outcome 
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factors [85]. On the other hand, we reported in the first 
prospective longitudinal study that non-dialysis patients 
with reduced serum fetuin-A had more calcification of the 
aortic valves [58]. In summary, fetuin-A deficiency may 
be a crucial factor informing about cardiovascular calci-
fication, inflammation, and mortality in CKD patients on 
dialysis.

What makes fetuin‑A special?

With about 60 kDa apparent molecular weight on reduc-
ing protein gel electrophoresis, fetuin-A is a mid-range 
sized serum glycoprotein. It was first described in 1944 by 
Pedersen and because of its high abundance in fetal calf 
serum (even more than albumin) was named after the Latin 
word fetus [88]. Fetuin-A has been described in all verte-
brates studied [64] and is predominantly synthesized by 
the liver (> 95%). During fetal development, extrahepatic 
RNA expression was noted in the choroid plexus and pro-
tein expression in all major organs as would be expected 
from a hepatic plasma protein [30, 73, 116]. In human, 
fetuin-A was identified by two independent groups [43, 
102], representing a major part of the α2-band of serum 
electrophoresis due to its high concentration in extracel-
lular fluids (0.4–1 g/L). Thus, it was named α2-Heremans-
Schmid-glycoprotein (AHSG) by Schultze [103], honoring 
the original co-discoverers. The gene locus was termed 
AHSG accordingly. Human fetuin-A is subject to exten-
sive posttranslational modifications comprising proteolytic 
processing from a single chain precursor to the mature 
circulating two-chain protein [50, 79] complex glycosyla-
tion [9, 28, 32], serine and threonine phosphorylation [36, 
50, 62, 70, 80, 81], and sulfation [47], which may modu-
late its biological activity and stability. Together with the 
related plasma proteins fetuin-B, histidine-rich glycopro-
tein, and kininogen, fetuin-A belongs to the family of type 
3 cystatins. Cystatins are cysteine peptidase inhibitors with 
key roles in a multitude of physiological and pathologi-
cal processes. However, no specific target peptidase for 
fetuin-A has been identified to date, despite documented 
interactions with several proteases [49]. The promiscuous 
binding capacity of fetuin-A is not restricted to proteases 
but ranges from small molecules to entire sporozoites (the 
infectious stages of plasmodia—the protozoan parasite 
that causes malaria [52]). Functionally, fetuin-A has been 
ascribed roles in mineral, lipid, or lectin binding, as well 
as in antagonizing insulin receptor or transforming growth 
factor beta signaling [49]. Given the wide array of binding 
partners and its high expression levels, it is reasonable to 
conclude that fetuin-A primarily fulfills scavenger/carrier 
functions. In the following paragraphs, the role of fetuin-A 

as a multifunctional protein will be discussed with an 
emphasis on inflammation and mineralization biology.

