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Abstract

Purpose: Chest x-rays are complex to report accurately. Viral pneumonia is often subtle in its
radiological appearance. In the context of the COVID-19 pandemic, rapid triage of cases and
exclusion of other pathologies with artificial intelligence (AI) can assist over-stretched radiology
departments. We aim to validate three open-source AI models on an external test set.

Approach: We tested three open-source deep learning models, COVID-Net, COVIDNet-S-
GEO, and CheXNet for their ability to detect COVID-19 pneumonia and to determine its severity
using 129 chest x-rays from two different vendors Phillips and Agfa.

Results: All three models detected COVID-19 pneumonia (AUCs from 0.666 to 0.778). Only the
COVID Net-S-GEO and CheXNet models performed well on severity scoring (Pearson’s r
0.927 and 0.833, respectively); COVID-Net only performed well at either task on images taken
with a Philips machine (AUC 0.735) and not an Agfa machine (AUC 0.598).

Conclusions: Chest x-ray triage using existing machine learning models for COVID-19 pneu-
monia can be successfully implemented using open-source AI models. Evaluation of the model
using local x-ray machines and protocols is highly recommended before implementation to
avoid vendor or protocol dependent bias.
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1 Introduction

The early radiological features of viral pneumonia can be subtle. The high transmissibility rate
of SARS-CoV-2 and the wide range of disease manifestations from asymptomatic to life-
threatening COVID-19 have challenged health systems throughout the world. Early CT scanning
of the lungs was found to be more sensitive than molecular detection of viral RNAwith polymer-
ase chain reaction (PCR) testing,1 but is practically unrealistic in many healthcare systems due
to a lack of CT scanners, whereas chest radiography is available.2,3 The chest radiograph is an
almost immediate test, and if it were sensitive and specific enough, it could act as an immediate
screen for COVID-19, as for influenza,4 although with limited capacity to detect asymptomatic
SARS-CoV-2 infection.5

Multiple different viruses can cause pneumonia or pneumonitis including influenza A,
influenza B, swine influenza, other coronaviruses, measles, adenovirus, human metapneumo-
virus, and in both children and immunocompromised patients, respiratory syncytial virus,
parainfluenza virus, and adenovirus are often responsible.6–8 Such patients are usually treated
unnecessarily with antibacterial agents until the diagnosis is clarified with viral PCR or culture.
But the infection control aspects of hospitalization demand a rapid means of identifying such
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patients to allow cohorting, so well illustrated by the ongoing pandemic of SARS-CoV-2
infection.

Many hospitals and health systems have a shortage of trained radiologists; in some countries,
there are fewer than one radiologist per million people, severely impacting the timely delivery
of radiological findings to patients and referring clinicians.3,9

Intelligently triaging or prioritizing a radiology work-list could help address this issue.
A work-list sorted from most to least likely to have clinically significant findings, such as
COVID-19, would mean that sick patients could potentially receive quick x-ray results even
in resource-constrained countries, and x-rays found to be normal with high confidence by arti-
ficial intelligence (AI) could potentially be removed from worklists altogether; such prioritiza-
tion could also help ensure that radiologists read the most critical studies when they are “fresh”
and read progressively less critical studies as they get tired. Triage is a previously validated use
case for AI in medical imaging.10 An AI model effective at determining the likelihood of a
COVID-19 diagnosis based on an x-ray could be helpful at determining which patients to admit
to hospital; an AI model for COVID-19 severity could be helpful at determining which patients
to admit to the ICU.

Several AI vendors have released COVID-19 detection products and are currently offering
them for free, and at least one, Delft imaging, has published a peer-reviewed evaluation of their
product including validation on an external dataset.11 However, these products are closed source,
which vastly limits users’ ability to understand how these products work, customize them for
their own needs, and ensure they fully meet security standards.12 Use of free closed-source soft-
ware also presents a risk that the vendor may demand payment or impose other unwelcome
conditions for continued use in the future.

Several open-source software projects exist that could potentially help triage COVID-19
cases. An open-source machine learning model, COVID-Net, has been developed specifically
to detect COVID-19, and the COVID-Net group has released additional models for estimating
disease severity in COVID-positive cases, including COVIDNet-S-GEO for estimating geo-
graphic severity.13,14 Additionally, in 2018, long before the pandemic began, an open-source
machine learning model called CheXNet was developed by Stanford University, which they
claimed could detect 14 pathologies, including pneumonia, in chest x-rays.15 Validating on their
internal test set, they found the CheXNet pneumonia model to be comparable to a number of
radiologists. However, none of these models have been validated on an external test set, meaning
there is currently no evidence that they generalize beyond the development context.

The present research seeks to externally validate these models. The aims of this study are to
test whether these models are significantly better than chance at determining whether an x-ray
image contains evidence of COVID-19 and how severe it is if present.

