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Neurons in the barrel cortex respond preferentially to stimulation of one principal whisker
and weakly to several adjacent whiskers. Such integration exists already in layer 4, the
pivotal recipient layer of thalamic inputs. Previous studies show that cortical neurons
gradually adapt to repeated whisker stimulations and that layer 4 neurons exhibit
whisker specific adaptation and no apparent interactions with other whiskers. This
study aimed to study the specificity of adaptation of layer 2/3 cortical cells. Towards
this aim, we compared the synaptic response of neurons to either repetitive stimulation
of one of two responsive whiskers or when repetitive stimulation of the two whiskers
was interleaved. We found that in most layer 2/3 cells adaptation is whisker-specific.
These findings indicate that despite the multi-whisker receptive fields in the cortex, the
adaptation process for each whisker-pathway is mostly independent of other whiskers.
A mechanism allowing high responsiveness in complex environments.
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INTRODUCTION

The organization of receptive fields in layer 2/3 of the barrel cortex has been studied in rodents
mainly using passive stimulation of individual whiskers. In the barrel cortex neurons typically
respond primarily to stimulation of a single whisker and somewhat less to neighboring whiskers
(Simons, 1985; Simons and Carvell, 1989; Armstrong-James et al., 1992; Bruno and Simons, 2002).
Layer 4 cells typically have wider receptive fields than layer 2/3 cells (Bureau et al., 2006; Viaene
et al., 2011). Vertically directed axons project excitation from layer 4 cells into layer 2/3 cells of the
same column (Lübke et al., 2000). Hence the response in layer 2/3 cells to whisker stimulation
is delayed by 2–3 ms relative to the response in layer 4 cells (Armstrong-James et al., 1992).
This additional delay supports the notion that layer 2/3 are innervated mostly by cortical cells.
However, their response to multiple whiskers may reflect inputs from layer 4 or neighboring
columns (Simons, 1985).

Assuming that the synthesis of the wider receptive fields of layer 2/3 emerges in the cortex, the
adjacent whisker response of these cells can reflect inputs from the same column via multi-whisker
layer 4 cells and/or from adjacent barrels through horizontal connections. Some proposed that
the whisker-trigeminal system is a labeled-line pathway, where subcortical structures relay to layer
4 cortex only principal whisker (PW) inputs and adjacent whisker (AW) responses are therefore
synthesized by intracortical interactions (Armstrong-James and Callahan, 1991; Armstrong-James
et al., 1991; Fox et al., 2003). Others found that AW responses in layer 4 are independent of
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intracortical interactions, reflecting direct thalamic inputs that
relay both PW and AW inputs (Simons and Carvell, 1989;
Goldreich et al., 1999; Urbain and Deschênes, 2007). For layer
2/3 cells, most studies agreed that suprathreshold excitation
spreads horizontally within layer 2/3 into the adjacent cortical
columns and subsequently across the entire barrel field. In vivo
whole-cell recordings suggest that most layer 2/3 pyramidal
cells respond with large EPSPs upon deflection of a single
whisker and have subthreshold receptive fields broader than
those of layer 4 spiny neurons (Brecht and Sakmann, 2002;
Brecht et al., 2003), suggesting intracortical integration. Based
on this hypothesis, the adjacent whisker response is independent
of layer 4 activity of the principal column. In other words,
if adjacent whisker response in layer 2/3 emerges from a
neighboring barrel, applying repetitive stimulation to the PW,
which leads to adaptation, should not affect the cell’s response
to stimulation of an adjacent whisker. On the other hand,
if the multi-whisker receptive field is inherited from layer 4
cells, a cross-adaptation effect should be observed, leading to
attenuation of the response to AW stimulation following adaptive
stimulation of the PW. Considering the latter possibility, cross-
whisker adaptation might not be always observed: when a test
AW stimulation is applied after several stimuli were applied
to the PW, due to their low firing response, the synapses
connecting layer 4 to layer 2/3 may recover from the adaptation
process, leading to a large response to the test stimulation.
To overcome this issue we examine the adaptive interactions
using an interleaved stimulation of the PW and AW. We
assume that such interleaved stimulation leads to a high level
of activity in layer 4, maintaining synapses common to the
two stimulated whiskers at a depressed state. Such stimulation
therefore allowed us to track the interactions over time as
adaptation progresses. We hypothesized that the convergence
of different whiskers’ pathways at the level of layer 4 should
result in a stronger interaction during adaptation compared to
the expected interactions when a synthesis of the receptive fields
occurs at the level of layer 2/3.