Fetuin‑A and inhibition of calcification

Calcium and phosphate are essential for a multitude of cel-
lular functions and their uptake in the intestine, storage 
within cells and long-term deposition in bone, and excretion 
via the kidneys are precisely controlled by the synergistic 
activity of phosphatonins and calciotropic hormones. With 
concentrations in the millimolar range, these ions surpass 
their numerical chemical solubility in water, making the 
blood a meta-stable calcium phosphate liquid already under 
physiological conditions. Furthermore, calcium phosphate 
products such as hydroxyapatite are only marginally soluble 
in water at physiological pH value. Thus, minimal changes 
in acid–base homeostasis or ion levels may quickly lead to 
spontaneous calcification. To counteract the collapse of this 
finely tuned system, widely disseminated and fast-acting reg-
ulatory mechanisms had to evolve that restrict mineralization 
in space and time to where it is fundamentally required. The 
confined mineralization of teeth and bones together with the 
virtual lack of apatite deposition in the systemic circulation 
indicate that this network of local and systemic calcifica-
tion inhibitors functions effectively in the general popula-
tion [48]. A pivotal pathomechanism that tilts the balance 
of calcium phosphate metabolism could be the loss of one 
or more of these mineralization inhibitors. CKD patients are 
especially susceptible to this scenario since the kidneys as 
one of the central regulators of mineral handling are already 
functionally impaired. The nature of mineralization inhibi-
tors and the way they prohibit precipitation can be manifold: 
small molecules like magnesium or pyrophosphate derange 
the regular crystal structure when incorporated instead of 
calcium or phosphate, while protein inhibitors often use 
acidic residues to interfere with the mineralization process. 
In fetuin-A, the mineral binding site, located in the N-termi-
nal cystatin-like domain CY1, contains multiple negatively 
charged glutamic acid (Glu) and aspartic acid (Asp) residues 
arranged in four-pleated beta-sheet [40]. Additionally, phos-
phorylation of serine (p-Ser) residues located within this 
structure could further increase the negative charge of the 
binding interface. Serum fetuin-A phosphorylation analysis 
reports partial phosphorylation [36, 50], and phospho-fetuin-
A was the predominant protein species in both human [108] 
and rat [68] protein-mineral complexes/calciprotein parti-
cles (CPP), suggesting that like in other proteins regulat-
ing biomineralization [112], phosphorylation regulates the 
mineral-binding of fetuin-A. Smith et al. further reported 
that pre-dialysis CKD patients had accumulated CPP in 
serum, and that the amount of fetuin-A in these particles 
was inversely associated with aortic stiffness [108]. The 
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arrangement of p-Ser, Glu, and Asp residues is unique to 
fetuin-A and lacking in other type 3 cystatin family mem-
bers [64]. Theoretically, both crystal nucleation and growth 
can be impaired during the interaction of mineralization-
inhibiting proteins and minerals. Using small-angle X-ray 
scattering (SAXS), an effect of fetuin-A on the nucleation 
of calcium phosphate crystals was excluded [95]. Different 
studies employed H2O/D2O contrast-enhanced small angle 
neutron scattering (SANS) and found that not ionic calcium 
but rather small calcium phosphate complexes (Posner clus-
ters) are the preferred fetuin-A ligand. [41, 42]. Furthermore, 
the lattice constant of these small clusters corresponds nicely 
to the 6–10 Å distance among the acidic amino acid side 
chains making up the binding surface in fetuin-A (Fig. 1). 
Other interfacial analytical methods including differential 
calorimetry, X-ray analysis, surface probing light scatter-
ing, or zeta-potential usually only detected changes in the 
mineral composition, but not of the interface of the protein. 
Thus, despite technical advancements, the atomic structure 
of the interface of fetuin-A and calcium phosphate mineral 
still has not been resolved, because either the resonance sig-
nal of the mineral is much stronger than the protein signal, 
or the mineral part of the complexes crystalizes much faster 
than the protein. Welcome help came from the recent publi-
cation of the crystal structure of the related protein fetuin-B 
[24], which allowed us to derive a comprehensive homology 
model of fetuin-A bound to mineral (Fig. 1). Intriguingly, 
fetuin-A like other proteins involved in biomineralization 
has in its carboxy-terminal region CTR a flexible, intrinsi-
cally disordered stretch of amino acids that may be crucial 
for mineral binding [15]. The CTR likely gets displaced 
when calcium phosphate interacts with the mineral bind-
ing domain CY1. An earlier study mapping the mineral-
binding motif in fetuin-A likely missed this contribution of 
CTR to overall mineral binding due to the insensitivity of 

the available assays [100]. Under mineral supersaturation 
and low fetuin-A concentration, up to 120 Posner clusters 
(Ca9(PO4)6) can bind to one protein molecule [42]. We 
called these smallest basic elements that comprise the major-
ity (95–97%) of the fetuin-A mineral complexes in vitro [42] 
calciprotein monomers (CPM). In continuous supersaturat-
ing conditions, CPM aggregate with each other and bind 
additional plasma proteins to form larger complexes called 
calciprotein particles (CPP) [41, 123]. In contrast to CPM, 
only 3.5% of the fetuin-A, but roughly 50% of the mineral 
content in solution, is complexed in CPP [42]. By volume, 
CPP are composed of 75% mineral and 25% fetuin-A. With 
a diameter of 50–100 nm, primary CPP retain an amorphous 
morphology and are stable for up to 6 h at 37 °C. Within 
24 h, they transform into larger (100–300 nm diameter) sec-
ondary CPP with crystallization of the mineral phase into 
thermodynamically more stable structures, and gradually 
precipitate thereafter. As would be expected from a colloidal 
complex, the rate of this 2-stage Ostwald ripening process 
can be influenced by chemical and physical factors in vitro: 
Ostwald ripening is accelerated by decreased pH, increased 
temperature, and the number of freeze–thaw cycles, and 
increasing the concentration of calcium, phosphate, or 
lysozyme, while it is slowed by addition of albumin, fetuin-
A, or magnesium [72, 86]. Bisphosphonate that has a similar 
structure to native pyrophosphate, a well-established regu-
lator of calcium phosphate mineralization [84, 106], was 
recently shown to inhibit not only the aggregation of CPM, 
but also the phase transition of calcium phosphate, which 
suggests that both events may be coupled by a yet unknown 
mechanism [4]. Most importantly however and clinically rel-
evant was the finding that the in vitro kinetics of CPP forma-
tion reflect calcification risk in serum of mice and men. A 
nephelometry-based precipitation assay was developed that 
estimates the calcification propensity of biological fluids by 