2 Materials and Methods

We selected COVID-Net and CheXNet for evaluation because they were the only open-source
deep learning models that could be used to detect COVID-19 at the time we began this study. We
believe these two projects are still worthy of our focus due to their high citation count relative to
other open-source projects that have emerged since, and keeping the number of models small
enables us to limit the number of hypotheses to test and reduce the possibility of false-positive
results. CheXNet was trained on 112,120 images from 30,805 patients, drawn from a single
institution and automatically labeled for 14 different pathologies by applying natural language
processing (NLP) to their corresponding radiology reports. COVID-Net was trained on 13,975
images from 13,870 patients, drawn from five distinct sources; labeling methods varied by
source and ranged from PCR to NLP. The data used to train both of these systems are publicly
available but not in DICOM format, meaning that most metadata, such as imaging equipment
manufacturer, is not available.

We retrospectively collected a dataset of x-ray images from a hospital in Lima, Peru between
02/23/2020 and 04/20/2020 that had reverse transcription PCR (RT-PCR) testing. The patient
population included all attentions at the “fever clinic” for symptomatic patients and all hospi-
talized patients that had an RT-PCR test done by protocol. Chest x-rays were performed on two
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different units from DX-D600 (Agfa Medical Imaging) and DigitalDiagnost (Philips). The x-
rays were all subsequently deidentified and uploaded to the cloud using a Cimar Cloud Gateway.
As a retrospective study using deidentified data, this study was exempt from Institutional Review
Board review under institutional policy.

All of these images were in their original DICOM format, the standard clinical format for
medical images; however, while both the COVID-Net and CheXNet projects have published
specific instructions and/or code for running their models on images in JPEG or PNG format,
neither has published instructions for running their models on DICOM or converting DICOM
images to JPEG or PNG. This limitation appears to come from the fact that these models were
both trained on public datasets whose creators only released JPEG or PNG formatted images,
likely for privacy and security reasons. DICOM files often contain important metadata for inter-
preting their stored pixel values, such as value of interest tables, and the use or non-use of this
metadata can significantly impact how images are finally rendered. For the purposes of this
study, we use pixel data extraction functionality from the open-source Python DICOM library
pydicom (version 2.0.0) to convert DICOM images to PNG;16 the only modification to the raw
pixel data we made (based on DICOM metadata when using pydicom) was to invert pixel values
in images with a value of MONOCHROME1 for the DICOM field photometric interpretation,
which indicates a “photonegative” image.

After conversion from DICOM to PNG, images were preprocessed according to the instruc-
tions and code published online by the COVID-Net and CheXNet projects prior to ingestion by
those models.17,18 For COVID-Net, this preprocessing involved resizing the image to 480 × 480

and removing the top 8% of the image; for CheXNet, this involved resizing the image to 224 × 224

and normalizing the image using mean and standard deviation values from the ImageNet database.
We used pretrained model binary files provided by these groups online for our tests.19–21 The code
we used to preprocess the images and run the models is available at https://github.com/alexrisman/
RealizeCovidStudy.

In addition to PCR results, we had two general radiologists, with 31 and 25 years of expe-
rience, respectively, review the 129 images retrospectively. For each x-ray, each reader first judged
whether the image looked normal, positive for non-COVID pneumonia, positive for COVID-19
pneumonia, or positive for some other abnormality. The cases positive for COVID-19 pneumonia
were considered as positives for the purpose of radiologist’s sensitivity and specificity analysis.
Next, if they had judged the image to be positive for COVID or non-COVID pneumonia, they
scored the left and right lung for the geographic severity of the observed opacity on a scale of 0
to 4, with 0 corresponding to no opacity, 1% to <25% involvement, 2% to 25%–50%, 3% to
50%–75%, and 4% to >75%; these scores were then added across both lungs for a final 0 to 8
geographic severity score. The averaged result across both radiologists was then used to test each
model’s severity scoring. This scoring methodology was adapted from the COVID-Net team.14

Within the 22 PCR-confirmed COVID x-rays, we used Pearson correlation (r) to test interrater
variability of this severity score between the two radiologists. Agreement was high, with a cor-
relation of .937 (p < 0.001). There were 13 cases that both radiologists agreed were positive for
COVID-19; all 13 of these cases were confirmed positive by PCR.

Finally, a subset analysis was done analyzing AUC results for each x-ray equipment used.
We use the ROC AUC score to assess classification performance and use bootstrapping to

construct 95% confidence intervals for AUC scores. We formulate the null hypothesis for each
AI system as follows: the value 0.5, denoting performance no better than chance, is within the
AUC score 95% confidence interval. We use Pearson’s correlation (r) to test each model’s
severity scoring. We use DeLong’s test22 to statistically compare AUCs from different systems
and Steiger’s test23 to compare correlation coefficients. PCR results and radiologist readings
were used as ground truth for the classification and severity analysis, respectively.

