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Eight rhizospheric bacteria were isolated from the organic paddy fields of Sikkim,
India, and identified as Pseudomonas kribbensis KSB, Burkholderia cenocepacia SRD,
Kosakonia oryzendophytica YMA7, Pseudomonas rhodesiae SRB, Bacillus sp. ARA,
Paenibacillus polymyxa COW3, Bacillus aryabhattai PSB2, and Bacillus megaterium
PSB1. They showed plant growth-promoting attributes in rice and have bio-control
potential against phytopathogen Colletotrichum gloeosporioides of large cardamom
(Amomum subulatum). Burkholderia cenocepacia SRD showed production of indole
acetic acid and ammonia and solubilization of phosphate and potassium and also
possessed nitrogen fixation potential. It showed antagonistic activity against two other
plant pathogens of large cardamom, viz., Curvularia eragrostidis and Pestalotiopsis
sp., under in vitro conditions. The liquid bacterial consortium was prepared using
the bacterial strains SRB, PSB1, and COW3 (Consortia-1); PSB2, SRD, and COW3
(Consortia-2); and COW3, KSB, and YMA7 (Consortia-3) to increase the growth and
yield of rice plants under organic farming conditions. Greenhouse and field studies
showed that the Consortia-3 had the highest plant growth-promoting activity. Consortia-
3 demonstrated better agronomic performance in terms of root length (9.5 cm),number
of leaflets per plant (5.3), grains per panicle (110.6), test grain weight (27.4 g), dry root
weight per plant (0.73 g), and total dry biomass per plant (8.26 g).

Keywords: consortia, bio-control, rhizobacteria, bio-fertilizer, organic agriculture, Sikkim, plant growth promoting
rhizobacteria

INTRODUCTION

Northeast India comprises seven sister states, i.e., Assam, Manipur, Meghalaya, Tripura, Mizoram,
Arunachal Pradesh, and Nagaland and one brother state, Sikkim. These regions are globally
acknowledged for their highest rice diversity (Roy Choudhury et al., 2014). Rice (Oryza sativa L.) is
one of the main staple food grains of Sikkim that is cultivated in 11,600 ha with a total production
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of 20,260 tonnes and a productivity of 1.84 t ha−1 (Kapoor et al.,
2017). It is also described with an epithet “Denzong Valley,” which
transcribes to “valley of rice.” Rice is grown during the Kharif
season, i.e., monsoon period from July to October. Sikkim alone
has greater genetic rice diversity accounting for more than 57
rice accessions documented to date (Kapoor et al., 2017). Among
the predominant local rice cultivars, Attay is the most common
type found all over Sikkim. Depending on the grain size, it can
be classified as “Thulo attay,” having larger grain size, and “Sanu
attay,” having small grain size.

Sikkim, the Himalayan state of India, is situated at the
27◦N–28◦N latitude and 88◦E89◦E longitude with an elevation
ranging from 300 to 6,000 m above the mean sea level (Sherpa
et al., 2015; Najar et al., 2018). The state completely banned
the application of synthetic fertilizers and pesticides from
2003 and ultimately attained the certified organic status in
2016. Nutrient management in organic farming has attracted
the attention of many researchers for exploring the soil
microbes as potent bio-fertilizer that can be used either as a
single inoculum or as consortia. Numerous researchers have
reported the importance of soil bacteria for the production
of plant hormones like indole-3-acetic acid (IAA), gibberellic
acid (GA3), solubilization of phosphate, potassium, and
nitrogen fixation. The most predominant and economically
important soil bacteria isolated from agricultural farmlands
are Burkholderia, Delftia, Pseudomonas, Agrobacterium,
Azospirillum, Azotobacter, Rhizobium, Clostridium, and
Serratia (Bhattacharyya and Jha, 2012; Hao and Chen, 2017;
Rajawat et al., 2019; Venieraki et al., 2020). Three species
from the genera Bacillus, viz., Bacillus luciferensis K2, Bacillus
amyloliquefaciens K12, and Bacillus subtilis BioCWB, were
isolated from the soils of Sikkim and developed as consortia
for use in rice and vegetable cultivation for enhancing their
nutrient quality and controlling the pest management of the
crops (Panneerselvam et al., 2019, 2020).

Bacillus species such as Bacillus thuringiensis, Bacillus
megaterium, B. subtilis, and B. amyloliquefaciens have also
been reported for their effectiveness to suppress diseases and
pests in plants. Among their different modes of antagonism,
antimicrobial peptides (AMPs) such as bacillomycin, iturin,
surfactin, and fengycin produced by Bacillus spp. have been
identified and demonstrated to play an important role in
suppressing several plant pathogens. Bacteria are also known
to produce volatile compounds and soluble metabolites, which
play a key role in plant growth and development, stress
tolerance, and disease suppression (Panneerselvam et al., 2019).
Sikkim has an entirely organic farming system (Kumar J. et al.,
2018), and several management practices including indigenous
technologies are available for improving plant growth. However,
the application of bacterial consortium particularly of native
strain to address the nutrient and pest management has been
proved to be holistic and ecologically sustainable strategy for
agricultural production (Panneerselvam et al., 2020).

Bacterial consortia were developed from the eight native
strains isolated from the rice rhizosphere of the organic farming
fields of Sikkim, India. Few previous reports were based on
either the monocultures or consortia of bacterial strains from

the same genera such as Bacillus sp. showing the plant growth-
promoting (PGP) activity (Panneerselvam et al., 2019, 2020). Our
consortia were constituted with isolates from different genera
having antifungal properties and good nitrogen, potassium, and
phosphorous (NPK) performance and had shown promising PGP
activity in both tested greenhouse experiments and field study.
The consortia developed was tested in local cultivar Sanu attay,
for various agronomic performance in terms of root length, the
number of leaflets per plant, grains per panicle, test grain weight,
dry root weight per plant, and total dry biomass per plant, in the
test fields at Pakyong organic farming. The present study attempts
to identify some of the novel crop-specific multi-potential PGP
bacteria from native rice rhizospheric soils.

MATERIALS AND METHODS

Sampling Sites
The geographical location of Melli, Sajong, and Assam Lingzey
rice fields was determined by GPSMAP 78S (Garmin, Lenexa,
KS, United States) as per the manufacturer’s guidelines. The
study areas were the organic rice fields of the progressive
farmers from South Sikkim (Melli, and East Sikkim (Sajong and
Assam Lingzey) districts of Sikkim, India. Melli (27◦06′06.32N;
88◦25′38.45E), Sajong (27◦18′11.13N; 88◦34′26.58E), and Assam
Lingzey (27◦16′55.98N; 88◦37′06.70E) are located at an elevation
of 991, 1,268, and 1289 m above the mean sea level, respectively
(Figures 1A,B). Four different sampling sites were chosen for the
collection of the rhizosphere soil samples from each of these three
villages, i.e., Melli, Sajong, and Assam Lingzey.