Fig. 1   Molecular model of 
fetuin-A. The model contains 
the amino-terminal cystatin-
like domain 1 CY1 (blue-teal), 
CY2 (green-yellow), and the 
carboxyl-terminal region CTR 
(orange-red) of mouse fetuin-A 
(UniProtKB—P29699). Acidic 
residues Asp and Glu are 
depicted with ball and stick side 
chains; putative Ser/Thr phos-
phorylation sites 135, 138, 305, 
309, 312, 314, 317, and 320 
were replaced by Glu residues 
in this model. Model generated 
by AlphaFold2 and depicted by 
Chimera software [53, 90]
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determining the time of half-maximal transition of primary 
to secondary CPP [86]. This so-called T50 value precisely 
reflected the pro-calcifying milieu in fetuin-A deficient mice 
or calcification-prone hemodialysis patients.

Metabolism and clearance of calciprotein 
particles in vivo

Throughout the years, numerous laboratories reported the 
formation of CPP-like particles in cultured biological fluids. 
In 2003, so called fetuin mineral complexes (FMC) were 
obtained from the serum of rats treated with etidronate [91, 
92]. Young and colleagues generated fetuin-A containing 
granules by incubation of serum-spiked cell culture media 
with calcium and phosphate [135, 136]. The proposed func-
tion of these granules was to control calcium storage, tissue 
deposition, retrieval, and clearance in conditions of excess 
calcium phosphate, and thus to inhibit unwanted mineral-
ization in the body. Shortly after the first reports of CPP 
in vitro, strikingly similar particles were found in the serum 
of calciphylaxis patients [20, 109], or in the fluid obtained 
from a patient with calcifying peritonitis [82]. Major draw-
back of these findings was the prolonged culture time 
required to observed these particles or the need to “seed” 
the fluids with external minerals [107]. Thus, speedier iso-
lation protocols were designed to eliminate crystallization 
artefacts [72, 111]. Indeed, compared to previous studies, 
the prevailing particles were amorphous CPP1, outnumber-
ing the crystalline CPP2 by tenfold. Given the extensive 
time the maturation of secondary CPP requires even under 
supersaturating ex vivo conditions [86], this might not be too 
surprising at all. Moreover, a flow cytometry-based approach 
revealed that although CPP were slightly more frequent in 
dialysis patients compared to healthy controls [110], their 
number continued to be neglectable in relation to lipopro-
tein particles or extracellular vesicles that were supernumer-
ary by several orders of magnitude [21, 26]. These findings 
revealed that CPP are quickly removed from the circulation 
and that they only form when mineral handling is disturbed. 
Furthermore, the combination of rapid clearance and the 
kinetic limitations of CPP ripening make substantial forma-
tion of these particles in the blood unlikely. More likely, 
origins of circulating CPP could be sites where minerals 
are enriched after dietary intake—the intestine [4, 110]—or 
where mineralization occurs physiologically—like bone. 
Here, cryogenic tissue processing methods revealed primary 
CPP-like particles in the vicinity of caudal fins or rapidly 
forming long bones in zebrafish or chicken embryos, respec-
tively [55, 67]. In humans, recent findings also suggested a 
sequential relationship of bone remodeling and serum CPP 
levels [18]; however, clear data demonstrating that endoge-
nous CPP traffic to and from bone is still missing. The above 