We intracellularly recorded the response of layer 2/3 neurons
to interleaved whisker stimulation of the PW and AW and
evaluated the degree of interactions between them due to
adaptation. We found no interactions for most layer 2/3 cells.
Significant interactions were found only in about one-quarter
of the tested whiskers, where profound adaptation induced
by repetitive stimulation of one whisker caused a significant
reduction in the response of a second whisker. No physiological
parameters such as latency or response amplitude were related to
the level of interactions.

MATERIALS AND METHODS

Ethics Statement
All surgical and experimental procedures were performed in
accordance with the regulations of The Weizmann Institute
Animal Care and Use Committee (IACUC App.Num.
00470109-1).

General
Adult female Sprague–Dawley rats (n = 18) were anesthetized
with halothane (0.5–1.0%), tracheotomized, and ventilated.
Heart rate, temperature, and expired CO2 were monitored
continuously. Intracellular recordings were made from barrel
cortex layer 2/3 neurons using glass micropipettes (5–9
M�) filled with an intracellular solution containing in mM:
K-gluconate, 136; KCl, 10; NaCl, 5; HEPES, 10; MgATP,
1; NaGTP, 0.3; phosphocreatine, 10; mOsm, 310. For each
recording, the principal whisker (PW) and the adjacent whisker
(AW) having the highest amplitude were mechanically deflected
in the PW preferred direction using a piezoelectric stimulator (for
details see Katz et al., 2006).

In these experiments, intracellular whole-cell patch recordings
were used and membrane potential was not compensated for
the junction potential (∼12 mV). Signals were amplified using
Axoclamp-2B (Molecular Devices, Palo Alto, CA, United States)
and low passed at 4 kHz before being digitized at 10 kHz.

Stimulation Protocol
For control stimulation, a 5/10 Hz train of 10/20 stimuli was used
for each of the two whiskers. To estimate the interaction between
whiskers, 10 Hz interleaved-stimulation was presented where
each whisker was actually stimulated at 5 Hz (see Figure 1). These
responses were compared to either 5 Hz or 10 Hz stimulation
trains delivered to each whisker alone. During each trial, a 3 s
inter-train interval was used.

Response Quantification and Adaptation
Index
We have quantified a number of response properties such as the
amplitude, latency, rise-time, and adaptation index. The response
amplitude was defined as the maximal amplitude relative to
baseline within a 50 ms window following the stimulation. The
latency to response was defined as the time from stimulus onset to
10% deviation of the averaged membrane potential from baseline
(PSP onset) was defined as the latency to the response. The
response rise-time was quantified as the time measured from 10%
to 90% of the response amplitude.

The adaptation index (AI) was quantified according to the
following equation:

AI = 1 −
mean

(
R(n−1) : Rn

)
R1

Explicitly, this is one minus the ratio between the mean of the
last two responses [R(n−1) and R(n)] and the first responses (R1)
was calculated. The number of stimulations during 5 and 10 Hz
was 10 and 20, respectively.

Calculation of the Interactions Between
Whiskers and Adapted-State Response
Here we define the cross-whisker adaptation under interleaved
stimulation. When a response of a cell to the deflection of one
whisker is affected by the preceding whisker deflection of another
whisker, it is defined as an interaction. The interaction can either
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be facilitatory or inhibitory. To measure the interaction for a
given stimulation (i), the given formula was used:

Interaction (i) = 1−
Rinterleaved (i)− R10Hz(i ∗ 2)

R5Hz (i)− R10Hz(i ∗ 2)

R= Averaged EPSP
where RInterleaved(i) denotes the ith response of the cell to
the stimulated whisker during the interleaved stimulation of
the relevant whisker. R10 Hz(i∗2) denotes the response of the
cell during 10 Hz whisker stimulation; because the stimulation
frequency is double that during 5 Hz stimulation, the response
to the (i∗2) stimulation is measured. R5 Hz denotes the control
response during 5 Hz stimulation. The change in response from
5 Hz to 10 Hz provides a reference for the interactions.