The cultivation of the crop was done by the farmers in a well-
managed contour terrace on hilly and mountainous topography
with ridges almost <30% slope. Melli is characterized by a humid
subtropical climate with an annual average rainfall of about
3,137 mm and an average temperature of 23◦C. Similarly, Sajong
and Assam Lingzey are characterized by subtemperate climates
with an average rainfall of about 2,578 mm and an average
temperature of 16◦C. At all the places, the soil was loamy sand;
and crops were rain-fed; an assured irrigation source (Bana et al.,
2018) was also available.

Collection of Rhizosphere Soil Samples
and Its Physicochemical Analysis
Soil samples were randomly collected from the four different
sampling sites at Melli, Sajong, and Assam Lingzey rice fields,
during the rainy season of 2019. These samples were collected in
triplicates from each of the sampling sites. The field trial was laid
out in a split-plot design with local rice cultivar “Sanu attay,” a
long duration (120 days) variety of paddy. The top 0- to 15-cm
soils contained high organic carbon (1%–1.3%) and were slightly
acidic in pH (6.5–6.8). One whole paddy plant, after chopping
off the shoots, was carefully uprooted (along with the adhering
soil; without breaking the secondary and tertiary roots), placed
in a polythene bag, labeled and tied (in order to minimize the
evaporation loss), and further placed in a box containing ice.
The approximate distance of soil adhered to the rice root surface
was 12–15 cm. The ice box was transported to a lab where the
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FIGURE 1 | Location of the sampling sites (A) South and (B) East Sikkim, India.

roots were shaken to dislodge and separate loosely adhering soil
aggregates around primary, secondary, and tertiary roots, and the
adhering soils were collected and stored in a refrigerator at 4◦C
for further studies.

These four soil samples collected from the different sampling
sites of a village were pooled together and were used for
determination of the physicochemical analysis of the soil for
that study area. At all the sampling sites, soils are deep, well-
drained, fine-loamy soils with loamy surface, having slight
stoniness and moderate erosion. They show a slight degree of
profile development and are classified as Cumulic Haplumbre
and Pachic Haplumbrepts. They occur in association with
moderately deep, coarse soils with loamy surface having slight
stoniness and moderate erosion. Associated soils are classified
as Typic Udorthents and Typic Haplumbrepts. Most of the area
is under paddy cultivation; limited extent is under temperate
forest (ENVIS, 2007).

Physicochemical parameters such as soil organic carbon
(SOC), nitrogen (N), phosphorus (P), potassium (K), and pH
of the rice field soil (before and after application of consortia)
were analyzed. SOC and available N/P/K of the soil samples
were estimated by the ammonium acetate method (Zhang et al.,
2019); and the pH of the soil sample was measured by digital
pH meter (Mettler-Toledo, India). The soil:water ratio during
the sample collection was 1:2. The soil samples were of loamy
sand texture. The pH of the Melli and Sajong soil was between
6.7–6.8 and 6.6–6.8, while soil sample pH of Assam Lingzey was
recorded as the lowest among other sites, with a pH of 6.4–
6.5. The SOC, available nitrogen, phosphorous, and potassium
were measured as 1.1%, 238 kg ha−1, 19 kg ha−1, and 25 kg
ha−1, respectively, in Melli soil; those of the soil sample of Sajong
were recorded as 1.3%, 235 kg ha−1, 18.1 kg ha−1, and 22 kg
ha−1, respectively; and those of Assam Lingzey soil sample were
measured as 1%, 239 kg ha−1, 16.1 kg ha−1, and 21 kg ha−1,
respectively (Supplementary Table 1).

Isolation and Screening of Plant
Growth-Promoting Rhizobacterial
Strains, Their Morphological and
Biochemical Characterization, and
Molecular Identification
Ten grams of rhizosphere soil from each sampling sites was
separately suspended in 90 ml of physiological saline (0.85% of
NaCl) in a flask and placed on an orbital shaker (at 100 rpm)
at 30◦C ± 2◦C for 1 h. At the end of shaking, the soil samples
were serially diluted up to 106 dilutions with physiological
saline. Dilutions 104-106 were plated on Pikovskayas’ agar (PA),
Aleksandrov’s agar (AA), and Jensen’s agar (JA) as described by
Panneerselvam et al. (2019, 2020) by spread plate technique and
incubated at 30◦C ± 2◦C for 48 h. The most prominent colonies
were isolated and streaked on PA, AA, and JA plates for obtaining
pure culture isolates and further were preserved as in glycerol
stock stored at –80◦C for further studies.

Colony morphology of the pure bacterial isolates was
examined. Gram staining was done as per the universal standard
method. The physiological characteristics such as the effect of
varying temperature, pH, and NaCl concentrations on the isolates
were measured by a UV–Vis spectrophotometer. The optimal
temperature for growth was examined by incubating the isolates
in various temperatures ranging from 5 to 40◦C in nutrient broth.
The effect of NaCl concentrations was tested in a range of 1%–
5% and pH tolerance in the pH ranging from 4 to 10 in nutrient
broth at 30 ± 2◦C for 48 h (Arya et al., 2015). The biochemical
characterization of the isolates was done by qualitative analysis
of various enzymes such as indole, methyl red, Voges–Proskauer,
and citrate utilization. The carbohydrate assimilation test was
performed using glucose, adonitol, arabinose, lactose, sorbitol,
mannitol, rhamnose, and sucrose (Najar et al., 2018).

The bacterial genomic DNA was extracted with the help
of HiPurATM kit (HiMedia, Mumbai, India) as per the
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manufacturer’s instructions. After extraction of genomic
DNA, it was stored at –80◦C for further studies. The
16S rRNA genes were polymerase chain reaction (PCR)
amplified by using two universal bacterial primers 27F
(5′-AGAGTTTGATCCTGGCTCAG-3′) and 1492R (5′-
CGGTTAC CTTGTTACGACTT-3′) (Kumar J. et al., 2018).
The amplification was done in 50 µl using 4 µl of each dNTP,
2 µl of MgCl2, 2 µl of template DNA, 1 µl of each primer
(forward and reverse), 1 µl of Taq DNA polymerase, and 33 µl of
nuclease-free water (HiMedia, India). Reactions were performed
in the Mastercycler gradient (Eppendorf, Chennai, India) with
the following reaction conditions; 94◦C for 5 min for initial
denaturation followed by 30 cycles of 94◦C for 30 s, 55◦C for
1 min, 72◦C for 1 min, and the final extension at 72◦C for
10 min (thermal cycler PCR system, BIO-RAD C1000; Bio-Rad
Laboratories, Singapore) (Najar et al., 2018). The PCR products
were purified with the HiPurATM PCR clean up system kit
(HiMedia, India) and sequenced by ABI Applied BiosystemsTM

3500 DNA Analyzer using each universal primer, i.e., 27F and
1492R (Sherpa et al., 2018). The sequences were assembled
and aligned with the aid of Codon-Code Aligner software.
The sequences were identified using the nucleotide blast tool
[National Center for Biotechnology Information (NCBI) search
tool)], and the phylogenetic tree was created by using the
neighbor-joining method with the Jukes–Cantor evolutionary
distance measurement using MEGA v.10 (Saitou and Nei,
1987; Erickson, 2010). After the 16S rRNA gene sequences
were obtained, they were matched with the GenBank database
using the NCBI Basic Local Alignment Search Tool (BLAST).
Identified sequences were submitted to NCBI GenBank data, and
accession numbers of the selected isolates were obtained.

