
Citation: Urban, S.; Błaziak, M.; Jura,

M.; Iwanek, G.; Zdanowicz, A.;

Guzik, M.; Borkowski, A.; Gajewski,

P.; Biegus, J.; Siennicka, A.; et al.

Novel Phenotyping for Acute Heart

Failure—Unsupervised Machine

Learning-Based Approach.

Biomedicines 2022, 10, 1514. https://

doi.org/10.3390/biomedicines

10071514

Academic Editor: Bart De Geest

Received: 31 May 2022

Accepted: 24 June 2022

Published: 27 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomedicines

Article

Novel Phenotyping for Acute Heart Failure—Unsupervised
Machine Learning-Based Approach
Szymon Urban 1,*,†, Mikołaj Błaziak 1,†, Maksym Jura 1 , Gracjan Iwanek 1, Agata Zdanowicz 1, Mateusz Guzik 1,
Artur Borkowski 1 , Piotr Gajewski 1 , Jan Biegus 1 , Agnieszka Siennicka 2, Maciej Pondel 3, Petr Berka 4 ,
Piotr Ponikowski 1 and Robert Zymliński 1
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Abstract: Acute heart failure (AHF) is a life-threatening, heterogeneous disease requiring urgent
diagnosis and treatment. The clinical severity and medical procedures differ according to a complex
interplay between the deterioration cause, underlying cardiac substrate, and comorbidities. This
study aimed to analyze the natural phenotypic heterogeneity of the AHF population and evaluate
the possibilities offered by clustering (unsupervised machine-learning technique) in a medical data
assessment. We evaluated data from 381 AHF patients. Sixty-three clinical and biochemical features
were assessed at the admission of the patients and were included in the analysis after the preprocess-
ing. The K-medoids algorithm was implemented to create the clusters, and optimization, based on the
Davies-Bouldin index, was used. The clustering was performed while blinded to the outcome. The
outcome associations were evaluated using the Kaplan-Meier curves and Cox proportional-hazards
regressions. The algorithm distinguished six clusters that differed significantly in 58 variables con-
cerning i.e., etiology, clinical status, comorbidities, laboratory parameters and lifestyle factors. The
clusters differed in terms of the one-year mortality (p = 0.002) . Using the clustering techniques, we
extracted six phenotypes from AHF patients with distinct clinical characteristics and outcomes. Our
results can be valuable for future trial constructions and customized treatment.

Keywords: acute heart failure; machine learning; clustering

1. Introduction

Acute heart failure (AHF) is a life-threatening challenge in a clinical approach, causing
a growing number of hospitalizations and a high in-hospital as well as post-discharge
mortality range [1]. The present epidemiological situation (e.g., aging population, improved
myocardial infarction survival) tends to increase the prevalence of chronic HF, resulting
in hospitalization in the near future [2]. Over the years, the approach to the clinical
manifestation of AHF has changed; however, it was always crucial for phenotype patients
to provide them with a better individual treatment. The AHF diagnostic process starts
with the first medical contact and is aimed at identifying the clinical presentation [1]. The
clinical severity and medical procedures differ according to a complex interplay between
the deterioration cause, underlying cardiac substrate, and comorbidities. It is recommended
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to stratify AHF patients based on the presence of signs of congestion and/or peripheral
hypoperfusion at admission. According to the 2021 ESC Guidelines for the diagnosis and
treatment of acute and chronic heart failure, we can distinguish four clinical presentations
of AHF: acute decompensated heart failure, acute pulmonary oedema, isolated right
ventricular failure and cardiogenic shock, for which phenotyping may bring therapeutic and
prognostic value [3]. It could be, nevertheless, questionable if a physical examination and
simple dichotomous subgroups sufficiently reflect the complexity of the pathophysiology
of AHF and the heterogeneity of AHF patients. These shortcomings in understanding the
underlying correlations may be the reason for poor survivability [4].

Machine learning, especially statistical clustering, which is an unsupervised technique
that attempts to learn the internal structure of data, might be a feasible tool for elucidating
the hidden phenotypic characteristics for a better understanding of the vital differences
between clinically important subpopulations [5–8]. Machine learning approaches have
been successfully used in analyzing molecular data for many years. Recently, used with
clinical variables, cluster analysis proved itself to be effective in the study of the phenotype
characteristics of diseases in chronic heart failure with reduced ejection fraction [9] (HFrEF)
as well as a preserved ejection fraction (HFpEF) [5].

According to the aforementioned studies, we implemented machine-learning algo-
rithms for AHF patients and their clinical variables obtained at admission alone. We
blinded them to the outcomes to detect novel patterns by subgrouping the patients at
the first medical contact. By identifying them in such a manner, we hypothesized that
subpopulations of patients would have different pathophysiological characteristics and
varying outcomes.

2. Materials and Methods
2.1. Study Population

We retrospectively analyzed 381 patients hospitalized due to AHF based on two AHF
registries that ran at our institution in 2010–2012 and 2016–2017. Patients were treated and
heart failure diagnosis was stated following current ESC guidelines. The inclusion and
exclusion criteria were elaborated in our previous references [10]. There were no differences
in the collected patients’ demographic data or the design of the evaluated registries, except
for the criteria of acute heart failure diagnosis, which were slightly varied in the subsequent
(2013 and 2016) ESC guidelines.

2.2. Machine Learning and Statistical Analysis

As we aimed to evaluate the baseline heterogeneity of AHF patients, only the variables
evaluated at admission were included. The analysis was performed blinded to the outcome;
therefore, the follow-up variables were excluded (Figure 1). Initially, 88 variables were
divided into domains and selected for the study (Table 1). Then, the automatic prepro-
cessing was performed. The low-quality variables were defined as those with over 90%
stability and 10% missing values, and 25 such variables were deleted. Furthermore, remove,
which correlated with r = 0.6, was implemented, but 0 variables were found and removed.
Sixty-three variables were eventually included in the cluster analysis (Table 1). Due to
clustering algorithms’ inability to cope with the missing values, they were replaced by
mean values. Range transformation normalization (range: 0 to 1) was performed. The
nominal parameters were transformed into numerical parameters.



Biomedicines 2022, 10, 1514 3 of 20Biomedicines 2022, 10, x FOR PEER REVIEW 3 of 21 
 

 

Figure 1. Flowchart of the analyzed variables and patients. The analysis was conducted based on 

the previously prepared data, therefore, some of the information was duplicated or inadequate for 

the machine-learning analysis. 

  

Figure 1. Flowchart of the analyzed variables and patients. The analysis was conducted based on the
previously prepared data, therefore, some of the information was duplicated or inadequate for the
machine-learning analysis.
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Table 1. Variables initially included in the analysis. All parameters were assessed at admission.
Bolded variables are variables which were included in the cluster analysis after the automatic
preprocessing.

