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� Temporal pattern of RIPK1/RIPK3/
MLKL expression is different
following CNS trauma.

� Molecular target-mediated
necroptosis and potential treatment
strategies among cell types are
different in CNS trauma.

� MicroRNAs (miRNAs) regulate
necroptosis involved in CNS trauma.

� Necroptosis is involved in the
regulation of apoptosis and
autophagy.

� Targeting necroptosis can be a novel
therapeutic strategy for CNS trauma.
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Background: Traumatic brain injury (TBI) and spinal cord injury (SCI) are capable of causing severe sen-
sory, motor and autonomic nervous system dysfunctions. However, effective treatments for TBI and SCI
are still unavailable, mainly because the death of nerve cells is uncontrollable. Necroptosis is a type of
programmed cell death and a critical mechanism in the process of neuronal cell death. However, the role
of necroptosis has not been comprehensively defined in TBI and SCI.
Aim of review: This review aimed to summarize the role of necroptosis in central nervous system (CNS)
trauma and its therapeutic implications and present important suggestions for researchers conducting in-
depth research.
Key scientific concepts of review: Necroptosis is orchestrated by a complex comprising the receptor-
interacting protein kinase (RIPK)1, RIPK3 and mixed lineage kinase domain-like protein (MLKL) proteins.
Mechanistically, RIPK1 and RIPK3 form a necrosome with MLKL. After MLKL dissociates from the necro-
some, it translocates to the plasma membrane to induce pore formation in the membrane and then
induces necroptosis. In this review, the necroptosis signalling pathway and the execution of necroptosis
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are briefly discussed. In addition, we focus on the existing information on the mechanism by which
necroptosis participates in CNS trauma, particularly in the temporal pattern of RIPKs and in different cell
types. Furthermore, we describe the association of miRNAs and necroptosis and the relationship between
different types of CNS trauma cell death. Finally, this study highlights agents likely capable of curtailing
such a type of cell death according to results optimization and CNS trauma and presents important sug-
gestions for researchers conducting in-depth research.
� 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Central nervous system (CNS) trauma, including traumatic
brain injury (TBI) and spinal cord injury (SCI), continues to be the
primary factor of pathogenesis and death rate related to traumatic
injuries. The global burden of disease collaborative group study
reported 27.08 million new TBI cases and 0.93 million SCI cases
worldwide, while their global prevalence reached 55.50 million
and 27.04 million, respectively [1]. Neuroinflammation resulting
from CNS trauma refers to a major factor causing nerve cell death,
scar tissue formation and eventual loss of function [2]. Currently,
some treatments can alleviate nerve cell death to some extent,
but the recovery of neurological function is still not optimistic.
Thus, the exact molecular mechanisms of cell death must be
uncovered to develop more effective therapeutic targets.

Traditionally, basic types of cell death are generally classified
into three categories, apoptosis, autophagy, and necrosis, which
are characterized by distinct morphological and biochemical
changes [3]. Apoptosis is the first cell death type, exhibiting small
cells, cell membrane blebbing, retraction of pseudopods and
nuclear fragmentation and chromatin condensation [4]. The sec-
ond type of cell death is autophagy, exhibiting the accumulation
of double-membrane covered vacuoles covering the cytosol or
cytoplasmic organelles and the redistribution of light chain 3
(LC3) to the autophagosome membrane [5,6]. The third cell death
type refers to necrosis, featuring the release of cellular contents,
organelle swelling, and plasma membrane rupture [7]. In addition,
the biochemical components of the three key cell death pathways
are different. Apoptosis has been demonstrated to be regulated by
the family of anti- and pro-apoptotic B cell lymphoma-2 (BCL-2)
protein family members, and hundreds of caspases are involved
in apoptosis [8]. Autophagy is regulated by autophagy-related
(ATG) families (such as ATG5 and ATG7), and LC3-I, LC3-II and
p62 are involved in autophagy [9]. The process of necrosis includes
the accumulation of calpains and cathepsins and the release of
damage-associated molecular patterns (DAMPs) and cytokines.
The DAMPs and proinflammatory cytokines derived from necrotic
cells and subsequently activated immune cells provide feed-
forward signals reinforcing programmed necrosis in additional
cells [10]. The outcome of the three types of cell death is different.
Apoptosis and autophagy do not induce inflammation; however,
necrosis often leads to inflammation [11]. The main differences
and crosstalk among apoptosis, autophagy, and necrosis are shown
in Table 1. Most studies of CNS trauma have concentrated on apop-
tosis and autophagy because necrosis has long been recognized as
irreversible [12,13]. However, necrosis has recently been shown to
mediate acute nerve cell loss after CNS trauma. In addition, accu-
mulating evidence has revealed a special form of necrosis termed
necroptosis involved in CNS trauma. Necroptosis is similar to cellu-
lar necrosis in terms of morphology, but distinct from apoptosis in
terms of cell membrane rupture, and considerable intracellular ele-
ments are released [14]. However, necroptosis refers to one form of
cell death mediated by genetic programming and regulatory pro-
cesses [15]. Morphologically, necroptosis features mitochondrial
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swelling and cell plasma membrane loss [16]. Necroptosis is
induced by interactions related to death receptor family ligands
with agonists, including tumour necrosis factor (TNF), FasL, and
TRAIL [17]. In addition, the core necroptotic signalling pathway
parts are receptor-interacting protein kinases (RIPKs) and the
mixed lineage kinase domain-like protein (MLKL) family [18,19].
The family of RIPKs has seven members that target both tyrosine
and serine/threonine residues in substrates [20,21]. Recently,
many studies have found that necroptosis vitally impacts TBI and
SCI pathogenesis [22,23]. However, few studies have summarized
the association of CNS trauma and necroptosis. Thus, the mecha-
nisms of the necroptosis process are briefly summarized, and the
accumulating evidence in favour of the role of necroptosis in the
progression of CNS trauma is summarized.

