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ABSTRACT

Spatial Epitope Prediction server for Protein Anti-
gens (SEPPA) has received lots of feedback since
being published in 2009. In this improved version, rel-
ative ASA preference of unit patch and consolidated
amino acid index were added as further classification
parameters in addition to unit-triangle propensity
and clustering coefficient which were previously re-
ported. Then logistic regression model was adopted
instead of the previous simple additive one. Most
importantly, subcellular localization of protein anti-
gen and species of immune host were fully taken
account to improve prediction. The result shows that
AUC of 0.745 (5-fold cross-validation) is almost the
baseline performance with no differentiation like all
the other tools. Specifying subcellular localization
of protein antigen and species of immune host will
generally push the AUC up. Secretory protein im-
munized to mouse can push AUC to 0.823. In this
version, the false positive rate has been largely de-
creased as well. As the first method which has con-
sidered the subcellular localization of protein anti-
gen and species of immune host, SEPPA 2.0 shows
obvious advantages over the other popular servers
like SEPPA, PEPITO, DiscoTope-2, B-pred, Bpredic-
tor and Epitopia in supporting more specific bio-
logical needs. SEPPA 2.0 can be accessed at http:
//badd.tongji.edu.cn/seppal/. Batch query is also sup-
ported.

INTRODUCTION

In recent years, computational identification of immuno-
genic regions/segments in a given protein antigen has pro-
vided increasing assistance in guiding the experimental val-
idation. Since the majority of the epitope area was domi-
nated by discontinuous amino acids in the surface of pro-
tein antigens (1), a lot of efforts have been devoted into
computing spatial/conformational epitopes based on pro-
tein structures. These methods can be roughly divided into
two tracks, one of which proposing useful parameters to
discriminate epitope residues from common surface ones,
while the other focusing on various classification algorithm
to improve the performance.

Parameters-track starts with the first Conformational
Epitope Prediction server (CEP) in 2005 (2), where ‘acces-
sibility of residues’ was firstly adopted to predict epitope
residues. Then DiscoTope (1) and updated DiscoTope-2 (3)
tried spatial neighbouring definition and surface exposure
measurement. Later, PEPTIO introduced spatial attribute
of half sphere exposure (4) and B-pred combined struc-
ture quality values with solvent exposure(5). In 2009, we
proposed two new parameters, propensity of unit-triangle
patches and clustering coefficient in Spatial Epitope Predic-
tion server for Protein Antigens (SEPPA) (6) to better de-
scribe local clustering features of conformational epitope.
In the same year, Epitopia applies a naive bayesian classi-
fier with physic-chemical and structural-geometrical prop-
erties to identify epitope residues from surface ones (7).
Recently, CE-KEG was developed based on knowledge-
based energy function and geometrically related neighbour-
ing residue characteristics (8). Meanwhile, classification-
track is featured as EPMeta, incorporating support vector
regression with different results from multiple other servers
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(9). Subsequently, random forest algorithm, naive Bayes
network and SVM method were applied by Bpredictor (10)
and BEEPro (11). Despite of various efforts, different re-
views have pointed out that the performance of these meth-
ods has in general been moderate, especially in high false
positive rate (12-14), due to computational complexity and
limited number of known antibody—antigen complex struc-
tures.

To continue improving the model, recently we focused
on more systematic statistics analysis on conformational
epitopes including size and shape, residual and structural
characteristics and epitope—paratope interaction patterns,
aiming to identify more potential parameters (14). It was
interesting to find that additional difference did exist be-
tween epitope and non-epitope residues in solvent accessi-
bility, amino acid indexes, residual compactness etc. Fur-
thermore, different proteins from different subcellular lo-
calization, such as membrane associated or secreted, may
have different preference in epitope residues. Most impor-
tantly, it is realized that epitopes of same protein antigen
are often species-specific in different immune host (15-17).