Demographics Age, Sex

HF characteristics De novo or chronic HF, Etiology

Comorbidities

Coronary artery disease (0 or 1), myocardial infarction (0 or 1),
PCI/CABG (0 or 1), hypertension (0 or 1), valvular heart disease (0
or 1), diabetes (0 or 1), diabetes treated with: insulin = 1
Oral drugs = 2, diet = 3, stroke (0 or 1),COPD (0 or 1)

Clinical status

Dyspnoea at rest (0 or 1), Dyspnoea at rest lasts since (number) days,
NYHA at admission, swelling of the lower limbs (lack = 0, 1 +
(10–15 s) = 1, 2 + (15–30 s) = 2, 3 + (>30 s) = 3), Decrease in exercise
tolerance (0 or 1), decrease in exercise tolerance (for how many days),
body weight, systolic pressure, diastolic pressure, heart rate,
jugular veins pressure (<6 cm = 1, 6–10 cm = 2, >10 cm = 3, not to
be assessed = 4), pulmonary congestion (no—0; up to 1/3 of
lungs—1; up to 2/3—2; >2/3—3), pulmonary congestion (0 or 1),
ascites (0 or 1), hepatomegaly (0 or 1), implantable device, none =
0, 1-PM, 2-ICD, 3-CRT2

Lifestyle factors

Smoking status (0 = never, 1 = now, 2 = in the past). If smoking in
the past, how many cigarettes did the patient smoke?
Alcohol (0 or 1), How many cigarettes do the patients smoke daily,
How many years did the patient smoke/does the patient smoke
cigarettes?

Laboratory parameters

HGB, HCT, RBC, MCV, MCH, MCHC, RDW, WBC, LYMPH,
MONO, NEUTR, PLT, serum PH, pCO2, pO2, ctO2, BO2, HCO3,
HCO3std, ctCO2, BE, sO2, FO2Hb, FHHb, ctHb, Lac, mOsm, Na in
serum, K in serum, Creatinine in serum, Urea in serum, Glucose
in serum, Ast, Alt, CRP, GGTP, NTproBNP, Total_bilirubin, INR,
Albumin in serum, Troponin in serum, Urine Na, Urine K, Urine
Urea, Urine Creatinine, Fe, TIBC, Tsat, sTfR, Ferritin, IL-6, eGFR

Echocardiography Reduced ejection fraction (0 or 1); ejection fraction
Abbreviations: HGB—hemoglobin, HCT—hematocrit, RBC—red blood count, MCV—mean corpuscular vol-
ume, MCH—mean corpuscular hemoglobin, MCHC—mean corpuscular hemoglobin concentration, RDW—red
cell distribution width, WBC—white blood count, LYMPH—lymphocytes percentage, MONO—monocytes,
NEUTR—neutrophiles, PLT—platelets count, pCO2—partial pressure of CO2, pO2—partial pressure of O2, ctO2—
concentration of O2, BO2 -, HCO3- bicarbonate, HCO3std—bicarbonate standardized, ctCO2—CO2 concentration,
BE—base excess, sO2—O2 saturation, FO2Hb—fraction of oxygenated haemoglobin, FHHb—fraction of deoxy-
hemoglobin in total hemoglobin, ctHb—total hemoglobin, Lac—lactates, mOsm -milliosmoles, Ast—aspartate
aminotransferase, Alt—alanine transaminase, CRP—C-reactive protein, GGTP—gamma-glutamyl transpeptidase,
NTproBNP—N-terminal prohormone of brain natriuretic peptide, INR—international normalized ratio, Fe—total
iron amount in blood, TIBC—total iron-binding capacity, Tsat—transferrin saturation, sTfR—Soluble Transferrin
Receptor, IL-6—interleukin 6th, eGFR—estimated glomerular filtration rate.

Cluster analysis is an unsupervised machine-learning method which divides the set of
variables into smaller groups (clusters) based on their similarity. The clusters are composed
of cases which are consistent with each other, but not with other collections. Several cluster-
ing algorithms have been described. This analysis uses the k-medoids algorithm to obtain
clusters (k-medoids operator in RapidMiner). The number of groups has not been assumed
in advance. The optimize parameters operator was used to reveal the most accurate cluster
quantity and characteristics. The clustering.k and clustering.numerical_measure parame-
ters were used to optimize the clustering, and the Davies-Bouldin index was chosen as the
main criterion. The number of clusters was set between 3 and 6 to avoid excessive dataset
fragmentation.

K-medoids is a clustering algorithm that requires that the number of resulting clusters
(value of parameter K) is specified in advance. Unlike k-means clustering, where the
centroids are computed as the average values of data points (examples) within a cluster, the
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centroids in the k-medoids algorithm corresponds to the existing data points. This makes
the centroids better interpreted. The clustering is based on measuring the distance between
the examples; examples in a cluster are similar to each other. The clustering algorithm
repeatedly re-assigns the examples into a given number of clusters by minimizing their
distance to a centroid and recomputes the centroids. Thus, the concrete distance measure is
another important parameter of the method.

Thanks to the option of the automated parameter tuning implemented in RapidMiner,
we allowed the system to change the number of clusters K in the range of 3 to 6 and the
numeric distance/similarity measure to take any value from the list:

• EuclideanDistance;
• CamberraDistance;
• ChebychevDistance;
• CorrelationSimilarity;
• CosineSimilarity;
• DiceSimilarity;
• DynamicTimeWarpingDistance;
• InnerProductSimilarity;
• JaccardSimilarity;
• KernelEuclideanDistance;
• ManhattanDistance;
• MaxProductSimilarity;
• OverlapSimilarity.

This results in more than 50 particular runs of the clustering algorithm. It seems
that the parameter which primarily affects the quality of clustering is the number of
clusters. The clustering quality (in terms of the Davies–Bouldin index) improves with an
increasing number of clusters. We achieved the best results (lowest Davies–Bouldin index)
for clustering into six clusters by using the correlation similarity measure.

The associations between the clusters and clinical features were assessed. The variables
which presented a normal distribution were described as a mean ± standard deviation,
and the non-normal variables were presented as medians and interquartile ranges. The
categorical variables were shown as numbers and percentages (Table 2). The normality of
the distribution was checked using the K–S, Lilliefors and Shapiro–Wilk tests. The statistical
significance of differences between groups was assessed using analysis of variance, chi-
square and ANOVA. The outcome associations were evaluated using the Kaplan–Meier
curves and Cox proportional-hazards regressions (Figure 1). A p-value below 0.05 was
considered statistically significant. Clustering and preprocessing were performed using
RapidMiner 9.1 (RapidMiner GmbH, Dortmund, Germany) , and the statistical analysis
was performed using STATISTICA 12 ((StatSoft Polska Sp. z o.o., Krakow, Poland)).
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Table 2. Characteristics stratified by clusters and in the whole group. The highest values of the variables are marked red, lowest ones are green.