studies suggest that the level of circulating secondary CPP 
in vivo is very low, but does not exclude the possibility that 
fixed within tissues, fetuin-A containing mineral complexes 
could mature into crystalline secondary CPP-like struc-
tures. The strong focus on crystalline CPP for a long time 
neglected the biological relevance of CPM, even though they 
are the first line of defense at the mineralization front. With 
the help of fluorescent fetuin-A, we recently demonstrated 
that the maturation state and crystallinity of the different 
calcium mineral particles greatly influenced their processing 
in vivo. CPM readily passed the renal filtration barrier and 
fetuin-A—much like albumin—was subsequently resorbed 
by proximal tubulus cells [57]. In contrast, primary CPP 
were internalized and rapidly metabolized by hepatic sinu-
soidal endothelial cells [61]. Like other larger blood parti-
cles, secondary crystalline CPP were processed by the mon-
onuclear phagocytic system of the spleen and liver, where 
they could still be found hours after injection [45, 61]. While 
the receptors for primary CPP and CPM uptake remain to be 
identified, secondary CPP are mostly internalized through 
the class A scavenger receptors (SR-A) with apolipoprotein-
A1 acting as a potential ligand [45, 109]. If taken up by 
macrophages in atherosclerotic plaques, secondary CPP may 
principally also contribute to plaque calcification [2], which 
is often observed in CKD patients with disturbed mineral 
homeostasis. Therefore, the longer fetuin-A bound mineral 
is retained in vivo and the more time it is given to ripen, the 
more difficult it becomes to be extracted from the body. Loss 
of renal function in CKD further reduces CPM clearance 
and over time leads to an accumulation of mineral-loaded 
fetuin-A in the body. At first, this may manifest as enhanced 
CPM levels, which then gradually transform into primary, 
and in extreme cases of impaired disposal, secondary CPP 
with all pathological consequences [46, 78, 108]. In vitro, 
high levels of secondary and especially primary CPP have 
been shown to activate cells of the innate immune system 
via toll-like receptor 4 and the NLRP3 (NACHT, LRR, and 
PYD domains-containing protein 3) inflammasome [57, 
61]. If this also pertains to the in vivo situation is a subject 
of intense research. A hierarchical model summarizing the 
relationship between mineral-induced stress and the levels 
of mineral and free fetuin-A is given in Fig. 2.

Fetuin‑A‑deficient mice

Total fetuin-A deficiency is likely incompatible with human 
life. Despite the use of fetuin-A as a forensic marker, com-
plete deficiency has never been reported, except in one recent 
case report (see below). Given the importance of fetuin-A 
in mineralization biology, it was therefore surprising to find 
that fetuin-A-deficient mice do not immediately calcify 
completely, but instead the degree of ectopic calcification 
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depends on their genetic background. On a C57BL/6 genetic 
background homozygous deletion of fetuin-A (KO) caused 
epiphysiolysis, a relatively mild phenotype leading to femur 
dysplasia and foreshortening of the hindlimbs [19, 104]. 
This phenotype was reminiscent of Caffey disease, an infan-
tile disorder characterized by excessive new bone formation 
(hyperostosis), and indeed of a recent case report carrying 
a nonsense mutation in the AHSG gene, which resulted in 
complete fetuin-A deficiency in the affected child [71]. A 
completely different phenotype is seen, when fetuin-A was 
deleted in mice on a DBA/2 background, belonging to one 
of the most severe extraosseous calcification described [98]. 
Here, the earliest signs of mineralization were detected in 
microvascular lumina, which indicated de novo crystalliza-
tion of calcium-containing microparticles from the liquid 
phase of blood [44]. The aggregation of these precipitates 
subsequently caused vascular occlusions, initiating a vicious 
cycle of ischemia, necrosis, and fibrosis, and further calci-
fications that readily attained macroscopic dimensions. The 
calcification phenotype in DBA/2 mice is so severe because 
of an inherent insufficiency of magnesium and pyrophos-
phate in this mouse strain. Alone, this double deficiency 
still suffices to shield the animals from excessive calcifi-
cation if the animals are kept on a high magnesium diet. 
When fetuin-A a third extracellular inhibitor of mineraliza-
tion is deleted, the calcification burden becomes too high 
[7], and the mice calcify most soft tissues [44, 98]. Half-
normal plasma fetuin-A like in hemizygous KO mice suf-
fices to avert this fate even in calcification-prone DBA/2 
mice. These findings are particularly relevant to CKD, since 