Incorporating all above into an optimized logistic regres-
sion algorithm, this paper presents an updated version of
SEPPA2.0. In this version, two new parameters were ap-
pended, ASA (Accessible Surface Area) propensity of unit-
triangle patches and consolidated amino acid indexes, in
addition to clustering coefficient and propensity index for
unit-triangle patches in SEPPA1.0. Then, subcellular local-
ization of protein antigen and species of immune host were
fully taken into consideration to construct different sub-
models. Furthermore, the largest dataset of 435 unique con-
formational epitopes were used as training and validation,
and then additional 42 were used as independent testing
dataset.

DATASET

Training and validation dataset were extracted from
antigen—antibody complexes downloaded in Protein
Database Bank (18) dated September 2012. The selection
criterion stays the same as SEPPA 1.0 (6). Finally, 314
structures were collected including 435 unique epitopes
because many structures contain multiple sites of an-
tibody binding. The data distribution was displayed in
Supplementary Table S1.

Forty-two independent testing dataset were derived from
antigen—antibody complexes, which were collected from the
dataset of Bpredictor (10), EPMeta (9) and DiscoTope-2
(3). All these are non-overlapping with training and vali-
dation data of SEPPA 2.0. Details can be found in the Sup-
plementary Table S2.

MATERIALS AND METHODS

In SEPPA 1.0, two parameters were introduced (unit-patch
of residue triangle and clustering coefficient) to predict con-
formational B-cell epitopes (6). In this version, relative ASA
of unit-patch of residue triangle (unit triangle in brief) and
consolidated amino acid index were added as new classi-
fiers. Considering subcellular localization of protein anti-
gen (membrane, secretory or unspecified) and species of im-

mune host (mus, homo or unspecified), totally nine sub-
models was set up in. The algorithm of each sub-model and
definition of parameters are given as follows:

Algorithm of SEPPA2.0

For each antigen protein as input, SEPPA 2.0 will recom-
mend the best model out of sub-models after specifying sub-
cellular localization and immune host by users. Then the
model will:

Step 1: determine all the surface residues in the protein
antigen;

For each surface residue r:

Step 2: search all possible unit triangle patches within
neighbouring distance, then calculate two parameters re-
lated to unit patch of triangle residue: propensity index avg,
(see SEPPA1.0) and relative ASA Apref;;

Step 3: calculate clustering coefficient CC, (see
SEPPA1.0) and consolidated AAindex value Index,
for r within neighbouring distance;

Step 4: integrate the four parameters above by logistic re-
gression algorithm to present an antigenicity score for r;

Step 5: output the antigenicity score for r, and highlight
those residues with scores over the threshold. Visualize the
subsets of predicted epitope area graphically.

Propensity of triangle ASA

To eliminate the volume bias when calculating ASA value,
relative ASA index for each residue is well accepted (19).
Relative ASA of unit triangle is the sum of the relative ASA
index for three residues. Since the actual ASA may vary in
different areas of different protein even for the same residue
triangle, distribution of actual triangle ASA can be done
for epitope and non-epitope area respectively based on all
the training dataset. As illustrated in Supplementary Fig-
ure S1 in supplementary, a curve can be obtained in which
any ASA value of this triangle can acquire a possibility to
become an epitope residue. Via this, scattered and dot dis-
tribution of triangle ASA can be fit into an unbroken curve.
The ASA propensity index (APiyi) of each unit tri-
angle is calculated as the probability of pattern tri; as
epitope unit patch P(epitope|ASA value, triangle i) com-
pared with that probability as non-epitope unit patch
P(non — epitope|ASA value, triangle 7). This index was
trained by using logistic regression on our training data:

P(epitope| ASA value, triangle 7)

APiy; = (1)

P(non — epitope|ASA value, triangle i)’

For any residue r, the ASA propensity (Apref,) is calcu-
lated as the averaged propensity indexes (APiy;) of all the
residual triangles within the neighbouring distance around
r.

Consolidated AAindex

Our previous statistical analysis identified 21 out of 544 in-
dices from AAindex database (14). Here, the 21 indices are
consolidated into one as below: for each index i of residue r,
it is firstly averaged by all the neighbouring residues within



neighbouring distance. Then the 21 averaged indices are fur-
ther consolidated via ANNs (Artificial Neural Networks)
into AAindex value (Index,) as follows:

Index, =
NN ({Nindex,, Nindex,», ... ... , Nindex,,}), (2)

where Index,; means the averaged value of index i around
residue r. Index, is the consolidated AAindex of 21 via two-
layer and 10-node artificial neural networks.