Parameter Cluster_0 Cluster_1 Cluster_2 Cluster_3 Cluster_4 Cluster_5 Global p

Demographics

n 86 50 70 71 50 54 381 -

Sex, male (n) 78 (90.698%) 23 (46%) 58 (82.857%) 53 (74.648%) 49 (98%) 24 (44.444%) 285 (74.803%) <0.001

Age (years) 67.293 [59–79] 76.1 [68–81] 58.821
[51.279–67.003] 72 [63–80] 66 [60.29–74.521] 76.111 [64–82.992] 68 [60–79] <0.001

aHF charcteristics

Ejection fraction 34 [28–43] 47.5 [39–55] 28 [20–40] 30 [25–35] 28 [20–35] 50 [30–60] 33 [25–45] <0.001

Chronic HF (n) 32 (37.209%) 22 (44%) 34 (48.571%) 69 (97.183%) 47 (94%) 38 (70.37%) 242 (63.517%) <0.001

Reduced EF (n) 67 (77.907%) 16 (32%) 58 (82.857%) 66 (92.958%) 45 (90%) 17 (31.481%) 269 (70.604%) <0.001

Etiology <0.001

Coronary artery disease (n) 41 (47.674%) 28 (56%) 3 (4.286%) 61 (85.915%) 43 (86%) 20 (37.037%) 178 (46.719%)

Valvular (n) 5 (5.814%) 2 (4%) 15 (21.429%) 3 (4.225%) 1 (2%) 2 (3.704%) 46 (12.073%)

Hypertension (n) 1 (1.163%) 5 (10%) 1 (1.429%) 1 (1.408%) 1 (2%) 4 (7.407%) 13 (3.412%)

Other (n) 39 (45.349%) 15 (30%) 51 (72.857%) 6 (8.451%) 5 (10%) 28 (51.852%) 144 (37.795%)

Comorbidites

Coronary artery disease (n) 56 (65.116%) 38 (76%) 1 (1.429%) 69 (97.183%) 49 (98%) 5 (9.259%) 218 (57.218%) <0.001

Myocardial infarction in the
past (n) 17 (19.767%) 20 (40%) 1 (1.429%) 33 (46.479%) 44 (88%) 3 (5.556%) 118 (30.971%) <0.001

PCI/CABG in the past (n) 9 (10.465%) 27 (54%) 0 (0%) 50 (70.423%) 37 (74%) 0 (0%) 123 (32.283%) <0.001

Hypertension (n) 72 (83.721%) 47 (94%) 27 (38.571%) 56 (78.873%) 38 (76%) 47 (87.037%) 286 (75.066%) <0.001

Valvular disease (n) 52 (60.465%) 16 (32%) 43 (61.429%) 57 (80.282%) 38 (76%) 38 (70.37%) 244 (64.042%) <0.001

Diabetes mellitus (n) 30 (34.884%) 46 (92%) 13 (18.571%) 22 (30.986%) 27 (54%) 14 (25.926%) 152 (39.895%) <0.001
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Table 2. Cont.

Parameter Cluster_0 Cluster_1 Cluster_2 Cluster_3 Cluster_4 Cluster_5 Global p

Comorbidites

Diabetes treatment (n)

Insulin 5 (5.814%) 20 (40%) 1 (1.429%) 7 (9.859%) 9 (18%) 1 (1.852%) 43 (11.286%)

Oral drugs 11 (12.791%) 17 (34%) 7 (10%) 10 (14.085%) 13 (26%) 11 (20.37%) 69 (18.11%)

Diet 5 (5.814%) 4 (8%) 0 (0%) 1 (1.408%) 4 (8%) 0 (0%) 14 (3.675%)

Stroke (n) 7 (8.14%) 11 (22%) 8 (11.429%) 12 (16.901%) 9 (18%) 6 (11.111%) 53 (13.911%) <0.001

COPD (n) 8 (9.302%) 11 (22%) 4 (5.714%) 12 (16.901%) 8 (16%) 7 (12.963%) 50 (13.123%) <0.001

Clinical status

Dyspnoea at rest (n) 76 (88.372%) 42 (84%) 40 (57.143%) 56 (78.873%) 43 (86%) 50 (92.593%) 307 (80.577%) <0.001

Dyspnoea at rest lasts since
(n) days 3 [1–8] 3 [1–7] 3.5 [1–8.5] 3 [2–8.5] 3 [2–7] 3 [2–6] 3 [1–7] 0.8

Decrease in exercise tolerance
(n) days 14 [7–21] 7 [6.5–29] 14 [7–29] 14 [7–28] 10 [7–21] 14 [6.5–30] 14 [7–28] 0.6

NYHA (n) 0.243

I 4 (4.651%) 1 (2%) 3 (4.286%) 2 (2.817%) 2 (4%) 1 (1.852%) 13 (3.412%)

II 11 (12.791%) 8 (16%) 13 (18.571%) 7 (9.859%) 13 (26%) 10 (18.519%) 62 (16.273%)

III 12 (13.953%) 8 (16%) 23 (32.857%) 26 (36.62%) 9 (18%) 9 (16.667%) 87 (22.835%)

IV 46 (53.488%) 27 (54%) 23 (32.857%) 36 (50.704%) 26 (52%) 31 (57.407%) 189 (49.606%)

Swelling of lower limbs (n) 0.006

Swelling of lower limbs 0 18 (20.93%) 16 (32%) 26 (37.143%) 19 (26.761%) 16 (32%) 7 (12.963%) 102 (26.772%)

Swelling of lower limbs 1 15 (17.442%) 15 (30%) 16 (22.857%) 18 (25.352%) 10 (20%) 16 (29.63%) 90 (23.622%)

Swelling of lower limbs 2 27 (31.395%) 13 (26%) 17 (24.286%) 23 (32.394%) 11 (22%) 16 (29.63%) 107 (28.084%)

Swelling of lower limbs 3 26 (30.233%) 6 (12%) 10 (14.286%) 11 (15.493%) 13 (26%) 15 (27.778%) 81 (21.26%)

Deterioration of Effort
Tolerance (n) 79 (91.86%) 47 (94%) 63 (90%) 67 (94.366%) 49 (98%) 53 (98.148%) 358 (93.963%) 0.407
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Table 2. Cont.