the concentrations of fetuin-A and pyrophosphate are fre-
quently reduced in advanced stages of the disease [56, 66]. 
Plasma magnesium levels on the other hand generally tend 
to rise with the loss of renal function, and only a fraction 
of patients presents with inappropriately low levels [134]. 
Yet again, what matters is not the loss or deficiency of one 
single mineralization inhibitor, but rather the relationship 
of all factors combined determines the state of calcification 
propensity in such patients. Corroborating this view, wide-
spread cardiovascular calcification could also be elicited in 
partially nephrectomized (to induce CKD) C57BL/6 fetuin-
A KO mice on a high phosphate diet [130].

A protective role of fetuin‑A beyond vascular 
calcification

The absence of fetuin-A not only affects the vasculature, 
but also has profound effects on the integrity of tissues, as 
we recently showed in a mouse model of Barker hypothesis 
[96]. According to the Barker hypothesis [8] (also referred 
to as fetal programming), infants with low birth weight have 
an increased risk of suffering from cardiovascular disease, 
high blood pressure, diabetes, and chronic kidney disease 
in adulthood. During fetal development, protective mecha-
nisms enable adaptation to unfavorable intrauterine con-
ditions (chronic oxygen or nutrient deficiency) and allow 
for fetal survival. At the same time, however, they lead to 
permanent structural and functional strains and changes. 
Using C57BL/6 fetuin-A KO mice exposed to chronic 

Fig. 2   Hierarchical model of 
mineral-induced stress. The 
model illustrates the inter-
dependence of the degree of 
mineral stress and fetuin-A 
levels, the predominant entities 
of calcium phosphate mineral 
particles, their target cells, 
elicited cellular responses, and 
possible therapeutic measures. 
Mineral stress is generally low 
and reversible under physi-
ological conditions of fetuin-
A abundance, when larger, 
pathological mineral complexes 
(CPP1 and CPP2) are mostly 
absent. With decreasing fetuin-
A levels, the degree of mineral 
stress increases due to enhanced 
formation of CPP. A chronic 
mineral disbalance eventu-
ally leads to irreversible tissue 
remodeling, inflammation, and 
calcification
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intrauterine hypoxia, we unveiled the importance of fetuin-
A during this fetal programming of adult disease phenom-
enon. As depicted in Fig. 3, fetal hypoxia per se induced 
fibrotic remodeling, inflammation, and pro-inflammatory 
macrophage polarization already in the developing kidney 
of wildtype mice, but this phenotype was exacerbated in 
fetuin-A-deficient mice [96]. Importantly, in addition to the 
abovementioned changes, fetuin-A KO fetuses also devel-
oped renal microcalcifications, which were not present in 
wildtype littermates. These lesions likely comprised miner-
alized cellular debris typically detected at sites of extensive 
tissue injury or remodeling [35]. These finding suggest that 
the presence of calcified debris and its ineffective removal 
initiate a vicious cycle of tissue damage that has profound 

effects of renal functionality into adulthood. Importantly, 
the tissue protective role of fetuin-A did not only stem 
from the liver-derived systemically available fetuin-A but 
was augmented by extra-hepatic expression of fetuin-A in 
renal proximal tubular (PT) cells under hypoxic conditions 
(Fig. 3C). In addition to fetuin-A, approximately one-third 
of the proteins that make up CPP were also expressed in fetal 
hypoxic kidneys, including Apo-A1, Apo-A2, and transfer-
rin [111, 131]. Thus, during chronic hypoxia, the fetal kid-
ney invoked salvage mechanisms to minimize the formation 
and to enhance the clearance of mineralized debris. Cells of 
the PT are particularly susceptible to straining conditions 
because they require significant amounts of energy to reab-
sorb the majority of molecules and ions from the glomerular 

Fig. 3   Local tissue protective role of fetuin-A. The model depicts 
the crucial importance of fetuin-A to safeguard tissue integrity from 
hypoxia-induced damage in the kidney, through the clearance of cal-
cifying protein-mineral particles, mitigation of inflammation, attenu-
ation of fibrotic tissue remodeling, and polarization of macrophages. 
(A–D) Clockwise depiction of the 4 different scenarios combin-
ing wildtype (WT) or fetuin-A (Ahsg) KO mice with normoxic or 
hypoxic conditions based on tissue damage intensity: no damage in 
normoxic WT (A), low damage in normoxic KO (B) and hypoxic 