An index of 1 will be obtained for full interaction (the amount
of adaptation for the interleaved stimulation is identical to that
expected from a single whisker stimulation) and 0 if the response
was not affected by interleaving it with stimulating the other
whisker. If the response to 10 Hz stimulation is weaker than
the response to 5 Hz stimulation and the interleaved response
has an intermediate value in between, then the interaction value
can vary between 0 when there is no interaction to 1 for a
strong interaction. Thus, response to whisker stimulation which
was significantly suppressed during interleaved stimulation was
termed “interacting.” According to the level of interactions of
cells for responses to stimulation of the two whiskers, cells were
divided into three groups: 1. Interacting, 2. Non-interacting, 3.
Unidirectional-interacting when only one whisker affected the
response of the other one and not vice versa.

The adapted-state response was defined as the mean response
of the last two deflections in 5 Hz or 10 Hz train stimuli.

RESULTS

Recorded Population
Intracellular whole-cell patch recordings were performed in layer
2/3 of the barrel cortex of anesthetized rats. Overall, 28 cells were
recorded in 18 animals. For each cell, the principal whisker (PW)
and most responsive adjacent whisker (AW) were stimulated.
The average recording depth was 411 ± 117 µm and the mean
latency whisker responses were 7.7 ± 0.3 and 8.7 ± 0.3 ms
(for PW and AW), corresponding to layers 2/3 in the rat
(Katz et al., 2006).

The Response of Layer 2/3 Cells to 5 Hz,
10 Hz, and Interleaved Stimulation of the
Principal and Adjacent Whiskers
Feed-forward inputs to layer 2/3 ascend mainly from layer 4
(Fanselow et al., 2001; Helmstaedter et al., 2009). If layer 4
cells integrate inputs from different whiskers and if adaptation
results from local mechanisms such as short-term synaptic
plasticity, strong interactions are expected in response to the
interleaved stimulation. However, our former results from layer
2/3 recordings showed only weak, but significant, interactions
between the inputs from two different whiskers (Katz et al., 2006).

In this former study, test stimulation to a whisker was delivered
following repetitive stimulation of its neighboring whisker. We
reasoned that due to the low firing rate of layer 4 cells, in
particular toward the end of the stimulation train, the ascending
synapses to layer 2/3, common to the two whiskers, will recover
from depression and thus restore the ability to respond upon
subsequent stimulation of the neighboring whisker. Here we
used an interleaved stimulation protocol to keep the ascending
pathway at a depressed state and thus allow evaluation of
the interactions while stimulating the two whiskers.Hence, this
form of stimulation allows testing the interactions between
whiskers pathways during the adaptation process, well before the
response is fully adapted. For each cell, we tested the adaptation
to PW or AW stimulation at two frequencies. An example
cell is shown in Figure 1. Neuronal responses of this cell to
5 Hz stimulation were weakly adapted (AI = 0.22 ± 0.03,
Figures 1A,E). Adaptation was more pronounced at 10 Hz
stimulation (p < 0.005, AI = 0.47 ± 0.02, Figures 1B,F). To test
for interactions, we used interleaved stimulation. Each of the two
whiskers was stimulated at 5 Hz with half a cycle shift between
the trains resulting in effective 10 Hz stimulation input at the
recorded cell (Figures 1C,G).

Interleaved stimulation in this example only weakly affected
the adaptation pattern that is expected from single whisker
stimulation at 5 Hz. This was observed by comparing the
responses to stimulation of each whisker in the interleaved
average response to those evoked by the 5 Hz stimulation
(compare traces in Figures 1A,E,C,G, the pattern of stimulation
is depicted below the averaged membrane potential traces).
The amplitude of the responses during interleaved stimulation
closely matched the response to 5 Hz stimulation, indicating
that the presence of stimulation of the neighboring whisker did
not affect the time course and magnitude of the adaptation
when considering stimulation of each whisker alone. The average
peak response amplitudes during each stimulation protocol were
measured (Figures 1D,H), and used for population analysis.
Since the number of whisker deflections during 10 Hz stimulation
was double that during 5 Hz, only response amplitudes for odd
deflections are presented.