Parameter Cluster_0 Cluster_1 Cluster_2 Cluster_3 Cluster_4 Cluster_5 Global p

Clinical status

JVP (n) <0.001

JVP 1 57 (66.279%) 32 (64%) 42 (60%) 53 (74.648%) 17 (34%) 31 (57.407%) 232 (60.892%)

JVP 2 24 (27.907%) 17 (34%) 23 (32.857%) 18 (25.352%) 25 (50%) 21 (38.889%) 128 (33.596%)

JVP 3 5 (5.814%) 0 (0%) 5 (7.143%) 0 (0%) 8 (16%) 2 (3.704%) 20 (5.249%)

Pulmonary edema (n) <0.001

no 11 (12.791%) 1 (2%) 12 (17.143%) 2 (2.817%) 7 (14%) 6 (11.111%) 39 (10.236%)

up to 1/3 of lungs 49 (56.977%) 23 (46%) 45 (64.286%) 50 (70.423%) 31 (62%) 25 (46.296%) 223 (58.53%)

up to 2/3 20 (23.256%) 14 (28%) 9 (12.857%) 13 (18.31%) 11 (22%) 16 (29.63%) 83 (21.785%)

>2/3 6 (6.977%) 11 (22%) 4 (5.714%) 6 (8.451%) 1 (2%) 7 (12.963%) 35 (9.186%)

Pulmonary congestion (n) 75 (87.209%) 48 (96%) 58 (82.857%) 69 (97.183%) 43 (86%) 48 (88.889%) 341 (89.501%) 0.048

Ascites (n) 15 (17.442%) 3 (6%) 9 (12.857%) 2 (2.817%) 13 (26%) 8 (14.815%) 50 (13.123%) 0.003

Hepatomegaly (n) 29 (33.721%) 8 (16%) 11 (15.714%) 1 (1.408%) 27 (54%) 6 (11.111%) 82 (21.522%) <0.001

Implantable device (n) <0.001

PM 2 (2.326%) 8 (16%) 2 (2.857%) 8 (11.268%) 2 (4%) 6 (11.111%) 28 (7.349%)

ICD 3 (3.488%) 1 (2%) 8 (11.429%) 31 (43.662%) 9 (18%) 3 (5.556%) 55 (14.436%)

CRT 2 (2.326%) 1 (2%) 3 (4.286%) 3 (4.225%) 15 (30%) 2 (3.704%) 26 (6.824%)

Systolic pressure (mmHg) 140 [120–158] 160 [135–180] 120 [105–131] 126.5 [110–137] 120 [102–145] 120 [107–142] 130 [110–150] <0.001

Diastolic pressure (mmHg) 80 [70–95.5] 80 [70–95] 77.5 [70–87] 80 [70–85] 70 [62–80] 70 [65–80] 79 [70–90] <0.001

Heart rate (bpm) 90 [75–110] 80 [70–100] 90.5 [80–105] 80 [70–100] 78 [70–90] 88 [72–110] 82.5 [70–100] <0.001

Body weight (kg) 85.3 [77–98] 79 [69–90.95] 77.6 [68.5–88.3] 77.4 [70.4–91] 80.5 [71–94] 74.9 [65–82] 79.6 [70–91.5] <0.001

Lifestyle factors

Smoking status (n) <0.001

Never 41 (47.674%) 32 (64%) 35 (50%) 49 (69.014%) 8 (16%) 36 (66.667%) 201 (52.756%)
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Table 2. Cont.

Parameter Cluster_0 Cluster_1 Cluster_2 Cluster_3 Cluster_4 Cluster_5 Global p

Lifestyle factors

Active 23 (26.744%) 3 (6%) 21 (30%) 7 (9.859%) 4 (8%) 3 (5.556%) 61 (16.01%)

In the past 22 (25.581%) 15 (30%) 14 (20%) 15 (21.127%) 38 (76%) 15 (27.778%) 119 (31.234%)

How many cigarettes do
patients smoke daily (n) 0.08 [0–15] 1 [0–8] 0 [0–15] 0 [0–9] 15 [4–20] 3 [0–12] 2 [0–15] 0.047

How many years did the
patient smoke/does the

patient smoke cigarettes (n)
22.5 [0–30] 20 [0–30] 11.5 [0–30] 0 [0–30] 20 [5–30] 0 [0–30] 20 [0–30] 0.36

Active alcohol use (n) 20 (23.256%) 8 (16%) 31 (44.286%) 16 (22.535%) 19 (38%) 12 (22.222%) 106 (27.822%) 0.002

Laboratory parameters

HGB (g/dL) 13.727 ± 1.881 11.972 ± 1.81 13.975 ± 1.651 13.213 ± 1.817 13.194 ± 2.114 12.391 ± 1.801 13.184 ± 1.953 <0.001

HCT (%) 41.232 ± 5.21 36.686 ± 5.191 41.684 ± 4.665 39.907 ± 5.163 40.066 ± 6.319 37.343 ± 4.854 39.759 ± 5.49 <0.001

RBC (× 1012/L) 4.544 ± 0.662 4.18 ± 0.55 4.595 ± 0.495 4.499 ± 0.65 4.516 ± 0.716 4.226 ± 0.628 4.448 ± 0.636 <0.001

MCH (pg) 30.333 ± 2.325 28.692 ± 2.728 30.457 ± 2.269 29.49 ± 2.261 29.255 ± 2.565 29.479 ± 2.986 29.718 ± 2.552 <0.001

MCV fL 91.188 ± 6.241 87.846 ± 6.236 90.854 ± 5.707 89.057 ± 6.144 89.034 ± 6.797 88.834 ± 6.451 89.668 ± 6.31 0.02

WBC (× 109/L) 8.6 [6.8–10.68] 9.35 [6.7–12.3] 8.25 [6.3–9.85] 7.8 [6.4–9.52] 8.44 [7.1–10.4] 8.3 [6.1–9.9] 8.3 [6.6–10.35] 0.01

PLT (× 109/L) 214 [152–252.5] 211 [163–298] 197.5 [164.5–233] 192 [149–234] 195 [159–250] 203 [144–242] 198 [155–245] 0.04

pH 7.44 [7.415–7.47] 7.4 [7.35–7.46] 7.45 [7.42–7.48] 7.45 [7.43–7.47] 7.45 [7.415–7.485] 7.45 [7.385–7.48] 7.44 [7.41–7.47] <0.001

pCO2 (mmHg) 34.4 [31.55–38.7] 37.3 [32.7–42.9] 34.55 [30.9–36.55] 34.55 [32.2–37.5] 33.6 [31.6–38.25] 36.2 [33.05–39.45] 35.1 [31.8–38.9] <0.001

HCO3std (mmol/L) 24.016 ± 3.193 22.989 ± 3.657 24.592 ± 2.474 24.676 ± 2.684 24.602 ± 3.376 25.321 ± 3.688 24.367 ± 3.203 0.01

pO2 (mmHg) 64.4 [57.15–73.15] 66.3 [61.2–78.7] 70.2 [62.3–75.5] 65.6 [58.2–74.3] 67.3 [60.05–74.7] 65.15 [57.65–71.8] 66.1 [59–74.6] 0.8

sO2 (%) 92.1 [89.15–95.05] 93.45 [90.6–94.9] 94.45 [91.45–95.95] 92.8 [89.9–94.9] 93.1 [90.4–96] 93.05 [90.2–95.4] 93.1 [90.1–95.4] 0.9

mOsm (Osm/L) 282.5 [274–286] 286.5 [279–291] 283 [274–287] 281 [274–286] 277.5 [272–286] 279.5 [270–287] 282 [274–287] 0.01

K (mmol/L) 4.187 ± 0.577 4.481 ± 0.788 4.197 ± 0.484 4.185 ± 0.521 4.197 ± 0.622 4.063 ± 0.694 4.21 ± 0.614 0.02

Na (mmol/L) 140 [137–142] 140 [137–142] 139 [135.5–141.5] 139 [137–142] 138 [135–140] 138.5 [135–141] 139 [136–142] 0.145

Glucose (mg/dL) 124 [100–162] 144 [121–212] 110 [99.5–131] 113 [101–139] 126.5 [107–150] 117 [105–143] 121 [103–151.5] <0.001
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Table 2. Cont.