In vitro Bioassay for Plant
Growth-Promoting Traits
Solubilization of Insoluble Phosphate and Potassium
The isolates that were screened for their phosphate-solubilizing
ability on PA were streaked and incubated for 72 h at
30◦C ± 2◦C. The presence of halo zone around the bacterial
colony indicated positive isolates. These phosphate solubilization
potential isolates were quantitatively estimated in Pikovskayas’
medium enriched with tri-calcium phosphate as an insoluble
phosphate source (Panneerselvam et al., 2019). Each of the pure
isolated bacterial suspension (0.5 ml of 108 CFU ml−1) was
inoculated in a 250-ml flask containing 100 ml of Pikovskayas’
broth. After incubation at 150 rpm at 30◦C for 7 days in
an incubator, the cultures were centrifuged at 1,000 rpm for
25 min. The supernatant was used to measure the soluble
P content colorimetrically as described by Ames (1966).
Uninoculated flasks containing the same volume of the medium
were established as the controls. The solubilized P content
was estimated by subtracting the control P from the final
P concentration.

The isolates that were screened for their potassium-
solubilizing ability on AA were streaked and incubated for 72 h
at 30◦C ± 2◦C. The presence of halo zone around the bacterial
colony indicated positive isolates. These potassium solubilization

potential isolates were quantitatively estimated in Aleksandrov’s
medium (Zhang and Kong, 2014; Paul and Sinha, 2017). For the
quantitative estimation of potassium solubilization (Sun et al.,
2020), cultures were grown in Aleksandrov’s broth and incubated
for 5 days at 30◦C in an incubator. After incubation, 5 ml broth
was centrifuged at 10,000 rpm for 15 min; and the supernatant
was collected and added to 5 ml of sodium cobalt nitrite solution
and was incubated at 30◦C for 40 min. It was then centrifuged
at 10,000 rpm for 10 min. Optical density was taken at 600 nm
in a UV–Vis spectrophotometer. Concentration of potassium
produced by cultures was measured with the help of standard
graph of KCl obtained in the range of 100–1,000 µg ml−1.

Qualitative Estimation of Siderophore Production
The production of bacterial siderophores was qualitatively
estimated by the method as per Schwyn and Neilands (1987).
Bacteria were streaked on chrome azurol S (CAS) agar media and
incubated at 30◦C ± 2◦C for 48 h. When the bacteria consumed
iron, present in the blue-colored CAS media, orange halos were
produced around the colonies, which indicated the presence
of siderophores.

Production of Indole-3-Acetic Acid
Bacterial isolates were grown in nutrient broth supplemented
with 0.5% (w/v) tryptophan (i.e., precursor of IAA) and
were compared with broths without tryptophan (control) and
incubated at 30◦C ± 2◦C for 24 h with constant shaking
at 150 rpm. The nutrient broth culture was centrifuged at
3,000 rpm for 20 min; and the supernatant was collected in a
fresh sterile tube. In a sterile tube, 1 ml of the supernatant was
mixed with 2 ml of Salkowski’s reagent (2% 0.5 FeCl3 in 35%
perchloric acid solution) and kept in the dark. The absorbance
[optical density (OD)] was recorded at 530 nm using a UV–
Vis spectrophotometer (Lambda PerkinElmer, Waltham, MA,
United States). The amount of produced IAA was measured
through a standard curve established by commercially procured
IAA (0–100 µg ml−1) as standard.

Qualitative Analysis of Nitrogen-Fixing Ability
The qualitative nitrogen-fixing ability of the bacterial isolates was
evaluated based on their ability to grow on N-free Jensen’s media
by culturing and incubating them at 30◦C± 2◦C for 48 h (Jimtha
et al., 2014; Kumar S. et al., 2018).

Qualitative and Quantitative Estimation of Ammonia
All the bacterial isolates were qualitatively tested for ammonia
production as per Cappuccino and Sherman (1992). The
quantitative estimation of ammonia production was assessed by
using nutrient broth at 30◦C ± 2◦C for 24 h with constant
shaking at 150 rpm. Cell-free supernatants of nutrient broth
were added with 5% Nessler’s reagent, and uninoculated nutrient
broth with Nessler’s reagent served as a control. Color changes of
supernatant from pale to deep yellow were observed for positive
isolates. Absorbance was measured at 425 nm, and the amount
of ammonia produced was estimated using the ammonium
sulfate standard curve of concentrations in (0–100 mM) range
(Chrouqi et al., 2017).
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Assessment of the in vitro Antifungal
Activity of Bacterial Isolates
The antifungal activity of the bacterial isolates was evaluated
against the fungal pathogens infecting large cardamom
(Amomum subulatum) of Sikkim by dual culture assay using
Potato Carrot Agar (PCA). The following large cardamom fungal
pathogens were provided by the Department of Horticulture,
Sikkim University, Sikkim, India, viz., Colletotrichum
gloeosporioides 05 (MN710587), Curvularia eragrostidis04
(MN710527), and Pestalotiopsis sp. 02 (MN710582) used for the
assay. Agar disc (5 mm) of phytopathogens for 5-day-old culture
was placed at one pole of the Petri’s plate, and 24-h-old bacterial
culture was streaked on the opposite pole (Panneerselvam et al.,
2019). Antifungal activity of the bacterial strains was determined
by comparing with the control plates inoculated with the fungus
only. Inhibition of fungal mycelium (halo zone) around the
bacterial colony was a criterion for positive reaction, and its zone
of inhibition was measured. The fungal growth was monitored at
30◦C ± 2◦C for 120 h; and the three replications per isolate were
considered. Fungal colony diameter (growth) was measured, and
the percentage of inhibition was calculated as per the methods
suggested by Lahlali and Hijri (2010).

Percentage of inhibition =
(

Cd−
Td

Cd

)
× 100

where Cd is the colony diameter (mm) of the control and Td

is the colony diameter (mm) of the test plate Antagonism was
also assessed under potato dextrose broth methods wherein first
the mycelia dry weight was calculated from which the percentage
inhibition by bacteria was calculated as per the formula described
by Lahlali and Hijri (2010).