The population peak response amplitudes to 5 Hz (Figure 2A
blue line), 10 Hz (Figure 2A, green line), and the interleaved
stimuli (Figure 2A, cyan line) were averaged across the
population (n = 56 whiskers, 28 cells). The responses to 10 Hz
stimulation were reduced by 50% and were significantly smaller
than the responses to 5 Hz (27% reduction) or interleaved
stimulations (36% reduction), (rank-sum p < 0.05). Hence, on
average the responses to the two whiskers interacted, but the
effect was not significant and much smaller than from the
expected full interaction.

If inputs evoked by stimulation of one whisker undergo
adaptation independently of those evoked by the other whisker,
stimulation of a second whisker will not affect its response
as previously found in layer 4 cells (Katz et al., 2006). In
that case, one would expect that the responses during the
interleaved stimulation will be equal to the responses during
5 Hz stimulation, having no interactions. On the other hand,
if inputs from both whiskers ascend along the same pathway
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FIGURE 1 | Responses of a layer 2/3 cell to stimulation of two whiskers during interleaved stimulation. (A) The average response of a layer 2/3 cell to 5 Hz
stimulation of the principal whisker (stimulation pattern is depicted below the trace). (B) The average response of the same cell to 10 Hz stimulation of the PW
principal whisker. (C) The average response to stimulation of the principal whisker and to the adjacent whisker under interleaved stimulation (the trace was
segmented by colors to depict the response to the two stimulated whiskers. (D) The average peak amplitudes of the three stimulation patterns in (A–C) are depicted
in light-blue for the 5 Hz stimulation, blue for the 10 Hz, and in dark gray for the response to the principal whisker during the interleaved stimulation. (D–H) Same
conventions as in (A–D) for responses to the adjacent whisker. The scales are similar for all plots.

and undergo adaptation after the two pathways converged, the
interleaved response will be similar to the response during
10 Hz stimulation, exhibiting strong interactions. We evaluated
the interactions during adapted-state responses (see section
“Materials and Methods”). Surprisingly, on average, cross-
whisker interactions during adapted-state responses were not

significantly different from the average control response to
5 Hz stimulation (Figure 2A). The interleaved responses were
significantly different in only 14 out of 56 stimulated whiskers
(rank-sum p < 0.05, 28 cells). All but one of these responses were
significantly smaller than the control responses (Figure 2B, outer
purple circles).
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FIGURE 2 | Population response to 5 Hz, 10 Hz, and interleaved stimulation. (A) The peak amplitude of the responses to the three stimulation conditions (5Hz,
10Hz, and interleaved). Note that cells exhibited adaptation from the second stimulus onward. The degree of adaptation during the interleaved stimulation was closer
to that for 5 Hz stimulation than for the 10 Hz. The responses to 10 Hz stimulation were significantly different from the others, as marked by the asterisks (rank-sum,
p < 0.05). (B) Responses of layer 2/3 cells (each point represents a single whisker test) to whisker deflection at 10 Hz and interleaved stimulation protocols are
compared to that obtained by 5 Hz stimulation. The adapted-state response to stimulation of each whisker obtained by the control stimulation pattern (5 Hz) was on
average larger than the response to 10 Hz stimulation (green) and interleaved stimulation (blue). Large magenta circles indicate a significant difference from the
response to 5 Hz stimulation. Orange dots mark the principal whiskers.

For whisker-inputs exhibiting significant interacting
responses (n = 14), synaptic inputs might have different
properties compared to those that exhibit no interactions
(n = 42). For example, two interacting whisker-inputs might
have similar synaptic response properties, suggesting that they
share the same pathway and thus undergo adaptation after
the point of convergence. Alternatively, the affected input
might evoke a smaller response due to the recruitment of a
subpopulation of afferents evoked by stimulation of the other
input. In this case, such a difference will lead to an asymmetrical
cross-whisker adaptation effect. Thus, various properties such
as the amplitude, rise-time, and latency of interacting versus
non-interacting inputs were measured (Figure 3). The response
amplitudes of interacting whisker-inputs were not significantly
different from that of non-interacting whisker-inputs (rank-
sum, p > 0.05), even though during train stimulation only the
responses of non-interacting whisker-inputs were significantly
reduced (Figure 3A, rank-sum, p < 0.005).