Parameter Cluster_0 Cluster_1 Cluster_2 Cluster_3 Cluster_4 Cluster_5 Global p

INR 1.26 [1.08–1.48] 1.31 [1.09–1.99] 1.31 [1.14–1.77] 1.54 [1.18–2.24] 1.42 [1.17–2.08] 1.46 [1.2–2.21] 1.35 [1.12–1.97] 0.06

Total bilirubin (mg/dL) 0.96 [0.72–1.46] 0.785 [0.505–1.275] 1.25 [0.765–1.755] 1.145 [0.775–1.945] 1.225 [0.855–1.705] 1.03 [0.79–1.9] 1.07 [0.73–1.7] 0.09

Albumin (g/dL) 3.675 ± 0.402 3.775 ± 0.342 3.755 ± 0.406 3.831 ± 0.328 3.766 ± 0.386 3.648 ± 0.466 3.739 ± 0.394 0.1

Ast (IU/L) 29 [21.5–44.5] 26 [17–37] 30 [22–40] 26 [20–37] 26.5 [18–34.5] 27 [20.5–38.5] 27 [20–40] 0.5

Alt (IU/L) 28 [21.5–58] 28 [17–41] 34.5 [21.5–55] 30.5 [21–53] 27.5 [16.5–40.5] 24.5 [15.5–32] 29 [19–48] 0.7

GGTP (IU/L) 70 [40–127] 54.5 [39.5–102.5] 82 [48–166] 72 [48–133] 104 [45–183] 60.5 [28–113.5] 71 [41–128] 0.8

TIBC (µg/dL) 331.45 ± 63.813 336.5 ± 84.925 362.968 ± 66.412 364.09 ± 68.448 366.302 ± 60.677 338.765 ± 72.717 349.457 ± 70.214 0.007

Fe (µg/dL) 48 [36–66.5] 47.5 [31.5–65.5] 60 [47–84] 55 [43–79] 62 [43–83] 50 [37–61] 54 [40–71] 0.009

Ferritin (ng/mL) 162.5 [85.325–252] 147.5 [57–249] 124 [52–224] 92 [54–156] 94.985 [53.68–146] 119.6 [67.36–200] 109.3 [61–224] 0.02

Tsat (%) 15.25 [10.113–20.1] 15.05
[9.263–19.057]

16.958
[13.2–25.455] 14.8 [11.4–21.4] 17 [12.429–23.4] 15.9 [12.4–18.3] 15.654

[11.609–21.05] 0.46

sTfR (mg/L) 1.72 [1.42–2.72] 2.02 [1.445–2.635] 1.73 [1.41–2.08] 1.97 [1.69–2.51] 1.905 [1.59–2.46] 1.79 [1.3–2.73] 1.87 [1.46–2.51] 0.66

NTproBNP (pg/mL) 5218 [2674–12496] 4191 [2025–6048] 7189 [5023–12849] 5437 [3612–10572] 5712.5
[3452.5–11170.5] 5337 [2398–8775] 5580 [3169–10421] 0.03

Troponin (ng/mL) 0.042 [0.022–0.12] 0.049 [0.025–0.156] 0.032 [0.017–0.094] 0.058 [0.03–0.156] 0.05 [0.029–0.13] 0.05 [0.02–0.14] 0.05 [0.022–0.127] 0.03

CRP (mg/L) 8.6 [4.4–19.3] 6.8 [3.05–27.25] 6.15 [3.2–14.05] 7.425 [3.8–14.5] 6.95 [3.25–16.05] 8.18 [3.86–19.4] 7.395 [3.5–18] 0.18

IL6 (pg/mL) 12.108
[4.428–26.822]

10.999
[0.633–27.125] 7.979 [0.5–19.923] 8.315 [0.5–14.6] 8 [4.851–16.927] 13.82 [3.785–38.5] 9.989 [2.528–22.89] 0.29

Lactates (mmol/L) 2 [1.4–2.4] 1.95 [1.5–2.7] 2 [1.6–2.7] 1.8 [1.5–2.4] 2.1 [1.45–2.7] 2 [1.5–2.75] 2 [1.5–2.6] 0.64

Urea (mmol/L) 47 [37–73] 55 [39–78] 49.5 [38–68] 53.5 [43–74] 64 [44–86] 44 [35–65] 51 [38–73] 0.3

Creatinine (mg/dL) 1.16 [1.03–1.5] 1.32 [0.93–1.7] 1.1 [0.935–1.295] 1.23 [1.03–1.49] 1.355 [1.09–1.8] 1.2 [0.95–1.44] 1.225 [1–1.505] 0.003

eGFR (mL/min/1.73m2) 84.463 ± 26.383 68.036 ± 29.564 94.693 ± 31.385 76.697 ± 22.711 77.859 ± 34.792 79.116 ± 43.668 81.074 ± 32.041 <0.001

Urine Urea (mmol/L) 1131 [555.5–1585] 512 [369–905] 886 [484–1674] 730 [442–1330] 887 [487–1509] 514 [339.5–981] 780 [442–1403] <0.001

Urine Creatinine (mg/dL) 80.55 [41.75–147.6] 33.5 [21.7–79.2] 73.2 [34.7–129.1] 61.5 [28.9–105] 52.9 [38.9–136.8] 42 [23.55–80.65] 59.1 [30.1–110] <0.001

Urine K (mmol/L) 35.765 [20–49.04] 22.75 [15–32] 28.73 [20–41] 27 [17.14–37] 31.5 [27–50.44] 29.5 [17–41.5] 29.77 [19–42.59] <0.001

Urine Na(mmol/L) 87.286 ± 39.226 95.432 ± 32.757 90.87 ± 42.771 87.594 ± 37.329 84.533 ± 34.78 96.269 ± 36.412 89.959 ± 37.886 0.55
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3. Results
3.1. Patients Characteristics

The study population consisted of 381 patients (all Caucasian), predominantly male
285 (75%), mean age 68 (60–79), with a median EF of 33% (25–45) and a median NTproBNP
of 5580 (3169–10421) pg/mL (Table 2). The analyzed cohort presented as median: systolic
blood pressure: 130 (110–150) mmHg, serum Na+: 139 (136–142) mmol/L and serum
creatinine 1.23 (1–1.51) mg/dL. Table 3 shows the patient characteristics, including the key
clinical features of each cluster. The principal clinical, biochemical and echocardiographic
features of each cluster are presented in Figure 2.