Percentage of inhibition =
(

Cw
−

Tw

Cw

)
× 100

where Cw mycelia weight (g) is in the control and Tw mycelia
weight (g) is in the treatment broth.

In vitro Bacterial Compatibility Test
Only the selected bacterial strains were investigated for their
compatibility as described by Raja et al. (2006). Each pure
bacterial isolate was cultured individually in Luria Bertani broth
at 30◦C ± 2◦C in a shaker cum incubator at 100 rpm for 48 h.
Later on, all the strains were cross-streaked on Luria Bertani agar
plate. The cross-streaked plates were incubated at 30◦C ± 2◦C
for 48 h and then examined for the formation of inhibition zones
around the colonies.

Preparation of Bacterial Consortia
The selected isolates SRB, SRD, PSB1, PSB2, COW3, KSB, and
YMA7 were grown until the stationary phase (2× 109 cells ml−1).
Based on the compatibility test, NPK-producing consortia were
prepared such as SRB (K), PSB1 (P), and COW3 (N) (Consortia-
1); PSB2 (K), SRD (P), and COW3 (N) (Consortia-2); and
COW3 (N), KSB (P), and YMA7 (K) (Consortia-3). The selected
individual pure bacterial strains having potassium-solubilizing,

phosphorous-solubilizing, and nitrogen-fixing abilities were
inoculated into 100-ml conical flask containing each of 50 ml
of nutrient broth and was incubated for 48 h at 30◦C. The
bacterial consortia were prepared by inoculating each of the 200
µl of 48-h-old culture (concentration of 2 × 109 CFU ml−1)
into 1,000-ml conical flask containing 500 ml of nutrient broth
supplemented with 5% sucrose. It was incubated in shaker cum
incubator at 150 rpm at 30◦C for 48 h. Then the consortia
were centrifuged at 4,000 × g for 5 min and were washed twice
with sterile phosphate-buffered saline PBS (1.24 g of K2HPO4,
0.39 g of KH2PO4 and 8.80 g of NaCl per liter). The supernatant
was discarded, and the pellet was suspended in PBS buffer. The
viable count of the suspension was adjusted by adding sterile
distilled water to give a final concentration of 2 × 109 cells
ml−1 (2 × 109 CFU ml−1) with the help of a hemocytometer
(Marienfeld, Lauda-Königshofen, Germany).

In vivo Root Colonization and Plant
Growth Assessment Through
Greenhouse Pot Experiment
The effect of the bacterial consortia on plant growth was
examined on rice (local cultivar Sanu Attay) in a pot at the
greenhouse (Department of Horticulture, Sikkim University) in a
randomized complete block design method with three replicates.
Rice seeds were surface-sterilized with 95% ethanol for 5 min and
washed several times with sterilized distilled water.

Three different bacterial consortia [Consortia-1 (Pseudomonas
rhodesiae SRB +B. megaterium PSB1 +Paenibacillus polymyxa
COW3), Consortia-2 (Bacillus aryabhattai PSB2 +Burkholderia
cenocepacia SRD +P. polymyxa COW3), and Consortia-3
(P. polymyxa COW3+Pseudomonas kribbensis KSB+Kosakonia
oryzendophytica YMA7)] were grown in a nutrient broth
supplemented with 5% sucrose and was incubated at 30◦C for
48 h in an orbital shaker at 150 rpm. Rice seeds were inoculated
with each of the bacterial consortia for 5 h at room temperature
before planting in pots. Control seeds were also treated in the
same manner with sterilized distilled water.

Each pot contained 3 kg of autoclaved sterile soil. Each of the
bacterial consortia inoculated seeds was planted 1 cm below the
soil surface in each pot. Three replications were conducted for all
the treatments. The pots were irrigated with sterile distilled water
every day. Rice roots were harvested at the end of the trial, and
their dry weight was measured.

Determination of N, P, and K Uptake by
the Rice Plant Grown in Greenhouse Pot
Experiment
The availability of N/P/K uptake by the rice plant grown in
greenhouse pot was estimated by the analysis of the soil during
each treatment, i.e., at initial stage and after 60 days of treatment.
In case of the first treatment, i.e., at the initial stage, the soil
samples from 0.45 m depth were randomly collected from the
pot for each treatment with the three different bacterial consortia.
The soil samples were aseptically collected with the help of
screw auger. The samples were brought to the laboratory and
air-dried under room conditions for 2 days. To remove the
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further moisture in the soil, the samples were dried in hot air
oven at 35◦C ± 2◦C for 6 h. Then the dried soil samples were
grinded by wooden roller and thereafter manually sieved through
2 mm stainless steel sieve. The fine-powdered samples were then
processed for their chemical analysis through tri-acid mixture.

In case of the second treatment, the effect of the bacterial
consortia on nutrient uptake of rice plant was analyzed in the
60-day-old plants. The plant samples from the greenhouse pot
experiment were brought to the laboratory, the whole rice plant
was air-dried for 2–3 days, and after that, it was dried in a hot air
oven at 60◦C± 2◦C overnight to achieve complete dryness of the
samples. Once the plant samples were completely dry, they were
grinded to powder form and passed through 2 mm stainless steel
sieve manually. The filtered powder was then processed for the
various chemical assays through tri-acid mixture.

Total nitrogen (N) was assessed by Kjeldahl digestion method;
total phosphorous (P) was evaluated by ammonium-molybdate
technique in acid digestion procedures; and potassium (K) was
estimated by flame photometric methods (Duarah et al., 2011)
for both the soil samples (during initial treatment) and plant
samples (during second treatment, i.e., after 60 days’ growth in
a greenhouse pot experiment).

In vivo Plant Growth-Promoting
Rhizobacteria Activity of the Consortia in
Field-Based Trials
The bacterial consortia were applied at the rice field at Pakyong
(27◦13′45.12 N and 88◦35′33.26 E, and elevation is 1,272 m
above the mean sea level), East Sikkim, in triplicates. Soils are
deep, well-drained, fine-loamy soils with loamy surface, have
slight stoniness and moderate erosion, and are classified as
Cumulic Haplumbre and Pachic Haplumbrepts. The consortia
were applied to the field area of 36.57 m × 60.96 m (2,229.3
m2) where local rice variety Sanu attay was organically cultivated.
The consortia were administered to 25-day-old rice plant
saplings through root dipping method (Fasusi et al., 2021).
The uninoculated rice saplings were the controls for the study.
The PGP traits were observed in the plants after 60 days by
transplanting in organic agricultural farming fields.

Statistical Analysis
Data of bacterial consortia treatments were compared by the least
significance difference (LSD) test using R software (Devkota et al.,
2019). The differences at the p ≤ 0.05 value were considered as
significant results.