3 Results

A total of 131 chest x-ray images from 131 patients were initially collected. Two patients had
multiple conflicting PCR results within several days of each other so were excluded. Of the
remaining 129, 22 (17%) were confirmed to be COVID-positive by RT-PCR–based testing.
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Table 1 shows the dataset characteristics. In PCR-confirmed cases with a radiological abnormal-
ity (as reported by at least one radiologist, N ¼ 16) had higher severity scores (mean = 3.91,
std = 2.37) than unconfirmed cases with a radiological abnormality (mean = 2.13, std = 1.66).

The AUC for detection of RT-PCR positive cases was 0.78 (0.67 to 0.87) for CheXNet,
0.67(0.52 to 0.80) for COVID-Net, and 0.75 (0.61 to 0.86) for COVID-Net-S-GEO.
Sensitivity and specificity for the dataset were 0.59 and 0.90 for radiologist 1 and 0.36 and 0.93
for radiologist 2, and the low-sensitivity reflects the fact that many patients with SARS-CoV-2
infection do not have COVID-19 pneumonia. CheXNet’s performance was on par with radiolo-
gist 2. Figure 1 shows the values and ROC curves. For all three models, we can reject the
null hypothesis that the AUC is 0.5 with >95% confidence, which suggests that any of the
open-source COVID-detection models in question would have served this clinic to at least some
effect for the purpose of intelligently prioritizing an x-ray work-list based on likelihood of
COVID-19.

Table 1 Summary of dataset characteristics. With respect to age,
parenthetical values represent the standard deviation; with respect
to all other characteristics, the parenthetical values represent propor-
tion of the dataset.

Variable Level Overall

N 129

Age 44.32 (19.37)

Sex F 73 (56.59)

M 56 (43.41)

X-ray manufacturer Agfa 83 (64.34)

Philips 46 (35.66)

PCR-positive Negative 107 (82.95)

Positive 22 (17.05)

Fig. 1 AUROC curves and point estimates, with bootstrapped 95% confidence intervals, evalu-
ating three open-source machine learning models on the classification task of distinguishing PCR-
confirmed COVID-positive x-rays from COVID-negative ones. The performance of two radiologists
is included for comparison.
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With respect to pneumonia severity, two of the three models outperform chance with respect
to predicting the mean of the radiologists’ assigned geographic severity scores for PCR-
confirmed positive x-rays (Table 2). For the best performing model for severity, COVID-Net-
S-Geo had a Pearson’s r of 0.93 and is graphically shown in Fig. 2.

In order to compare the AUCs of COVID-Net and CheXNet on the PCR-positive case detec-
tion task, we performed DeLong’s test, which resulted in a statistically insignificant p-value of
0.17, likely due to the small sample size. However, when comparing the correlation coefficients
calculated for those two models on the severity scoring task using Steiger’s test, we observed a
p-value of 0.0005, indicating a statistically significant difference.

Although two of the three models outperformed chance on both tasks, one, COVID-Net, did
not. In addition to failing the severity rating task, COVID-Net was also the worst performing
model on the likelihood detection task. Breaking down results by manufacturer, however, we
observe that COVID-Net’s poor performance is largely confined to images coming from Philips
machines, performing well on x-rays from Agfa machines (Table 3). The other two models do
not show a significant disparity in performance related to x-ray machine manufacturer.

Table 2 Pearson’s r and 95% confidence intervals, evaluating three open-source machine
learning models on the regression task of rating the geographic severity of COVID-19 in PCR-
confirmed positive chest x-rays, with radiologist-assigned severity scores as ground truth.

CheXNet COVID-Net-S-GEO COVID-Net

0.83 (0.64 to 0.93) 0.93 (0.83 to 0.97) −0.17 (−0.55 to 0.27)

Fig. 2 Scatter plot and best fit line for the machine learning model that best predicted geographic
severity scores for COVID-positive x-rays (r ¼ 0.93, p < 0.001).

Table 3 AUCs and bootstrapped 95% CIs for each model in the likelihood detection task by x-ray
machine manufacturer. COVID-Net performed poorly, but it appears that this is largely due to poor
performance on x-rays from Philips’ machines; the other models do not show a critical disparity
in performance across x-ray machine manufacturer, while COVID-Net fails to outperform chance
on Philips x-rays despite outperforming chance on Agfa ones.