Overview of the necroptosis signalling pathway

Necroptosis is induced by various stimuli. According to previous
studies, TNF is the classic stimulus [24]. In addition, necroptosis is
also capable of stimulating several death receptors, including TNF-
related apoptosis-inducing ligand receptor (TRAIL-R), Fas ligand
receptor (FasR), tumour necrosis factor receptor 1(TNFR1), Toll-
like receptors (TLRs), interferons (IFNs), and other mediators [25].
TNF was employed to elaborate the necroptosis signalling path-
way. TNF interacts with the preligand assembly domain in the
TNFR1 extracellular portion, which induces TNFR1 trimerization
[26]. Next, a transient molecular complex termed complex I starts
to be assembled, including TNFR1-associated death domain protein
(TRADD), RIPK1, TNFR-associated factor 2 and 5 (TRAF2, TRAF5),
cellular inhibitor of apoptosis 1/2 (cIAP1/2), and linear ubiquitin
chain assembly complex (LUBAC) [27,28]. In complex I, RIPK1
ubiquitination is catalysed by TRAF-2/5 and cIAP1/2 [29]. RIPK1
ubiquitination critically regulates the active state of the kinase.
RIPK1 is essential for initiating cell survival pathways, primarily
through ubiquitination by cIAPs and TRAF2/5 [30]. Blockade of
RIPK1 ubiquitination based on cIAP1/2 antagonization diminishes
the protective effect of nuclear factor kappa-B (NF-jB) and
increases cell sensitivity to necroptosis [31,32]. Cylindromatosis
(CYLD), an enzyme that deubiquitinates K63 specifically, can medi-
ate the RIPK1 deubiquitinating process to expedite the complex
IIb-forming process, covering pro-caspase-8, FADD and TRADD
[33]. The formation of complex IIa can activate programmed cell
death [34]. Upon the suppression of cIAP, TAK1 or NF-jB essential
modulator (NEMO) expression, complex I is internalized and trans-
formed into one death-triggering complex IIb, which consists of
FADD, pro-caspase-8, RIPK3 and RIPK1. On the one hand, the for-
mation of complex IIa leads to caspase-8-dependent apoptosis
(Fig. 1) [35,36]. On the other hand, when caspase-8 is suppressed,
complex IIb undergoes transformation into necrosomes, leading to
the execution of necroptosis [37]. For instance, cellular FLICE-like
inhibitory protein (c-FLIP), an inactive homologue of caspase-8
from a catalytic perspective, participates in the regulation of
necroptosis [38]. If caspase-8 interacts with c-FLIP short , the pro-
teolytic activity of caspase-8 was inhibited. Then, RIPK1 recruits
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RIPK3 and interacts with RIPK3 via the RIPK homotypic interaction
motif (RHIM) to phosphorylate RIPK3 [39,40]. RIPK3 and RIPK1
phosphorylation stabilizes their correlation inside the pro-
necrotic complex termed the necrosome, which subsequently acti-
vates MLKL and PGAM5 and CaMKII [41,42]. MLKL undergoes
phosphorylation by RIPK3 and then forms oligomerized homotri-
mers via the relevant amino-terminal coiled-coil domain. Cai
et al demonstrated that MLKL forms trimers upon necroptosis
induction [43]. However, Liu et al reported that phosphorylated
MLKL forms tetramers [44]. Moreover, previous studies have also
indicated different structures of MLKL [45,46]. Therefore, we
hypothesize that the different structures of MLKL may exert differ-
ent effects to stimulate necroptosis. This possibility needs to be
verified in further investigations. Finally, MLKL oligomers translo-
cate to the plasma membrane, forming membrane pores [43]. In
addition, PGAM5, which includes PGAM5S and PGAM5L, is down-
stream of the necrosome. PGAM5S activates the GTPase activity
of mitochondrial fission through the dephosphorylation of
dynamin-related protein 1 (Drp1) at serine 637, resulting in mito-
chondrial fragmentation [47]. Another downstream target of the
necrosome is CaMKII, which is involved in nerve cell reactive oxy-
gen species (ROS) overproduction, mitochondrial permeability
transition pore (MPTP) opening, and subsequent necroptosis [48].
Involvement of necroptosis in CNS trauma