RESULTS

Bacterial Isolation and Biochemical
Characterization
A total of 25 PGP bacteria were screened and isolated from the
rice rhizospheric soil. Based on the morphological, biochemical
characterization, and PGP attributes, eight bacterial isolates were
selected for further analyses. The cell morphology of the isolates
was Gram-positive and Gram-negative rods. Most of the isolates

were Voges–Proskauer negative, methyl red positive, and citrate
utilization test positive, i.e., seven isolates, six isolates, and seven
isolates. The carbohydrate assimilation test showed that most
of the isolates fermented carbohydrates like glucose, arabinose,
and sucrose (Supplementary Table 2). The physiological analysis
showed that isolates could tolerate a wide range of temperature,
pH, and NaCl concentrations. Growth was observed up to
5% NaCl concentration (Supplementary Figures 1A,B). The
isolates could actively grow in the temperature range from
10 to 40◦C. However, most of the isolates showed optimum
growth temperature at 30◦C (Supplementary Figures 1C,D).
The isolates were able to grow in both acidic and alkaline
conditions of pH ranging from 4.0 to 10.0 (Supplementary
Figures 1E,F). However, the optimum pH for most of the isolates
was pH 8.0, although few isolates showed growth up to pH 10
(SRB, KSB, and YMA7).

Identification of Bacteria
Molecular identification revealed the singular dominance of
the genus Bacillus. The other genera found in this study
were Burkholderia, Kosakonia, and Pseudomonas. Identified
isolates of Bacillus were B. aryabhattai PSB2 (MW020338),
B. megaterium PSB1 (MW020222), and Bacillus sp. ARA
(MW021509). Similarly, identified isolates of Pseudomonas
were P. kribbensis KSB (MW308683) and P. rhodesiae SRB
(MW020262), while other identified isolates were Kosakonia
oryzendophytica YMA7 (MW020337), P. polymyxa COW3
(MW020264), and B. cenocepacia SRD (MW020263). The
alignment and similarity search of 16S rRNA sequence with
nr/nt database of NCBI have shown that many of the isolates
have a percentage of identity >98%.The identified species,
the percentage of identity, and their NCBI accession number
are given in Table 1. The phylogenetic tree was made
with the help of MEGA v.10 software using the maximum
likelihood method and the Jukes–Cantor model as shown in
Supplementary Figure 2.

Plant Growth-Promoting Activity
In this study, eight efficient isolates were selected based on
their PGP traits, in particular, (i) the solubilization of phosphate
and potassium; (ii) production of IAA and siderophore; and

TABLE 1 | Identification of bacteria based on 16S rRNA, the percentage of
identity, and NCBI accession numbers.

Isolates Partial identification
based on 16S rRNA gene

sequencing

% identity Accession no.

PSB1 Bacillus megaterium 98 MW020222

COW3 Paenibacillus polymyxa 99 MW020264

SRB Pseudomonas rhodesiae 99 MW020262

ARA Bacillus sp. 99 MW021509

KSB Pseudomonas kribbensis 99 MW308683

YMA7 Kosakonia oryzendophytica 99 MW020337

SRD Burkholderia cenocepacia 98 MW020263

PSB2 Bacillus aryabhattai 99 MW020338
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(iii) ability to fix nitrogen. The selected bacterial isolates
were identified as P. rhodesiae SRB, B. megaterium PSB1,
P. polymyxa COW3, B. aryabhattai PSB2, B. cenocepacia SRD,
Bacillus sp. ARA, P. kribbensis KSB, and K. oryzendophytica
YMA7 (Table 1). The quantitative estimation of phosphate and
potassium indicated that isolate B. cenocepacia SRD produced
significantly higher phosphate (530 µg ml−1) and potassium
(581 µg ml−1) than did the other isolates (Table 2). Similarly,
quantitative estimation of IAA and ammonia showed that the
isolate K. oryzendophytica YMA7 produced a considerably higher
extent of IAA (84 µg ml−1) and ammonia (61 mM) than did
the other isolates (Table 2). However, out of eight isolates,
P. polymyxa COW3 and B. aryabhattai strain PSB2 had only the
nitrogen-fixing ability.

Antagonistic Activity Against Pathogenic
Plant Fungi
The dual-plate studies revealed that B. cenocepacia SRD had
higher antagonistic activity against rice sheath blight and large
cardamom leaf spot disease-causing fungi C. gloeosporioides
(90%–91%), C. eragrostidis (43%–49%), and Pestalotiopsis sp.
(29%–33%) (Supplementary Table 3 and Supplementary
Figure 3). Similarly, K. oryzendophytica YMA7 showed 56%
antagonism against C. eragrostidis and C. gloeosporioides
(53%) and 27% with Pestalotiopsis sp., respectively, in both
culture plate and broth assay (Supplementary Tables 3, 4).
Furthermore, compatibility assays conducted on Nutrient Agar
plate deciphered that all the tested isolates have no antagonistic
effect on each other such as Consortia-1 (P. rhodesiae SRB,
B. megaterium PSB1, and P. polymyxa COW3), Consortia-2
(B. aryabhattai PSB2, B. cenocepacia SRD, and P. polymyxa
COW3), and Consortia-3 (P. polymyxa COW3, P. kribbensis KSB,
and K. oryzendophytica YMA7).

Root Growth Stimulation Potential
Greenhouse pot assessments of selected bacterial consortia on
rice roots growth have shown the development of the rice
root system as a function of IAA production. Consortia-3
(K. oryzendophytica YMA7 +P. kribbensis KSB +P. polymyxa
COW3) stimulated the maximum amount of lateral roots on rice
plant as compared with other consortia. The root length of rice

exhibited by all the three different bacterial consortia were higher
than that of the control.

Evaluation of Plant Growth-Promoting
Traits in Field Study
Three bacterial consortia developed in this study were first
tested in greenhouse pot experiments and later on applied to
the rice field (Figure 2). Based on the agronomic parameters,
significant increases were observed in all the plant growth and
yield parameters except leaf number per plant when compared
with uninoculated rice plant (Table 3). All the three bacterial
consortia significantly improved grains per panicle (C1:45.0,
C2:79.0, and C3:110 grain numbers per panicle) (Figures 3, 4and
Supplementary Figures 4, 5), grain weight in grams (C1:24.3 g,
C2:24.8 g, and C3:27.8 g) (Figures 3, 4and Supplementary
Figures 4, 5), and root length in cm (C1:6.6 cm, C2:9 cm,
and C3:9.5 cm) as compared with uninoculated control rice
plants. However, among the three bacterial consortia, Consortia-
3-inoculated rice plants showed significantly higher biomass
(8.26 g/plant), grains per panicle (110 grain/panicle), test grain
weight (27.4 g), root length (9.5 cm), and dry root weight
(0.73 g/plant)as compared with the other consortia (Table 3).
The combined PGP traits such as phytohormone production
and nutrient solubilization abilities were maximally observed
in Consortia-3 (K. oryzendophytica YMA7+P. kribbensis KSB
+P. polymyxa COW3). The potential assessment of the bacterial
consortia application improved the soil N, P, K value as
compared with the control; but in our study, interestingly, the
pH value of the experimental field soil decreased from 6.5 to 6.0
(Supplementary Tables 5, 6). This result might be due to the fact
that the bacterial colonization in soil decreases pH value due to
the secretion of organic acid by bacteria as secondary metabolites.