WT (C), and strong damage in hypoxic KO (D). In normoxia (A and 
B) mineral stress is generally low and the absence of liver-derived 
fetuin-A (green) in B results in slightly elevated fibrotic remodeling. 
In hypoxia (C and D), mineral stress is generally high due to calcium 
overload, but extensive tissue damage can be prevented in C by the 
concerted action of systemic and locally produced fetuin-A (yellow), 
counteracting calcification and polarization of pro-inflammatory M1 
macrophages (M1 MΦ, light blue). Conversely, the absence of fetuin-
A in D leads to enhanced calcification, inflammation, and fibrosis
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ultrafiltrate. It is therefore not surprising that these cells are 
the predominant crystallization sites in the kidney [75], and 
release proinflammatory cytokines (e.g., MCP1, TNFα, or 
TGF-β) during cell stress [1, 119]. The hypoxia-induced 
expression of fetuin-A may in fact indicate a common back-
up mechanism in extra-hepatic epithelial tissues that are 
involved in bulk solute transport to ensure the safe handling 
of calcium and phosphate in areas of elevated mineral stress 
[109]. On the other hand, the robust hepatic fetuin-A produc-
tion may not be further increasable by hypoxia signaling due 
to an already strong promoter activation in the liver [132]. 
One reason for the ectopic fetuin-A expression in hypoxic 
fetal kidneys may be the extra- and intracardiac bypass 
mechanisms of the fetal circulation redirecting the oxygen-
rich blood preferentially to the heart and brain. Interestingly, 
the expression levels of fetuin-A in all vertebrates correlate 
with phases of tissue remodeling during embryogenesis, are 
highest during the initiation of skeletal mineralization, and 
recede thereafter [97, 116]. A disturbance such as prenatal 
hypoxia during this period of already high cellular repat-
terning likely increases the rate of cell death and vascular 
dysfunction in the kidney [5, 113, 114, 133]. Dying cells and 
apoptotic bodies are characterized by calcium overload [13, 
14, 93] and the simultaneous lack of ATP and pyrophosphate 
further increase their calcification propensity. In this regard, 
fetuin-A was reported to decrease the mineralization stress 
by its ability to inhibit apoptosis and to enhance phagocyto-
sis of apoptotic debris [51, 94]. Thus, fetuin-A deficiency is 
associated with enhanced deposition and reduced removal 
of mineral debris, increasing the risk of calcification. A 
tissue-protective effect of fetuin-A was also observed in 
various other disease models in adult rodents. For example, 
we showed that fetuin-A supplementation decreased fibrotic 
remodeling upon renal ischemia–reperfusion injury [96] and 
unilateral ureter obstruction (unpublished results). Fetuin-A 
also reduced paw edema upon induction of tissue inflamma-
tion with carrageenan [83]. In the brain, Wang et al. showed 
that fetuin-A supplementation reduced ischemic damage 
after permanent middle cerebral artery occlusion in rats 
[127]. Heinen et al. also reported a reactivation of fetuin-A 
upon ischemic brain damage in humans, aiding tissue repair 
[39]. In addition to its function as vascular calcification 
inhibitor, the above findings and our results suggest a more 
general role for fetuin-A as an indirect regulator of calcifica-
tion, fibrosis, inflammation, and macrophage polarization 
within tissues.

Fetuin‑A and inflammation

Fetuin-A was shown to be an essential cofactor required 
to inhibit the expression of the proinflammatory cytokine 
tumor necrosis factor together with spermidine or its 