Functions of necroptosis in CNS trauma

CNS trauma, including TBI and SCI, causes death and disability
worldwide [49]. According to considerable research, cell death is
an integral component of TBI and SCI pathogenesis [50]. Recently,
a novel mechanism named programmed necrosis (necroptosis)
was found to be a vital element mediating cell death in response
to CNS trauma [51,52]. Initial experiments on necroptosis follow-
ing TBI in mice were conducted in 2008 by You et al,who exploited
a regulated cortical impact model [53]. Subsequently, Ni et al
reported that TBI trauma elevates the expression levels pertaining
to the RIPK3 and RIPK1 proteins, as well as their substrate MLKL
[54]. Liu et al tested whether neural cell death is induced by
necroptosis and showed that treatment using necrostatin-1, a par-
ticular inhibitor of RIPK1, reduces histopathological and functional
deficits after TBI in rodents [53,55]. Moreover, RIPK3-knockout
mice display a decrease in posttraumatic neuronal loss and even
optimized function-related results compared with TBI alone [56].
RIPK1 kinase activity is necessary for TNF-a-induced necroptosis.
A study reported that RIPK1 expression was significantly increased
in various types of neural cells (neurons, astrocytes, and oligoden-
drocytes) at the injured site following spinal cord hemisection. The
inhibition of RIPK1 activity was shown to reduce necroptosis and
have a tissue-protective function in SCI [46]. MLKL is a pivotal reg-
ulator of necroptosis. MLKL content increased significantly post-
SCI, and inhibition of MLKL improved recovery of neurological
function in SCI [57]. In summary, several experimental studies
have confirmed the protective influence exerted by necroptosis
on TBI and SCI from the perspective of key enzymes, proteins,
specific inhibitors and related genes.
Temporal pattern of RIPK1/RIPK3/MLKL expression following CNS
trauma

Currently, an increasing number of researchers have analysed
the temporal pattern of necroptosis activation in CNS trauma
[53]. RIPK1, RIPK3 and MLKL expression increases in the hours to
days after TBI. Liu et al performed Western blot analyses and con-
firmed markedly increased levels of the RIPK3 and MLKL proteins



Fig. 1. Caspase crosstalk pathways in necroptosis. The assembly of complex I, composed of TRADD, RIPK1, TRAF2/5, cIAP1/2 and LUBAC, is triggered by TNFR1 ligation. cIAP
recruits the LUBAC complex, causing the M1 ubiquitination of RIPK1. The binding of NEMO is a significant modulator of NF-kB, and the polyubiquitin chain of RIPK1 acts as a
scaffold. NEMO functions as a regulatory subunit inside the IkB kinase (IKK) complex, which is needed to activate IKK. Activated IKK subsequently inactivates IKB, thus
activating NF-kB and its transcription of pro-survival and pro-inflammatory genes. Deubiquitination of RIPK1 by CYLD and A20 can result in RIPK1 dissociating from complex
I; then, the complex recruits TRADD, FADD and pro-caspase-8 and forms complex IIa, which activates apoptosis. When the expression of cIAP, TAK1 or NEMO is inhibited,
complex I transformes into complex IIb to induce necroptosis, which consists of RIPK1, RIPK3, Fas-associated death domain (FADD), and caspase-8. The change in cells from
survival to death is suggested by the conversion from complex I to complex II. Complex IIa is composed of TRADD, FADD, RIPK1 and caspase-8. Caspase-8 cleaves downstream
caspases as caspase-3/7 are activated inside complex IIa, thus leading to apoptosis, while RIPK1 and RIPK3 are cleaved and inactivated to terminate necrosis. For complex IIb,
in the case of caspase-8 inhibition, the RIPK homotypic interaction motif (RHIM) of RIPK3 allows it to bind to RIPK1 before phosphorylation. Consequently, MLKL is recruited
and phosphorylated to generate necrosomes. Then, phosphorylated MLKL moves from the cytosol to the plasma and intracellular membranes. Membrane pores develop due
to MLKL oligomerization, which leads to membrane fracture. Ultimately, necroptosis occurs.
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in the cortex at 6 h after TBI compared with the sham group, but
not at 24 h or 72 h after TBI [56]. Based on these data, RIPK3/
MLKL-mediated necroptosis is likely to partially account for neu-
ronal loss in the cortex at 6 h after TBI. However, few studies have
investigated the temporal pattern of RIPK1 expression in TBI,
which requires further study. Although TBI and SCI are capable of
sharing numerous identical pathophysiology-related characteris-
tics, the temporal patterns of RIPK1/RIPK3 and MLKL expression
between SCI and TBI differ. Kanno et al investigated the time
course of RIPK1 protein expression state inside impaired neural tis-
sue after SCI and reported that the increase in RIPK1 expression
was initiated at 24 h, peaked at 3 days, and continued for 7 days
after SCI [58]. Interestingly, Liu et al found that unlike RIPK1, the
levels of RIPK3 and MLKL protein rose markedly at 1 day but
decreased by day 3 after injury [59]. The difference in peak expres-
sion of RIPK1, RIPK3, and MLKL has attracted attention. The time
course of inflammation triggering secondary damage peaks at
approximately 3 days after SCI [60]. RIPK1, at the crossroads of
NF-jB signalling, necroptosis and apoptosis, regulates inflamma-
tory responses [61]. This function may explain why peak RIPK1
expression occurs on the third day. In addition, Wang et al reported
that while RIPK3, MLKL, and RIPK1 are required for the necrosome-
forming and necroptosis-inducing processes, RIPK3 and MLKL do
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not impact complex I/RIPK1-dependent NF-jB signalling [62].
Thus, their peak expression occurred close to the peak time of cell
death, which was on the first day. However, data related to the
temporal pattern of RIPK1/RIPK3/MLKL expression in TBI and SCI
remain unclear and require further research.