Determination of N/P/K Content in Rice
Plant
In order to verify whether consortia-based treatment can
promote nutrient uptake by rice plants, the content of nitrogen,
phosphorus, and potassium in rice plant were determined. Our
results showed that significant increase in rice plant N/P/K
uptake was observed when the soil was inoculated with different
bacterial consortia as compared with the uninoculated control

TABLE 2 | PGP traits of isolated bacterial isolates.

Strain Phosphate (µgml−1) Potassium (µg ml−1) IAA (µg ml−1) Ammonia (mM) Siderophore production Nitrogen fixation

PSB1 460 ± 0.25 250 ± 0.071 21.0 ± 6.1 7.0 ± 2.13 ++ +

COW3 420 ± 0.005 250 ± 0.00 25.0. ± 0.66 5.0 ± 0.00 + +++

SRB 210 ± 0.003 580 ± 0.008 5.0 ± 0.33 10.0 ± 0.33 + +

ARA 480 ± 0.03 570 ± 0.26 4.0 ± 0.00 6.0 ± 0.00 + ++

KSB 410 ± 0.003 590 ± 0.01 59.0 ± 0.33 35.0 ± 0.33 ++ +

YMA7 517 ± 0.01 570 ± 0.03 84.0 ± 1 61.0 ± 1.2 +++ ++

SRD 530 ± 0.008 581 ± 0.012 20.0 ± 0.66 5.0 ± 0.66 + ++

PSB2 450 ± 0.006 330 ± 0.003 10.0 ± 0.00 2.0 ± 0.33 + +

Data are presented as mean of triplicates ± standard deviation. “+” denotes weakly positive; “++” denotes moderately positive; and “+++” denotes strongly positive.
Bold values indicate the highest value obtained among all the strains for the specific PGP trait. PGP, plant growth promoting; IAA, indole-3-acetic acid.
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FIGURE 2 | Flowchart representation of the PGP traits as shown by the individual isolates and consortia.

TABLE 3 | Effect of bacterial consortia inoculation on plant growth promotion after 60 days of transplanting of rice at farmer’s field.

Microbial consortia Tiller number per
bunch

(5 plants)

Root length
(cm)

Number of
leaflets per

plant

Grains per
panicle

1,000-grain
wt. (g)

Dry root dry
wt. per plant

(g)

Total dry
biomass per

plant (g)

C1-Consortia-1
(SRB+PSB+COW3)

14.3 ± 1.45ab 6.6 ± 0.66b 4.0 ± 0.00b 45.0 ± 3.51c 24.3 ± 0.88b 0.49 ± 0.47bc 7.16 ± 0.20c

C2-Consortia-2
(PSB2+SRD+COW3)

15.3 ± 0.33a 9.0 ± 0.00a 5.3 ± 0.33a 79.3 ± 6.56b 24.8 ± 0.57b 0.56 ± 0.41b 7.66 ± 0.28b

C3-Consortia-
(COW3+KSB+YMA7)

12.6 ± 0.88b 9.5 ± 0.00a 5.3 ± 0.33a 110.6 ± 9.17a 27.4 ± 0.42a 0.73 ± 0.03a 8.26 ± 0.25a

Uninoculated control 12.3 ± 0.88b 3.5 ± 0.28c 4.3 ± 0.33b 66.6 ± 1.73b 18.2 ± 0.34b 0.42 ± 0.09c 6.03 ± 0.05d

LSD (p ≤ 0.05) 2.579 1.412 0.998 19.892 1.968 0.12 0.39

CV 9.44 9.86 10.52 13.20 2.55 11.69 2.71

Values are means ± SE. a,b,c, and d letters on the bars denote differences on the basis of a t-test (p < 0.05).

plant. Inrice plant, in the soil inoculated with three different
bacterial consortia (Consortia-1, Consortia-2, and Consortia-3),
the plant N/P/K content was N (8.66, 14.66, and 17.33 g kg−1), P
(2.86, 4.83, and 4.83 g kg−1), and K (25.66, 33.66, 37.33 g kg−1)
and control plant N/P/K (7.0, 2.16, and 24.66 g kg−1) (Figure 5
and Supplementary Table 7).

DISCUSSION

An assortment of abiotic and biotic elements shape soil-and
plant-related living spaces and adjust the creations and exercises
of their microbial networks, which thus bear upon the nature of

their development of plants and the creation of root exudates
(Jain et al., 2020). Bacteria harbor in roots, depending on the
incredible variety of natural root exudates, which in the long run
influences the growth and development of the plant (Ngalimat
et al., 2021). Here, in this study, we examined the impact of rice
rhizosphere regulated with local bacterial consortia developed to
increase the uptake the N/P/K as nutrients from the soil.

Bacterial isolation was done from soil rhizosphere fractions
by 16S rRNA gene sequencing. This technique offers a culture-
independent method for tracking dominant bacterial populations
in soil (Sultana et al., 2020). To the best of our knowledge, this
study represents the first approach using culture-independent
method to design a native consortia that can enhance the rice
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FIGURE 3 | Evaluation of three native consortia (Consortia-1, 2, and 3) on rice plants. Values are means ± SE.

FIGURE 4 | Phenotype differences of potted rice plant under different consortia treatments. Consortia-1 (SRB+PSB1+COW3), Consortia-2 (PSB2+SRD+COW3),
and Consortia-3 (COW3+KSB+YMA7), and control rice plant.

crop nutrient quality uptake as in N/P/K from the soil of organic
farming in Sikkim. In brief, soil samples from three different
organic paddy cultivation field sites in Sikkim, India, were chosen
[M (loamy sand), S (loamy sand), and AL soil (loamy sand)]
to screen and isolate PGP rhizobacteria (PGPR) and design
a consortia that can uptake N/P/K nutrients from soil. These
bacterial isolates also had antifungal properties that were effective
against fungal pathogens. To validate the consortia performance,

chemical analysis of soil (before consortia administration and
post-consortia administration) was compared in greenhouse
pot experiments. Later on, field-based trials for 60 days on
application of consortia were also measured to verify the various
agronomic parameters.

Antagonistic and PGPR were screened and isolated from the
rhizosphere of rice and was identified through a polyphasic
approach, based on morphological, biochemical, and partial
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FIGURE 5 | Nitrogen, phosphorus, and potassium uptake for rice plant after consortia application (60 days trail). Values are means ± SE. abcde letters on the bars
denote differences on the basis of a t-test (p < 0.05).