COVID-Net CheXNet COVID-Net-S-GEO

Agfa AUC Philips AUC Agfa AUC Philips AUC Agfa AUC Philips AUC

0.74
(0.54 to 0.90)

0.60
(0.40 to 0.79)

0.74
(0.60 to 0.87)

0.81
(0.65 to 0.94)

0.73
(0.51 to 0.92)

0.72
(0.52 to 0.90)
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COVID-Net also greatly underperformed their own published results, confirming the impor-
tance of external validation. According to the COVID-Net team, COVIDNet-CXR4-A
has an accuracy of 94.3% at a sensitivity of 95%, while we found it to have an accuracy of
66.7% at a sensitivity of 59.1%. CheXNet’s published performance was in line with our results:
they claimed CheXNet achieved an AUC of 0.77 in the detection of pneumonia, while we found
an AUC of 0.78. COVID-Net’s underperformance could potentially be explained by the same
reasons as their poor performance on Philips machines (e.g., if all the COVID-positive cases
in their dataset were from Philips machines, and the model learned that Philips = COVID, the
model would perform terrifically in their internal validations but crash in the real world.)

4 Discussion

Our results indicate that several open-source AI systems can be used both to detect COVID-19
in chest x-rays and to grade its severity with more success than random chance on real-world
clinical data, suggesting that these systems can likely be useful for triage. Further, it appears that
models trained for likelihood detection can be potentially be used for severity grading and vice
versa. Since many models in the marketplace and open-source ecosystem are trained and tested
for only one of those two purposes (i.e., detection of COVID-19 pneumonia), these findings
suggest that a clinician with access to such a single-purpose model may be able to apply it
to the other purpose (i.e., severity scoring) or vice versa, though evaluation for this purpose
on their own data is recommended. This is particularly promising with respect to CheXNet,
since we were able to confirm with this study that its pneumonia detection function is also useful
for pneumonia severity grading, and this could possibly also be true for the 13 other pathologies
CheXNet is trained to detect.

The apparent effect of x-ray machine manufacturer on model performance is troubling and
suggests that doctors should make every effort to evaluate medical imaging AI models on sam-
ples of their own data that are representative of the manufacturers and acquisition protocols used
within their clinical environment prior to use, as well as to re-evaluate these models when new
imaging equipment or protocols are introduced to the environment. While we were not entirely
sure why COVID-Net’s performance was so much worse on Philips machines, differences in
acquisition protocols may provide some clues. While we did not observe a major difference in
exposure settings such as radiation dose between the Philips and Agfa machines, we did observe
that a contrast-enhancing antiscatter grid was used for the acquisition of the bulk of the Agfa
images but not for most of the Philips images. This suggests that COVID-Net may need an
especially high degree of contrast to be effective. In addition, the COVIDx dataset used to train
COVID-Net came from a variety of publicly available sources. If all or most of the COVID-
positive x-rays in the COVIDx dataset came from Philips machines or machines without an
antiscatter grid, that might lead the model to incorrectly learn that artifacts of this acquisition
protocol are highly indicative of COVID, particularly if there were no normal or other non-
COVID x-rays from the same sources as the COVID x-rays.

This study is subject to several limitations. Our initial data collection resulted in a relatively
small sample size, particularly for the severity and manufacturer analyses. Though we are able to
draw statistically significant conclusions, we acknowledge that the size of our dataset may limit
how broadly applicable these findings are and suggest thinking of this work more as a successful
clinic-level case study and a blueprint for other clinics to test these and other AI systems on their
own data, rather than a universal test of these systems’ effectiveness in every possible context.
Also, while the PCR test was used as a gold standard for the purposes of this paper, it has a
limited sensitivity in the range of 60% to 70%, which brings an important source of error to our
analysis.24 While a key use case for a severity scoring model would be determining whether a
given patient’s condition is improving or declining, we were only able to collect a single x-ray
for each patient in our study, preventing us from directly testing any model’s suitability for this
application. This was also a retrospective study, but a prospective trial would be required to test
any model’s effectiveness for triage directly, for example by evaluating exam turnaround with
and without use of the model. Finally, while our dataset does contain seven cases in which both
of our readers reported diagnoses of non-COVID pneumonia, we judged this number too small
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for meaningful statistical analysis. We are therefore unsure how well these systems differentiate
between COVID and non-COVID pneumonia and therefore do not recommend using these sys-
tems to render final diagnoses in lieu of human interpretation. These limitations may be
addressed in a future study. Radiological appearances cannot determine infectious aetiology,
so additional work is required to determine the transferability of the findings to other viral pneu-
monias and indeed other lung pathologies. A significant influenza outbreak might offer this
opportunity, once the current pandemic has receded.

5 Conclusions

Chest x-ray triage can be successfully implemented using existing open-source machine learning
models for COVID-19 pneumonia. The local x-ray machines and protocols can affect interpre-
tation with machine learning tools and this challenges widespread implementation to avoid ven-
dor or protocol dependent bias. Viral pneumonia, exemplified by COVID-19 pneumonia, is
amenable to AI, which should be of general benefit.
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