RESULTS
Performance of SEPPA 2.0

The performance of SEPPA 2.0 is firstly evaluated by 5-fold
cross-validation and then tested by independent dataset.
For cross-validation, area under curve (AUC) value, sensi-
tivity (SN), specificity (SP) and false positive rate (FPR) are
used to evaluate the performance of our models. For inde-
pendent dataset test, Balanced Accuracy was introduced to
assess the performance of SEPPA 2.0.

Cross-validation

The performance of evaluation can be seen in Table 1 for
all the nine sub-models. With default threshold for each,
the averaged sensitivity, specificity and false positive rate
were also listed. It can be seen from Table | that the
baseline without any specification (unspecified /unspecified)
achieved AUC value above 0.745. Most of the time, adding
subcellular localization and host immune species can im-
prove the AUC value. The best prediction was done with
AUC value of 0.823 for those secretory protein antigens im-
munized to mouse. It is found that the AUC of immune host
of homo is generally lower than that of mus, probably be-
cause more training data deriving from mouse is included.
Meanwhile, compared with SEPPA 1.0, the false positive
rate has largely decreased from 0.244 to 0.071 on average at
the same sensitivity. (Supplementary Table S3).

Comparing with peer methods

Five popular servers were selected as the peers for fur-
ther comparison by independent testing dataset: PEPITO,
SEPPA 1.0, DiscoTope-2, B-pred and Bpredictor. Nor-
mally, AUC value and Balanced Accuracy are used to com-
pare the performance for binary classification. AUC value
illustrates the overall performance of a server under differ-
ent thresholds. Actually, each prediction is made under se-
lected threshold of a server. In this case, Balanced Accuracy,
defined as (sensitivity + specificity)/2, may better reflect the
prediction ability of the server than AUC value. Thus we
calculate Balanced Accuracy only as indicator for indepen-
dent testing.

By default thresholds of their own, the performances of
different servers were summarized in the Supplementary
Table S4. When being compared with no details specified
(unspecified /unspecified) as the other servers, SEPPA 2.0
achieved the average Balanced Accuracy of 0.641, which is
the highest. In addition, the results of different sub-models
of SEPPA 2.0 are also listed and compared. It can be seen
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that, the advantage of these sub-models from SEPPA 2.0 is
apparent over other peers when the testing data is increas-
ing.

Since Bpredictor and Epitopa only present results with-
out recommended threshold, AUC value was firstly made
based on our testing dataset. Then the best thresholds were
purposely selected for the two methods allowing them to
achieve the maximum Balanced Accuracy on this testing
dataset. Moreover, only 19 out of 42 were adopted for this
round of evaluation since the 23 others were included by
the training data of Bpredictor and Epitopia. As shown in
Supplementary Table S5 and S6, the averaged AUC value of
SEPPA 2.0 is still higher than that of both methods. SEPPA
2.0 outnumbered Bpredictor on 12 out of 19 data and 10
of 19 for Epitopia on AUC value. In terms of Balanced Ac-
curacy, SEPPA 2.0 outnumbered both Bpredictor and Epi-
topia on 10 out of 19 data despite of such biased condition
favouring the competitors.

USAGE
Input

For SEPPA 2.0, PDB files can be input via known PDB
ID with chain name specified or be uploaded directly.
Users need to specify subcellular localization of protein
antigen and specie of immune host. Then our server
will automatically recommend the best model based on
user’s specifications. For instance, secretory/unspecified
and unspecified/homo will be taken by sub-model of
unspecified /unspecified since double un-specification will
give better AUC results.

Output

Our output result can be sent back to user via email or be
presented in html format similar to SEPPA 1.0. Here, the
predicted epitope of the influenza virus (PDB ID: 2B2X,
Chain: B) are shown as an example to illustrate the differ-
ence between SEPPA 2.0 and SEPPA 1.0 (Figure 1). The
descriptors of input antigen were selected as ‘subcellular
localization—Membrane’ and ‘Species of Hosts—Mus’ ac-
cording to its information from PDB. More information
can be found in the HELP part of server web.