Table 3. Key clinical features of each cluster.

Cluster Key Clinical Feature

Cluster 0

Lowest % of chronic HF, most massive lower limbs oedema, highest
urine urea, k, creatinine, highest ferritin, highest % of NYHA I, lowest
% stroke history, better prognosis—highest % of de novo HF, with
preserved renal function.

Cluster 1

Higher % of women than in the rest of the population, highest systolic
pressure, highest hypertension, diabetes, chronic obstructive
pulmonary disease and stroke history (lowest GFR, lowest urine
creatinine, urea and K, lowest NTproBNP), most massive pulmonary
congestion and least massive peripheral oedema, highest hypertension
etiology, better prognosis—hypertensive, diabetic patients with
advanced atherosclerosis and comorbidities, diminished renal
function, elderly population with a significant part of de novo HF.

Cluster 2

Youngest patients, low NYHA and ejection fraction, lowest blood
pressure, troponin, CRP and IL-6, lowest % diabetes history, lowest %
of CAD history and etiology, lowest hypertension etiology, highest
“other” etiology, highest GFR, NTproBNP, bilirubin, Alt, Ast, highest %
of active smokers, least massive pulmonary congestion, better
prognosis—young “healthy”, early-stage HF, presumed toxic
etiology.

Cluster 3

Lowest WBC, ferritin, urine Na, Tsat, lactates, highest troponin, INR,
albumin, highest % of HFrEF and chronic HF, highest % of valvular
disease history, highest % of pulmonary congestion (97%), mean
prognosis—HFrEF with reduced iron resources.

Cluster 4

Predominantly man, highest pH, creatinine, urea, lactates, lowest
ejection fraction and pCO2, highest % of ascites and hepatomegaly,
most massive JVP, highest CAD etiology, worse prognosis—men,
HFrEF, with cardiorenal syndrome, hyperventilation, right
ventricular failure.

Cluster 5

Highest EF, no CAD history (0%), oldest population, highest % of
women, highest CRP, IL6, lowest body weight, low % of
MI/PCI/CABG, worst prognosis—HFpEF phenotype with increased
inflammatory markers.
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Figure 2. Principal clinical, laboratory and echocardiographic features for each cluster. ALT—Alanine
Aminotransferase, AST—Aspartate Aminotransferase, BP—blood pressure, CABG—coronary artery
bypass grafting, CAD—coronary artery disease, CHF—chronic heart failure, COPD—chronic ob-
structive pulmonary disease, CRP—C-reactive protein, DM—diabetes mellitus, EF—ejection fraction,
GFR—glomerular filtration ratio, HF—heart failure, HFrEF—heart failure with reduced ejection
fraction, HT—hypertension, IL-6—interleukin 6, JVP—jugular venous pulsation, MI—myocardial
infarction, NTproBNP—N-terminal-pro B-type natriuretic peptide, NYHA—New York Heart Associa-
tion class, PCI—percutaneous cardiac intervention, SBP—systolic blood pressure, TSAT—Transferrin
saturated with iron, u—urine concentration, WBC—white blood cell count.

3.2. Clustering

The population was divided into six cluster groups by analysis of 63 variables. Clusters
have been enumerated from 0 to 5. The variables that were included in the analyses are
presented in Table 1.

Cluster 0 (n = 86)
This was the largest cluster and included the highest percentage of patients with HF

de novo, qualified as NYHA I, presenting with severe lower extremity edema on admission,
and the highest urine K+, creatinine and urea levels. Moreover, this cluster had the highest
ferritin levels and the lowest percentage of patients with a history of stroke.

Cluster 1 (n = 50)
Among the other clusters, this cluster was mostly represented by women with the

highest prevalence of hypertension, diabetes, COPD and stroke history. On admission, this
cluster presented with the highest systolic blood pressure, the highest percentage of patients
with severe pulmonary congestion and the least severe signs of peripheral congestion. The
NTproBNP, GFR, urine K+, urea and creatinine levels were the lowest in this cluster.

Cluster 2 (n = 70)
On average, this cluster was represented by the youngest patients, the highest per-

centage of active smokers, and qualified as NYHA IV and HF etiology was classified as
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other. Additionally, this cluster presented the lowest percentage of ischemic HF etiology,
hypertension, diabetes and pulmonary congestion. On admission, they presented with
the highest GFR, NTproBNP, AST, ALT and bilirubin serum levels and the lowest levels of
troponin, CRP, and IL-6 serum levels.

Cluster 3 (n = 71)
This cluster consisted of the highest percentage of patients who qualified as HFrEF,

the highest percentage of patients who decompensated in CHF, and the highest ratio of
patients with valvular heart disease. On admission, this cluster was represented by the
highest proportion of patients presenting with the most severe pulmonary congestion and
lowest WBC, ferritin, TSAT, urine Na+, lactates and highest troponin, INR and albumin in
the laboratory measurements.

Cluster 4 (n = 50)
This cluster was mostly represented by men, smokers with a CAD HF etiology and the

lowest EF. On admission, they presented with the highest ratio of hepatomegaly, ascites,
the highest JVP and the least frequent severe pulmonary congestion. They also had the
highest creatinine and urea serum levels. For the arterial blood gases, this cluster presented
with the lowest pCO2 and the highest pH.

Cluster 5 (n = 54)
The characteristics of these patients appeared to be the oldest population, with the

highest percentage of women and the highest EF, lowest body mass, and no CAD history.
Moreover, the highest level of CRP and Il-6 serum levels was in this group of patients.

3.3. Prognostic Significance of Clusters

The one-year mortality was 27% (104 events). The mean hospital stay was 8.6 ± 6.7
days.

The one-year mortality from cluster 0 to cluster 5 was: 26% vs 22% vs 17% vs 21% vs
40% vs 43%, p = 0.002, respectively (Table 4).

Table 4. Outcomes by Clusters.

Cluster 5 Cluster 4 Cluster 3 Cluster 2 Cluster 1 Cluster 0 p

One-year
mortality 45.3% 40% 21.1% 17.1% 22% 25.6% 0.002

One-year mortality or HF
rehospitalization 68.1% 77.3% 55.7% 63.2% 55.3% 53.5% 0.112

In-hospital deterioration 8.5% 16.3% 8.2% 3.1% 15.2% 7.8% 0.1

Duration of hosp. [days] 9.3 ± 5.7 9.4 ± 6.8 6.7 ± 3.4 8.2 ± 7.5 9.7 ± 8.5 9.0 ± 7.3 0.1

The risks for one-year compared with the rest of the population were calculated for
each cluster. Clusters 5 and 4 had the highest one-year mortality risks, hazard ratio (95%
confidence interval); cluster 5 had a HR (95% CI): 2.095 [1.327–3.306], p = 0.002; cluster 4:
HR (95% CI): 1.738 [1.067–2.831], p = 0.026. Cluster 2 had the lowest one-year mortality risk,
HR (95% CI): 0.537 [0.294–0.979], p = 0.043. There were no significant differences compared
to the rest of the population for clusters 0, 1 and 3 (Table 5).
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Table 5. Hazard ratios for one-year mortality; each cluster was compared with the rest of the
population.