16S rRNA gene sequencing. The cultures isolated were four
Bacillus sp. strains (PSB1, PSB2, COW3, and ARA), two
Pseudomonas sp. strains (SRB and KSB), and one each strain
of Burkholderia sp. (SRD) and Kosakonia sp. (YMA7).16S
rRNA gene sequencing analysis and homology with reference
strains from the nucleotide database of NCBI showed that
the strains PSB1, PSB3, ARA, COW2, SRB, KSB, SRD, and
YMA7 have average nucleotide identity percentage ranges from
98 to 99% with B. megaterium, B. aryabhattai, Bacillus sp.,
P. polymyxa, P. rhodesiae, P. kribbensis, B. cenocepacia, and
K. oryzendophytica, respectively.

The B. megaterium strain PSB1 isolated in this study showed
high salt tolerance at 8% NaCl as compared with other isolates.

Many studies revealed that the genus Pseudomonas represents
the dominance of PGPR for many crops (Qessaoui et al., 2019).
In the present investigation, P. kribbensis strain KSB showed
multiple PGP activities including siderophore production. This
result corroborates with previous findings wherein multiple PGP
traits have been described from Pseudomonas sp. isolated from
the rhizospheric soil of wheat, barley, and rice (Ahmad et al.,
2008; Sharma et al., 2011).

The member of the genus Kosakonia consists of seven different
species, K. oryzendophytica (Hardoim et al., 2013), Kosakonia
cowanii (Inoue et al., 2000), Kosakonia radicincitans (Kämpfer
et al., 2005), Kosakonia oryzae (Peng et al., 2009), Kosakonia
arachidis (Madhaiyan et al., 2010), Kosakonia sacchari (Zhu et al.,
2013), and Kosakonia oryziphilus (Hardoim et al., 2013), which
belong to the family Enterobacteriaceae. Except for K. cowanii,
which is considered to be from clinical origin, other species

of the genus are nitrogen-fixing bacteria, which are commonly
associated with plants (Li Y. et al., 2017). They are most
frequently found in the nitrogen-fixing bacterial community
of some non-leguminous plant, such as rice (Hardoim et al.,
2013) and sugarcane (Raju et al., 2020). The Kosakonia species
contains flagella, which enable them to swim and possibly help
in the attachment to the plant surface. It might also produce
different secretion systems that help to interact with both host
plant and associated microbiota (Becker et al., 2018). The present
in vitro screening for characteristics generally associated with
PGP showed that K.oryzendophytica strain YMA7 showed a
higher production of IAA (84 µg ml−1) and ammonia (61 mM).
It also showed higher solubilization for potassium (570 µg ml−1)
and phosphate (517 µg ml−1). It also produced siderophores.
It also produced a high amount of phosphate (517 µg ml−1)
as compared with K. oryzendophytica strain NRCSSDCU262
(207 µg ml−1), which is an endophytic-rhizospheric phosphate-
solubilizing bacteria (PSB) isolated from cumin grown in
agricultural fields of Rajasthan, India (Devi et al., 2020).

Other most important soil bacteria that belong to the
genus Burkholderia in the class Betaproteobacteria (Castanheira
et al., 2015) have also been reported as one of the dominant
extracellular PGPR for many crops (Becker et al., 2018).
Burkholderia species in general have symbiotic relationship
with plants, functioning as active rhizospheric components
(Castanheira et al., 2015), endophytic plant colonizers, or
microsymbionts in legume root nodules, as reported by many
researchers (Sutton, 1992). The ability to fix nitrogen was
demonstrated by several Burkholderia spp. associated with
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different plants, for example, maize, coffee (Estrada-de los
Santos et al., 2001), sugarcane, and tomato (Lin et al., 2012;
Paungfoo-Lonhienne et al., 2014), had already been reported in
several studies. In our study, regarding plant growth promotion
traits, B. cenocepacia SRD showed higher solubilization of
phosphate and potassium. It also produced IAA and also showed
antagonistic activity against plant fungus C. gloeosporioides.

Colletotrichum is a broad-spectrum plant pathogen infecting
a host range of plants. Its pathogenicity leads to major losses of
crops and other agricultural products (Saju et al., 2013). They
play a significant role in causing post-harvest loss (Sutton, 1992).
The disease symptoms vary on plant species; but generally, it
has been observed to affect plant leaves, stems, and fruits of the
host plant (Panneerselvam et al., 2019). The antagonistic PGP
microbes directly compete with the plant pathogens for nutrition
and inhibit or reduce the pathogen growth via hyper-parasitism
(Sutton, 1992). Our dual-plate studies on B. cenocepacia SRD
showed 90%–91% antagonistic activity against C. gloeosporioides,
which is a rice sheath blight and large cardamom leaf spot disease-
causing fungi predominantly found in Sikkim. Mahamuni
(2015) found that the B. cenocepacia strain VIMP01 solubilized
phosphate and potassium and also produced IAA, which was
similar to our isolate B. cenocepacia SRD.

Phosphorous is considered as the second-most key nutrient
after nitrogen for plant growth, although less than 5% of the total
soil phosphorous is found in the available form to plants (Otieno
et al., 2015). Hence, the capability to solubilize the insoluble form
of phosphate is one of the key features of PGP bacteria to boost
plant nutrition through an escalation in phosphorous uptake by
plants (Taurian et al., 2010). The application of these types of PSB
in the soil might contribute to the reduction of excessive usage of
the chemical fertilizers, and thereby, it improves the soil health of
agricultural lands (Taurian et al., 2010).

In the present investigation, the three bacterial consortia
(Consortia-1, Consortia-2, and Consortia-3) were prepared based
on solubilization of phosphate and potassium, and nitrogen-
fixing ability of the bacterial isolates. Application of bacterial
consortia at the rice fields of Pakyong during August 2019
showed that there were significant differences in all the rice plant
growth and yield parameters, except leaflets number per plant
in the rice plants treated with three different bacterial consortia
as compared with uninoculated control. All three consortia
significantly improved grains per panicle, grain weight, and
root length as compared with uninoculated control plants. But
Consortia-3-inoculated rice plants showed higher plant biomass,
grains per panicle, grain weight, root length, and dry root weight
as compared with control plants and other consortia-inoculated
plants. The collective PGP traits and nutrient solubilization
properties observed in Consortia-3 were due to the bacterial
mixture of K.oryzendophytica YMA7, P. kribbensis KSB, and P.
polymyxa COW3. Our results are in agreement with studies
by Di Benedetto et al. (2019) and Devi et al. (2020), who had
showed the PGP properties of Bacillus spp., Pseudomonas spp.,
and Kosakonia spp. Panneerselvam et al. (2019) showed that
B. subtilis strain BioCWB (570 µg ml−1) and B. luciferensis strain
K2 (417.3 µg ml−1) produced higher amounts of phosphates.