DISCUSSION

As being reviewed before, the difficulties of conformational
epitope prediction is largely due to two aspects: the lack of
appropriate properties and better training data (12,14,17).
Based on the previous large-scale statistics, we found that
none of the individual features can distinguish epitope
residues fully and a better approach may rely on combi-
national parameters (14). In SEPPA 2.0, two additional
parameters were introduced: the ASA preference of unit-
triangle and the consolidated AAindex. Solvent accessibil-
ity is well known to associate with conformational epitopes
while ASA preference of unit-triangle describes the ASA
feature of the minimum moiety of surface patches, instead
of the individual residue, which can better reflect the local
ASA context on antigen exterior. Meanwhile, introduction
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Table 1. Five-fold cross-validation results for nine sub-models with default threshold

Subcellular
localization/species AUC Threshold SN SP FPR
Membrane/homo 0.782 0.06 0.825 0.832 0.168
Membrane/mus 0.808 0.06 0.867 0.859 0.141
0.767 0.08 0.779 0.834 0.166
Membrane/unspecified
Secretory/homo 0.751 0.09 0.872 0.842 0.158
Secretory/mus 0.823 0.13 0.799 0.865 0.135
Secretory/unspecified 0.742 0.14 0.725 0.801 0.199
Unspecified/homo 0.736 0.09 0.797 0.806 0.194
Unspecified/mus 0.752 0.12 0.710 0.754 0.246
0.745 0.10 0.734 0.754 0.246
Unspecified /unspecified
- - () (oecione for oleet conforations Friape Prestcrion There are currently several servers published for con-
< o Ganiss 7:53riSen formational epitope prediction, such as CEP, Disco-
~---sePPA prediction Result--—-- Tope, PEPITO, SEPPA 1.0, Epitopia, EPMeta, Bpredic-
Antigenic Predition for 262X: o et e tor, DiscoTope-2, B-pred, CE-KEG. Among these, CEP
oz TOeshold: 8188 e Locattont Hoabrate is not accessible currently. DiscoTope has been updated
e e of ot resies: w16 by DiscoTope-2. CE-KEG gives different kinds of results
e S chotno resseq. restane score which are hard to compare directly. EPMeta is a meta
s E B = &= server which combined results of six other individual servers
1200 _sorarmayan maseerva sty while some of them were in-accessible already. BEEpro only
i - A present an algorithm without computational tools. Thus,
B om0l we selected the six remaining for peer comparison. Compar-
(1) =) © ing to other peers, SEPPA 2.0 could balance the overall sen-

4
X

Reference epitope

SEPPA 2.0 SEPPA 1.0

Figure 1. A snapshot of predicted spatial epitope and graphical display
of PDB ID: 2B2X chain B. (a) Result page for epitope prediction of query
antigen. (b) Antigenicity scores predicted for each residue in query antigen.
(¢) Comparing illustration of SEPPA and reference epitope area.cl repre-
sents the reference epitope areas while c2-c3 represent SEPPA prediction
results from different version.

of too many inter-connected features may cause over com-
plexity of model computation. Thus 21 AA indexes were
consolidated into one high-level feature via neural network
beforehand to represent the local physic-chemical environ-
ment around target residue.

On the other hand, the result of immunodominant epi-
tope is highly related to its actual environment during the
antigen—host interaction since multiple epitope areas may
exit for the same protein antigens (15-17,20). On the ba-
sis of those, the training dataset was carefully classified into
nine sub-datasets according to subcellular localization and
immune host. Nine sub-models were established and the
neighbourhood cutoffs for those nine models were set dif-
ferently based on each sub-datasets. In each model, the cut-
off was chosen as the best one from a series of testing from 5
to 20 A at intervals of 2 A. Neighbourhood distance is kept
the same as before for each model once fixed.

sitivity and specificity, decrease the false positive rate while
still maintaining the prediction accuracy. Those refined sub-
models also show improvement when more details of pro-
tein antigen and immune host are specified. With rapidly
accumulated number of structural data labelled with more
complete information, SEPPA 2.0 would be increasingly im-
proved in supporting specific biological needs.
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