One-Year Mortality Risk

X2 Hazard Ratio (95% Confidence Interval) p

Cluster 0 0.194 0.900 [0.562–1.441] 0.662

Cluster 1 0.679 0.776 [0.415–1.449] 0.425

Cluster 2 4.807 0.537 [0.294–0.979] 0.043

Cluster 3 1.964 0.688 [0.397–1.188] 0.179

Cluster 4 4.393 1.738 [1.067–2.831] 0.026

Cluster 5 8.753 2.095 [1.327–3.306] 0.002

Figure 3 shows the Kaplan–Meier curves for the one-year mortality risks by clusters.
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Figure 3. Kaplan–Meier curves for one-year mortality by clusters.

4. Discussion

A cluster analysis was applied to the cohort of 381 AHF patients. Both the clinical
and biochemical variables were included and were either continuous or numerical. When
writing this article, this was the most numerous analysis of such a type done in a European
AHF population. Six clinically and pathophysiological relevant phenotypes were distin-
guished. The clusters varied in outcomes, including mortality and AHF re-hospitalization
rates. Notably, the number of groups has not been prespecified, as in previous papers on the
AHF population [1], but mathematically assessed. The quantity of the analyzed population
allowed us to distinguish the highest number of virtually equally dense clusters [4,8,11–13],
which provide the most thorough insight into an AHF’s population heterogeneity. Al-
though during the collection of both registries guidelines for the treatment of heart failure
have changed and a variety of new drugs have been implemented in therapy, such as
angiotensin receptor neprilysin inhibitor, sodium-glucose co-transporter-2 inhibitors, a new
class of beta-blockers and mineralocorticoid receptor antagonists, distinguished clusters
seem to be resistant to that changes, because we have not included pre-admission treatment
into cluster analysis. The decision above was dictated by practical reasons. According to
the characteristics of the studied population and the numerous comorbidities with their
special treatment, the quality of the analysis would not have been enhanced by including
them. Therefore, the new drugs and guidelines are very unlikely to impact our cluster
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analysis, especially in terms of the cluster composition, which was based on the clinical and
biochemical profiles at admission. The new guidelines would rather impact the patients’
prognosis. Noteworthy, these changes had very little, if any, impact on the outcomes of
the population of patients with AHF. The one-year mortality of the studied population
was 27%, which is not very distant from the current numbers (25–30%) [1]. Below, we
present a detailed description of the clusters grouped according to their distinguishing
clinical feature.

4.1. Clusters 1 and 4

Clusters 1 and 4 included patients with a high number of cardiovascular and non-
cardiovascular comorbidities. In both these groups, coronary artery disease was the pre-
dominant etiology of heart failure.

Although these two clusters demonstrated similarities in terms of etiology, their
prognosis and clinical outcome were significantly different. Cluster 1 had a relatively good
prognosis, while cluster 4 had a poor clinical outcome. The one-year mortality was equal to
22% in cluster 1 and was almost twice as high in cluster 4 (40%), which can be explained by
two factors.

The results of this study indicate that gender has a significant impact on the devel-
opment of coronary artery disease and the progression of heart failure. It is well known
that the male gender is itself a risk factor for cardiovascular events, and the prevalence of
cardiovascular disease is higher in men than in women of a similar age [14].

In the case of the male population, the risk of cardiovascular disease increases linearly
over time, and the atherosclerotic process develops continuously. On the other hand, due
to the protective role of estrogen and its beneficial effects on the cardiovascular system,
women of a fertile age may be protected from atherosclerosis [15–18]. This statement is
consistent with our observations. Despite many risk factors, only 56% of patients from
cluster 1(female-dominated) developed CAD, and only 40% had an MI. These values were
significantly higher in the male-dominated population represented by cluster 4.

Additionally, as is commonly known, the incidence of stroke increases significantly in
the postmenopausal period [19,20]. This also aligns with our observations, as the highest
rate of stroke was reported for cluster 1.

It can, therefore, be inferred that gender plays a significant role in the development
of cardiovascular diseases, and we assume that the differences in prognosis and clinical
outcomes between these two groups could be partially explained by this fact. However,
what determines the differences between these two clusters’ prognoses, for the most part,
is their renal function.

Importantly, the phenotype of cluster 4 reflects the common problem of cardiorenal
syndrome (the highest mean value of creatinine (1.36) and urea (64)) and right ventricular
failure with the highest incidence of ascites, JVP and hepatomegaly, which constitute a
sign of congestion. Cardiorenal syndrome and volume overload are well-documented
predictors of poor outcomes [21] and are strongly associated with each other. Therapy for
heart failure patients with cardiorenal syndrome remains a challenge. Its main goal should
be reasonable decongestion, which can be achieved by natriuresis-guided diuretic therapy,
ultrafiltration, or, in the refractory cases, experimental techniques.

4.2. Cluster 2

Patients included in cluster 2 were the youngest (mean age 58.8) and had the highest
NTproBNP (7189), bilirubin (1.25), Ast (30), and Alt (34.5), and had the lowest ejection
fraction (28%), serum creatinine concentration (1,1) incidence of diabetes (19%), pulmonary
congestion (17%), COPD (5.7%), HT (39%), CAD (1.4%) and MI in the past (1.4%). These
patients constituted the highest percentage of active smokers (30%) and alcohol consumers
(44%). The underlying cause of HF was mostly valvular (21%) or other (73%). We assume
that the presented phenotype, especially the elevated concentration of liver enzymes
and frequent tobacco and alcohol use, suggests a significant role in toxic myocardial
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damage. Importantly, cluster 2 was associated with the most positive prognosis. It can be
explained by the youngest age, low morbidity, and high potential compensatory reserves.
Therefore, these patients represent great therapeutic potential, and clinicians should focus
on education in the context of eliminating the harmful impact of xenobiotics.

4.3. Cluster 3

The distinguishing features of cluster 3 (n = 71) were the incidence of chronic heart
failure (93%) and iron deficiency

The prevalence of iron deficiency (defined as a serum ferritin < 100 ng/mL or
TSAT < 20) [22] is common in this population. In comparison to the other groups, cluster 3
represented the lowest mean value of ferritin (92) and TSAT (14.8%).