The rise time of both groups was not significantly different
(except for the sixth stimulus). Still, during repeated stimulation,
non-interacting inputs had a significant increase in the rise
time (Figure 3B). Another essential property of the responses
is latency. If the input of either group arrives via different
pathways, then their latency might be different. However, the
average latency for both groups’ responses was similar (10.7± 0.8
and 9.6± 0.3 ms, respectively, rank-sum, p > 0.05).

The division into groups causes information loss
(Felsenstein and Pötzelberger, 1998; Taylor and Yu, 2002;

Altman and Royston, 2006; Bennette and Vickers, 2012). Hence
the statistical power to detect a relationship between the variable
(i.e., latency, amplitude, and adaptation rate) and the interaction
is reduced. Thus, we tested if the interaction level was related
to the latency, the amplitude, or the adaptation rate of the
response (Figure 4). Again, we found that the interaction was
not correlated to any of these parameters (Figures 4A–C).

In an attempt to understand the interactions on a single cell
level, cells with interactions were divided into two groups by the
type of the input-interactions. Cells in which the responses were
reciprocally affected (Figure 5, green dots) and cells in which
interactions were unidirectional, namely where only one whisker-
input was affected (green encircled by purple). Since amplitude
and latency might be related to the level of interactions, the ratios
of these properties were calculated within the groups. Neither the
amplitudes nor the latencies were different between the groups
(rank-sum p > 0.05).

Specifically, in unidirectional cells (Figures 5A,B green dots
encircled by purple), the response amplitude and latency of the
non-interacting responses (abscissa) were similar to those of their
paired responses (rank-sum, p > 0.05, in both properties).

To evaluate whether the level of interactions depends on the
amplitude of the response, the level of input interaction between
each pair was reciprocally quantified. The level of interaction was
found not to be dependent on the response amplitude (0.32± 0.4,
p > 0.5).

To further check if the level of the interaction is related to
the identity of the stimulated whisker (PW/AW), we compared
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FIGURE 3 | Interacting and non-interacting whisker-inputs have similar response parameters. (A) The averaged response amplitudes during 5 Hz stimulation of
interacting (purple) and non-interacting whisker-inputs (green). (B) The averaged rise time of the interacting and non-interacting whisker-inputs was increased as
stimulation progressed, it was significantly different only during the 6th stimulation. (C) The average latencies of interacting and non-interacting whisker-inputs were
not significantly different. Error bars represent SEM in all panels.

FIGURE 4 | The interaction level was not correlated to various response parameters. (A–C) Interaction was not correlated either to latency (A), amplitude (B), or
adaptation index (C) (rank-sum p > 0.05 for n = 56 tested whiskers).

the level of interaction between the inputs evoked by stimulation
of the PW and the AW. We found that the interactions of the
PWs and the AWs inputs were similar and reciprocal (Figure 5C;
rank-sum p > 0.5). On the Venn diagram, one can see that
stimulation of the PW reduced the AW whisker responses by 33%
on average (Figure 5C, bottom left circles) and stimulation of
the AW reduced the response to stimulation of the PW by 31%
(right) on average.

DISCUSSION

We evaluated the synaptic interactions between inputs arriving
from the principal and the adjacent whisker in layer 2/3 cortical
cells of anesthetized rats. Interleaved stimulation interactions
were assessed according to the expected interactions from the
adaptation of the responses to 5 and 10 Hz stimulation of
each whisker alone. If the response to interleaved stimulation
resembles the one that is expected from 5 Hz, no interactions are

observed, whereas if it is similar to that obtained under 10 Hz,
the two adaptation processes strongly interact. We found that in
∼75% of the tested whiskers, evoked synaptic inputs were not
affected by the stimulation of a neighboring whisker, indicating
whisker-specific adaptation.