Similarly, in our findings, P. polymyxa strain COW3 and Bacillus
sp. strain ARA produced higher phosphates, i.e., 580 and 579
µg ml−1, respectively. In general, the application of Consortia-3
among all the three consortia significantly increased plant growth
parameters as compared with those of the uninoculated control
plant. Many previous studies have proved that Bacillus spp.
(B. aryabhattai, B. megaterium, Bacillus polymyxa),Pseudomonas
spp. (P. kribbensis, P. rhodesiae), Burkholderia spp., and
Kosakonia spp. possessed PGP attributes, enhanced plant growth,
and increased yield in several agricultural and horticultural crops
(Park et al., 2017; Devi et al., 2020; Castanheira et al., 2015).

The difficulties encountered by the native bio-inoculants
might be distinctive all throughout the planet, as the various
abiotic factors such as the edaphic, climatic, and geological
conditions of the local environment vary remarkably (Ojuederie
et al., 2019; Orozco-Mosqueda et al., 2021). Consequently, for
quite a long time, it has been attempted to separate local strains
that permit to work on the harvests of similar regions from
which they were secluded, which would recommend superior
productivity to practice their valuable activities when related
with plants in similar sorts of agricultural soils. Consequently,
more investigation is needed to relate abiotic angles with the
useful properties of each native consortia. Reduction of inorganic
farming practices shall also prevent agriculturists from exposure
to harmful chemicals that might be toxic not only to the soil but
also to human health (Wightwick et al., 2010).

Native PGPR strains might help in plant growth development
through various mechanisms. Direct enhancement might be
through the improved nutrient accessibility and its proficiency
in uptake, by increasing the capacity to solubilize P, to fix N2,
and to create siderophores and plant growth hormones, for
example, IAA (Glick, 2012). Native PGPR strains are the natural
flora of the soil, yet their number is not sufficient to rival
different microbes set up in the rhizosphere. Accordingly, the
implementation of consortia developed from the native PGPR
strains is important to increase the local population of the target
microorganism and to boost their helpful properties for plant
yield. The utilization of local soil bacterial consortia has many
advantages when administered into the plant rhizosphere, as
there might be less competition among themselves for nutrient
cycling. Furthermore, they are more impervious to the local
ecological stress conditions particularly experienced under the
anticipated climatic changes (Vimal et al., 2017).

Long-term organic farming/agricultural practices can
directionally change the bounty of certain bacterial phyla.
Yet there is no adequate comparison of soil bacterial taxa in
light of long-term organic farming/agricultural vs. inorganic
farming practices. Long-term organic farming might expand
the availability of natural C to choose for certain microbial
taxa levels that feed fundamentally on natural substrates
and multiply significantly, bringing about the progressions
in microbial local area structure and soil supplement status
(Cederlund et al., 2014). As a result, specific microbial taxa
abundances might be considerably expanded by long-term
organic farming and also should show some level of associations
with soil supplements. Besides, these taxa might show a possible
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beneficial impact on crop efficiency and agro-biological system
stability (Francioli et al., 2016). Network analysis of the taxa,
as estimated by next-generation sequencing, might help with
interpreting the complex microbial communities and the role of
the environmental standards governing the local area (Barberán
et al., 2012; Banerjee et al., 2016). Ongoing analysis through
high-throughput sequencing shall un-reveal the microbial
variety and local area arrangement under long-term organic
farming and inorganic farming (Lentendu et al., 2014; Calleja-
Cervantes et al., 2015; Zhou et al., 2015; Chen et al., 2016;
Ding et al., 2016; Francioli et al., 2016; Li F. et al., 2017).
Notwithstanding, very few studies have been done about which
microbial taxa are firmly affected by long-term organic and
inorganic farming practices and how these taxa are connected to
soil supplement boundaries.

Regarding organic and inorganic farming alone, the former
practice ordinarily delivers lower crop yield (Seufert et al., 2012);
however, the latter causes more ecological issues (Davidson,
2009). The integrated technique of periodic alteration between
organic and inorganic farming is assessed as the best method to
upgrade crop productivity and increment of soil organic matter
(SOM) level (Wei et al., 2016). In the interim, consolidated
organic treatment improves the production of soil invertase,
urease, and antacid phosphatase, which are three average
microbial exoenzymes engaged with C, N, and P mineralization
(Li F. et al., 2017). All the more significantly, in contrast
with inorganic farming, the organic treatment improved more
measures of explicit bacterial taxa. These taxa are involved
in the decay of complex natural matters and soil supplement
changes and are accordingly advantageous for plant development
by working on supplement accessibility. Subsequently, we need
to analyze the bacterial diversity to comprehend the long-
term organic farming against inorganic farming in Sikkim. In
any case, an essential issue lies in the fact that Sikkim has
banned inorganic cultivating practices since 2003, so to mirror
inorganic farming in a greenhouse is the solitary choice for better
relative investigation.

CONCLUSION

This is the first-ever study of native consortia developed from the
rice rhizosphere of organic farmlands of Sikkim, which are found
to be effective as an NPK enhancer so as to help in plant growth
promotion. Also, they have antifungal properties that serve
as additional crop security against fungal pathogens. We have
obtained efficient P-solubilizing, K-solubilizing, N2-fixing, IAA-
producing, and antagonistic potential bacteria present among the
native rice soil rhizosphere. These characteristics are considered
as important PGP traits; and the bacterial consortia prepared
from N-, P-, and K-producing bacteria have been found effective
in improving the growth and N, P, and K contents of tested rice
plants. Consortia-3 (K. oryzendophytica YMA7 +P. kribbensis
KSB +P. polymyxa COW3) showed promising PGP traits
such as phytohormone production and nutrient solubilization
abilities. In the rice plant, in the soil inoculated with bacterial
Consortia-3, the N/P/K content was N (17.33 g kg−1), P (4.83 g

kg−1), and K (37.33 g kg−1) as observed against the control
plant N/P/K (7.0, 2.16, and 24.66 g kg−1, respectively). Three
bacterial consortia developed in this study were first tested in
greenhouse pot experiments and later applied to the rice field.
Based on the agronomic parameters, significant increases were
observed in all the plant growth and yield parameters except
leaf number per plant when compared with uninoculated rice
plants. Consortia-3 significantly improved grains per panicle (110
grain numbers per panicle), grain weight in grams (27.8 g),
and root length in cm (9.5 cm) as compared with uninoculated
control rice plants. These bacterial consortia can be potential
candidates for bio-intensive nutrient management in organic
farming systems. Further studies should be focused on the
detailed synergistic effect for the production of N, P, K and
functional characterization of bacterial consortia for practical
applications in the field.
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