Iron deficiency is a frequent comorbidity in heart failure, present in approximately
30–50% of patients and is associated with worse long-term outcomes [23–25].

The detrimental effect of imbalanced iron homeostasis on HF progression has been
widely studied; however, it remains unclear what the exact mechanism is by which an iron
deficit worsens HF. It appears that there is a wide range of factors involved in this process.

First of all, iron deficiency alters mitochondrial function and impairs the already
disturbed energetics of the heart with a reduced ejection fraction [26].

Secondly, in the condition of iron deficiency anemia, depleted oxygen delivery to
the metabolizing tissues induces a variety of hemodynamic, renal, and neurohormonal
alterations [27]. Volume expansion (caused by sympathetic and RAA activation), as well
as vasodilatation, leads to an increase in cardiac output. All these mechanisms result in
an increased myocardial workload and further hypertrophy/remodeling of LV, which
contributes to worsening HF [28].

We assume that the iron deficiency could explain the mean prognoses of patients in
this cluster and constitute a relatively easy-achievable therapeutic goal to improve these
patients’ outcomes.

4.4. Cluster 1 and Cluster 5

Both clusters 1 and 5 include mostly elderly (mean age 76.1 in both clusters) women
(46% and 44%, respectively), with the highest ejection fraction (47.5% and 50%) and a
high incidence of hypertension (94% and 87%). The presented phenotype corresponds
to the well-established HFpEF patient characteristics [29]. The clusters present the most
frequent incidence of massive pulmonary congestion (congestion auscultated over two-
thirds of the lungs in the 22% and 13%), which is reflected by the highest proportion of
the NYHA IV (54% and 57%). The highest mean values of the pCO2 (37.2 mmHg and 36.2
mmHg) reflect the most massive pulmonary oedema or the relatively high incidence of
lung comorbidities, especially COPD in the HFpEF population [30]. Despite the apparently
similar phenotypes, the clusters significantly differed in outcomes (Figure 3). Cluster 1
presented a relatively good prognosis, and conversely, cluster 5 was associated with an
ominous outcome. The features that especially differ the clusters are the types of HF
(chronic/de novo) and the concentration of the inflammatory markers. Cluster 1 consisted
mostly of the patients who presented with their first episode of HF (56%), and cluster 5
were the patients suffering from chronic HF (70%). The duration of HF is a well-established
prognostic factor. Moreover, cluster 1 presented the highest natriuresis, probably due to the
effect of the first presentation of HF and frequent loop-diuretics naiveness and, as a sign
of adequate diuretic response, predicted a favorable outcome [31]. Subsequently, cluster 5
presented with the highest mean concentration of inflammatory biomarkers—CRP and Il-6,
which, with the lowest mean body weight (74.9), suggests frailty syndrome and explains
the poor prognosis [32,33].

4.5. Novelty and Clinical Implications

We presume that our paper has two significant advantages over the currently pub-
lished clustering-based analysis of acute heart failure populations. Noteworthy, it is, by
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now, the most numerous clustering analysis for a European AHF population. Moreover, we
have not prespecified the number of the clusters in advance, in order to allow the algorithm
to distinguish the optimal, natural number of different subgroups autonomously.

The clustering technology is currently far from being an ideal solution for heart failure
phenotyping. Nevertheless, we strongly believe that this technique presents great potential
as a tool which can capture the relationships which are too complex to be noticed by a
classical statistical analysis but can be visible to the experienced clinician. We believe it will
eventually immediately segregate admitted HF patients into previously described groups
(clusters). Such a segregation will highlight the therapeutic aspects that clinicians should
focus on (e.g., cardiorenal syndrome, iron deficiency, etc.) and initially estimate a prognosis.
Further, the patients who would be placed into the group with a worse prognosis could be
provided with more careful/insightful treatment from the very beginning of the therapeutic
process. For example, clusters 2 and 3 revealed the recognized relationships between HF
and, consequently, chronic intoxication and iron deficiency. The precise outpatient care for
the cluster 3 patients, with a regular iron level assessment and intravenous supplementation
if needed, could reduce the likelihood of HF deterioration [25] Further, proper education
and providing cluster 3 patients with specialist psychiatric care regarding their addiction
and substance abuse could slow the progress of HF [34]. Noteworthy, the clustering, in
that case, does not reveal relationships that are astounding for the experienced cardiologist.
The potential value of such algorithms and provided classifications is its ability to immedi-
ately categorize the patients into one of the pheno-groups and underline cluster-specific
treatment targets which can be accidentally omitted due to, e.g., the doctors’ overwork,
overfilling the hospitals or the lack of experience of medical professionals.

5. Limitations

Our study is not free from limitations. First, the study included retrospective data.
Therefore, the availability of potentially important clinical parameters was restricted. Vari-
ables, such as the echocardiographic parameters, invasive hemodynamic measurements or
novel experimental markers, were not collected. New cluster-based trials with a broader
biochemical and clinical composition would deliver exciting data. Moreover, the gathered
data contained missing values. Notwithstanding restricting the data inclusion to 10% of
the missing values, some bias could occur. Second, our analysis was based on single-center
data from Poland, which included a relatively small sample size and lacked an external
validation cohort. Consequently, the evaluated patients were treated following outdated
guidelines. The current clinical presentation of AHF patients and their outcomes can differ
from the presented results.

The machine-learning techniques can be associated with the overfitting problem, in
which the model performs well on the seen population and poor on the new one. In
other words, the model is not generalizable. However, in unsupervised learning, to which
clustering belongs, there is no such information about a “true” or “correct” assignment
of examples to clusters. The clustering only works with the given data, and the possible
generalization of the clusters is rather a question of their interpretation by the domain
(medical) experts rather than a question of evaluation on another dataset. Thus, overfitting,
in the standard sense, is not an issue for clustering.

What is important in clustering is having a “reasonable” number of clusters. The small
number of clusters will produce over-general results—the worst case is just one cluster for
everything, a large number of clusters will produce over-specific results—the worst case
is that each example creates its own cluster. The problem of over-specific results can be,
in some sense, considered similar to the problem of overfitting—we tried to avoid it by
automatically tuning the range of clusters. We designed the range of the number of possible
clusters from three to six to avoid excessive data fragmentation. Such an approach was
consistent with prior studies, which usually consisted of three to four groups [4,8,12,13].
We decided to increase the potential number of the clusters due to the bigger included
population. Further analyses to highlight more nuanced phenotypes are warranted.
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6. Conclusions

We successfully extracted six novel phenotypes of acute heart failure patients, pro-
viding a fresh insight into their heterogeneity. The proposed clusters were consistent with
the latest understanding of pathophysiology (e.g., de novo HF, HT HFpEF, toxic HF, iron
reduced left ventricle HF, cardiorenal, inflammatory HFpEF) and previous clustering-based
papers, providing a more distinctive classification of the population. Presented results can
be valuable for future AHF trial constructions and more customized treatments.
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