synthetic analogues [128, 138]. The strong fetal expression 
levels of both fetuin-A and spermine have therefore been 
claimed to underlie the maternal tolerance of the fetus as 
“nature’s transplant” [129]. The powerful anti-inflammatory 
role of fetuin-A was confirmed in multiple in vivo rodent 
models of inflammation, including lipopolysaccharide-
induced miscarriage [29], carrageenan injection [83], cer-
ebral ischemic injury [127], cecal ligation and puncture [65], 
or chronic fetal hypoxia [96]. Generally, fetuin-A was linked 
to diminished inflammatory responses and greater survival 
across all cases, and administration of additional fetuin-A 
typically improved outcomes. Therefore, fetuin-A may be 
generally considered as an anti-inflammatory agent [23]. 
The anti-inflammatory properties of fetuin-A were further 
strengthened by the demonstration of its potent and specific 
inhibition of hydroxyapatite crystal-mediated activation of 
neutrophils [117] and its dose-dependent prevention of neu-
trophil extracellular traps (NETs) formation [89]. Fetuin-A 
also attenuated calcium phosphate crystal-induced activa-
tion of chondrocytes [31, 37, 38], pro-inflammatory cytokine 
secretion in monocytes and macrophages via NLRP3 inflam-
masome formation [76, 77, 87], and human vascular smooth 
muscle cell death [33]. An anti-apoptotic activity of fetuin-A 
was described in smooth muscle cells [94], and inhibition 
of cell-specific responses is generally expected to attenu-
ate the deleterious consequences of local inflammation, 
cell death, and cartilage degeneration. The inhibitory func-
tion of fetuin-A on many proinflammatory compounds [6, 
126, 128, 129, 137], its established safeguarding function 
in different animal models of inflammation [29, 65, 83, 96, 
127], and the suppression of crystal-induced neutrophil 
activation [89, 117] collectively and strongly suggest that 
fetuin-A plays a protective role in mineralopathies in gen-
eral [105]. Lebreton and colleagues described in the late 
1970s that fetuin-A is among the major negative acute phase 
proteins [63]. The cytokines TNF-alpha, Il-6, and Il-1beta 
[25] all transiently reduced hepatic fetuin-A mRNA expres-
sion, which was attributed to a shift to short isoforms of 
the transcription factor C/EBP that could not maintain the 
basal hepatic promotor activity compared to the long C/
EBP isoforms predominating in quiescent liver cells [34]. 
Thus, in certain situations when the demand for fetuin-A 
is already high (e.g., removing mineral particles), an acute 
inflammation may be the tipping point that by further low-
ering fetuin-A production brings the entire system out of 
balance, and induces gross calcification. Unlike in healthy 
subjects, the combined effects of excessive calcification 
and inflammation may consume large amounts of fetuin-
A, leading to serum depletion. Especially in patients with 
CKD stages 4 and 5, the elevated concentrations of uremic 
toxins and the consequential concomitant chronic inflam-
mation may therefore result in chronic fetuin-A depletion. 
A rare, but potentially life-threatening clinical presentation 
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of acute fetuin-A depletion in kidney transplant or dialysis 
patients may be calciphylaxis [16, 101]. Ex vivo analysis 
showed that sera from these fetuin-A deficient patients could 
less effectively inhibit crystallization of calcium phosphate 
minerals compared to healthy controls [98]. Restoring nor-
mal fetuin-A levels in these calciphylaxis serum samples by 
supplementing purified fetuin-A also reversed the functional 
deficiency. Whether a pre-existing lack of fetuin-A triggers 
calciphylaxis, or whether plasma fetuin-A becomes depleted 
by counteracting excessive calcification and, in addition, 
hepatic expression is repressed by inflammatory cytokines, 
is presently unclear. Accumulating evidence however sug-
gests that acute injury is another major player contributing 
to falling serum fetuin-A levels. For example, we recently 
found in a mouse model of acute kidney injury that sys-
temic fetuin-A levels already rapidly dropped in the sham 
operation control group, which underwent midline incision 
of the abdominal cavity, but no renal ischemia reperfusion 
(unpublished results). This suggests that the acute inflamma-
tory reaction of the wound area is sufficient to cause an inter-
mittent drop in systemic fetuin-A levels. In human patients 
with acute myocardial infarction, the drop in fetuin-A levels 
was further shown to correlate with the severity of the myo-
cardial necrosis [99]. Conversely, the level of circulating 
fetuin-A can also be used to predict incidence and sever-
ity of diseases. Dialysis patients within the lowest systemic 
fetuin-A tertile were much more likely to suffer from stroke 
than patients in the highest tertile [22]. Furthermore, mul-
tiple studies identified low serum fetuin-A associated with 
of disease severity, hospitalization duration, and mortality 
of COVID-19 patients [27, 60, 122]. Accordingly, the low-
est levels of circulating fetuin-A were found in critically ill 
sepsis patients [54, 115]. Along these lines, systemic fetuin-
A levels reflect acute inflammatory disease states as well as 
calcification propensity.