Inputs that were affected had no specific property (such as
latency to response, amplitude, or adaptation level) that can
predict the existence of the interactions (although some tendency
for a longer response latency was found for the interacting,
affected whiskers as shown in Figure 3C). The results suggest that
the adaptation to whisker stimulation in layer 2/3 cortical cells is
primarily independent, further strengthening our previous study
(Katz et al., 2006). Yet, the functional role of whisker-specific
adaptation in the detection and discriminability of sensory
stimuli is unclear. We suggest that during natural whisking
behavior, this specificity enhances both aspects of perception by
routing sensory signals independently to a different population
of neurons, without being affected by the recent history of
stimulation of neighboring whiskers.
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FIGURE 5 | Similar latency and amplitude for unidirectional and interacting cells. (A) The latency to the response of the two cell groups was not significantly different.
(B) The amplitude ratio of the two cell groups was similar. (C) The level of input-interaction between the whiskers was not dependent on the response amplitude.
The level of interactions between PW and the AW evoked inputs in the bar plot is summarized in the Venn diagram showing the interactions (yellow) between for the
PW (green), and the AW (blue) inputs which are reciprocal.

The implications for synthesis of receptive fields in layer
4 are less clear. Still, our findings strongly support the
notion that the multi-whisker receptive fields of layer 2/3
cells emerge due to integration at the cortical level, either by
integration of independent ascending inputs from layer 4 cells
or integration of inputs from layer 2/3 cells of neighboring
barrels. Supposing that multi-whisker receptive fields of layer
2/3 cells are inherited from layer 4 cells, we strongly suggest
that at the stimulation rate we used in our study (i.e., 10 Hz),
no additional adapting mechanisms act in the layer 4 to layer
2/3 pathway. Whether or not adaptation of cortical cells to
other types of mechanical stimulation (Lottem and Azouz, 2008;
Maravall et al., 2013; Sachidhanandam et al., 2013) exhibits
a similar degree of specificity is not clear and remains to
be studied.

Nevertheless, our results do not support early convergence
of pathways at the thalamic level (Jubran et al., 2016). In such
a case, we would expect that a significant portion of whiskers
would exhibit strong interactions. The finding that there are
asymmetrical interactions, which the depression of the synaptic
input cannot explain, raises the possibility that inhibition might
participate in the interactions. Still, the validity of our results in
awake animals needs to be further studied.

Possible Mechanisms for Interactions
At least three central mechanisms can be responsible for the
interactions between inputs arriving from different whiskers;
intrinsic adaptation (Carandini and Ferster, 1997), short-term
synaptic depression (Gabernet et al., 2005; Kheradpezhouh et al.,
2017), and cross-whisker inhibition (Brumberg et al., 1996;
Moore and Nelson, 1998).

Suppose synaptic depression would explain the adaptation of
cortical cells to whisker stimulation. In that case, it is reasonable
to expect a reduction in response to both whiskers during
interleaved stimulation as both inputs from the whiskers ascend
through the same pathway. This indeed was the case in ∼20% of

interacting cells (6/28 cells). On the other hand, unidirectional
interactions in which only one whisker suppresses the other
can be attributed to suppression between the pathways. Layer
4 cells efficiently recruit interneurons in layer 2/3 (Armstrong-
James et al., 1992; Feldmeyer et al., 2002; Shepherd and Svoboda,
2005; Helmstaedter et al., 2008). Thus, during unidirectional
interactions, the principal whisker’s response can activate layer
2/3 interneurons that later shunt the adjacent whisker‘s response.
However, to obtain a conclusive decision about the involvement
of inhibition in unidirectional interaction, two properties for
such inhibition are required. First, the typical time course
of IPSCs in layer 2/3 terminates approximately at the same
time as the interleaved stimulation ISI (100 ms) (Ling and
Benardo, 1995; Heiss et al., 2008) allowing the shunting of
following responses. Second, stimulation of the adjacent whisker
is not supposed to recruit a significant inhibition since it
evokes a relatively weak and slow response. This is feasible
if the response of the adjacent whisker arrives from the
adjacent barrel, or from the same subset of synapses but is
weaker and slower and recruits fewer interneurons (Kapfer
et al., 2007). Our data do not meet this condition since the
amplitudes or latencies to responses of the affecting whiskers in
unidirectional cells are not stronger than those of the affected
whiskers (Figure 5B). Another pathway for inhibition can be
mediated via the horizontal connections of the neurogliaform
cells. During whisker movements, Martinotti cells reduce their
tonic inhibition (Gentet et al., 2012), resulting in increased
inhibition of neurogliaform cells via horizontal connections
(Tamás et al., 2003; Gentet, 2012) that can mediate slow inter-
barrel inhibition.

Yet, the inability to predict the interaction level between
inputs from different whiskers arriving at the same cell by
their amplitude and latency suggests no canonical circuit in
layer 2/3 in which the interactions between inputs from two
whiskers can be deduced by their response properties. It
is possible that future experiments in which recordings will
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be targeted to specific types of cortical cells using various
CRE-lines will reveal more structure across the population
in the adaptation pattern and its specificity to whisker
identity.

Possible Implications for Synthesis of
Multi-Whisker Receptive Fields in
Layer 2/3
During interleaved stimulation, responses were significantly
reduced only in 25% (14/56) of inputs evoked by stimulation
of the tested whiskers. The reduction in the response of layer
2/3 neurons suggests that some afferents are common to both
inputs. This is in favor of the ’inherited receptive field hypothesis’
which claims that barrel cortex neurons inherit their RF from
their thalamic afferents (Goldreich et al., 1999; Lübke et al., 2000;
Kwegyir-Afful et al., 2005), in this case from layer 4 cells. On the
other hand, in 75% of the inputs, the responses did not show any
interactions, which is evidence in favor of the ’cortical integration
hypothesis’ which claims that inputs from adjacent whiskers are
transferred via cortico-cortical interactions (Armstrong-James
et al., 1991; Fox et al., 2003).

There are (at least) two parallel cortical pathways for the
ascending inputs from the adjacent whiskers. One pathway enters
layer 2/3 from the adjacent barrel whereas the second arrives
from multi-whisker layer 4 barrel cells and thus shares the same
synapse with the principal whisker. If the interactions result
from depletion of synaptic resources (i.e., synaptic depression
Lampl and Katz, 2017), then interactions between inputs
evoked by stimulation of two whiskers should depend on the
response amplitudes. For example, a very weak response when
stimulating one whisker will not affect the response evoked
by stimulating the second whisker since it almost does not
use mutual resources. On the other hand, input from whiskers
with similar amplitudes and latencies probably arriving from
the same pathway are expected to show strong interactions.
Therefore, it was suggested that the amplitude ratio of responses
when stimulating two whiskers and the latency differences
can predict the significance of the interactions. On a single
cell level, we found that these two predictors were notrelated
to the measured interactions (Figure 4). One possible reason
for the indistinguishable results might be the small sampled
population and lack of cellular identity (barrel- or septa-
related).

Another option is the lack of consistency in the exact
recording position relative to the center of each barrel column.
Few studies point toward an internal barrel map in which the
adjacent-whisker would have a broader representation closer to
its border (Andermann and Moore, 2006), affecting the response
properties and circuitry. Hence the location of the cell within the
barrel might set the degree of the interactions. Though we did
not find a relation between the amplitude and the interaction, it
is possible that a careful mapping of the recording position within
the barrel might produce a different result.

Although the source of the interactions could not be revealed
in this study, the various types of interactions favor both
hypotheses for receptive field integration in layer 2/3.

Many cells did not show any interactions between inputs
arriving from the two whiskers, suggesting that layer 2/3 neurons
integrate them. Another option for the weak interactions due
to synaptic depression during adaptation is the possibility that
the firing rate of individual input cells is low, leading to weak
synaptic depression (Lampl and Katz, 2017). In that case, input
arriving at layer 2/3 is inherited from many layer 4 cells having
low firing probability, and the adaptation seen at a layer 2/3 cell
results from synaptic adaptation of the previous thalamocortical
synapse (Gil et al., 1999; Chung et al., 2002; Jubran et al., 2016)
of the stimulated whisker. Yet, because layer 4 cells exhibit
multi-whisker receptive fields, we strongly suggest that layer
2/3 cells integrate inputs from different whiskers due to cortio-
cortical interactions.

CONCLUSION

Our results show complex integration in layer 2/3 cells.
For most cells the response to interleaved stimulation of
two whiskers mostly shows no interactions, but in a small
number of cases, it can result in strong reciprocal interactions
or asymmetrical unidirectional interactions. Our results thus
combine contrasting studies by supporting both cortico-cortical
and inherited receptive fields.
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