Fetuin‑A, a plasma chaperone protein 
guarding tissues from chronic damage

At first glance, the multifaceted functions of fetuin-A as sys-
temic calcification inhibitor and a crucial factor moderating 
inflammation and fibrosis in tissue almost seem too much 
for one single protein. At second glance, the compilation 
of these roles into one molecular player makes sense, since 
they all contribute to a common single goal—the protection 
of the body from harm. The protective role of fetuin-A may 
be akin skin care products that shield the skin from vari-
ous harsh environmental conditions. The longer or harsher 
the conditions, the more skin care must be applied to main-
tain its protective effect. Especially in sunny, cold, dry, and 
windy winter conditions, provisional skin care becomes a 
must if rashes and sores are to be prevented. Fetuin-A fulfills 

a very similar role in protecting the vascular system and 
tissues by preventing and mending the cracks and crannies 
that result from adverse calcification and inflammation. Sec-
ondly, fetuin-A is consumed in this process and the magni-
tude of its depletion seems to correlate with the severity of 
the damage. However, in contrast to skin care, which can be 
purchased in any store, while supply lasts, hepatic produc-
tion of fetuin-A is concomitantly reduced, creating a situa-
tion of double shortage. A compelling measure to meet the 
increased fetuin-A demand is rapid fetuin-A replacement 
during the crucial phase of tissue injury to compensate for 
the disseminated calcification consumption and the lack of 
constant endogenous supply. A suitable source could be 
the infusion of either human plasma-derived fetuin-A or 
recombinant fetuin-A protein. Importantly, this interven-
tion does not involve sustained administration of exogenous 
fetuin-A, but would be an acute treatment, replenishing an 
outstretched protection system. Main goals are to (1) bridge 
the gap of insufficient hepatic production, (2) break the 
microcalcification-borne activation of the inflammatory 
system, and (3) re-establish the fetuin-A-mediated steady 
state protection. This does in no way render obsolete tried 
and true therapeutic approaches in CKD patients. E.g., the 
phosphate-binding agent sevelamer-HCl increased serum 
fetuin-A levels in hemodialysis patients, and albeit, elevated 
fetuin-A levels could first be detected more than 6 weeks 
after the start of the intervention; they persisted for more 
than 2 months [17]. In addition to fetuin-A supplementation 
to counteract acute tissue injuries, these patients should also 
benefit from anti-inflammatory therapies that may reverse 
the suppressive effect on fetuin-A expression in the liver. 
Besides pharmacological interventions or optimization of 
dialysis, this also applies to relatively inexpensive lifestyle 
modifications, including personalized physical activity, or 
various dietary supplementations [3]. Much less clear is the 
relationship between the degree of calcification, mortal-
ity, and fetuin-A levels in patients with normal renal func-
tion and in pre-dialysis CKD patients, and high levels of 
fetuin-A may—according to some association studies—even 
have detrimental effects on health [69, 85]. Correcting this 
notion however, a recent Mendelian randomization study 
co-authored by researchers of one of these earlier studies 
later did not support a strong, relevant relationship between 
circulating fetuin-A and diabetes risk in the general popula-
tion [59]. Presumably, the correlation between high serum 
fetuin-A and the metabolic syndrome may be simply due to 
the high caloric intake of these patients, which is known to 
enhance hepatic protein expression. In summary, we con-
sider fetuin-A a protective protein or “mineral chaperone” 
protecting injured tissues from calcification and inflam-
mation-related damage. When the calcification propensity 
exceeds a particular threshold, fetuin-A-dependent com-
pensatory systems eventually will be overwhelmed and the 
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resulting fetuin-A deficiency forms the starting point of a 
vicious cycle of even more progressive calcification, fetuin-
A consumption, tissue destruction, and fibrotic remodeling. 
Thus, the tissue protective role of fetuin-A applies to all 
tissues and suggests the use of exogenous fetuin-A as an 
emergency treatment or prophylactic agent in conditions that 
are associated with acute depletion of endogenous fetuin-A.
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