Differences in molecular target-mediated necroptosis and potential
treatment strategies among cell types in CNS trauma

The common CNS physiology and responses towards injury
comprise a considerable number of cell types, such as neurons,
astrocytes, macrophages and microglia [63]. Neurons are the func-
tional units of the brain and spinal cord. Reactive astrocytes, the
dominant part of the glial scar, play important roles in CNS trauma
[64]. In addition, some scholars have reported that microglia/-
macrophages can initiate innate immune reactions, which con-
tribute to spinal cord cavity formation and enlargement [65]. As
key proteins involved in the execution of necroptosis, RIPK1 and
RIPK3 play important roles in CNS trauma [66]. Therefore, further
studies are needed to explore the occurrence of necroptosis in dif-
ferent types of cells and its contributions to various pathological
mechanisms in CNS trauma. Shao et al showed that Smurf1, a
HECT-domain E3 ubiquitin (Ub) ligase, effectively induces neu-



X. Hu, Y. Xu, H. Zhang et al. Journal of Advanced Research 40 (2022) 125–134
ronal necroptosis. Using double immunofluorescence labelling,
Smurf1 was observed in the rat brain cortex and colocalized with
RIPK1 in neurons [67]. In addition, the application of siRNAs to
knock down Smurf1 partially downregulated RIPK1 expression in
neurons. Furthermore, Smurf1 also exerts an effect on RIPK3, but
one that is not as obvious as that on RIPK1 [67]. Thus, Smurf1
may regulate neuronal necroptosis through RIPK1. Unlike neurons,
Smurf1 is rarely detected in astrocytes, which are the major com-
ponent of the glial scar. Therefore, other pathways likely exist in
astrocytes that induce necroptosis. According to Fan et al, the
inflammatory response-related genes TLR4 and myeloid differenti-
ation primary response gene 88 (MyD88) induce the necroptosis of
astrocytes [68]. In addition, after spinal cord injury, ER stress was
recently shown to induce necrosis in microglia/macrophages. The
expression of glucose-regulated protein 78 (GRP78) is upregulated
in MLKL-positive microglia/macrophages after spinal cord injury in
rats, suggesting that necrosis might be related to ER stress [69].
These results indicate that the mechanism of necroptosis initiation
may be different in the various cell types after CNS trauma.

It is necessary to target necroptosis in different single types of
cells to develop potential treatment strategies for CNS trauma. Pre-
vious studies have found therapeutic agents that suppress necrop-
tosis in different types of cells following CNS trauma [70,71]. For
example, the level of necroptosis in microglia was decreased by
charged multivesicular body protein 4b (CHMP4B), which
improved neurological function recovery and protected against cell
death after TBI [71]. Moreover, quercetin alleviated oligodendro-
cyte necroptosis and promoted neurofunctional repair following
SCI [70]. However, these studies are limited in that the effect of
necroptosis on a single type of cell was not determined. Consider-
ing agents with multiple pharmacological targets, agents may inhi-
bit necroptosis in various types of cells at the same time. To resolve
this problem, the potentially specific mechanism to initiate
necroptosis for a single type of cell should be verified in the field
of CNS trauma. Currently, it is realistic to develop therapies target-
ing several cell types that could be a promising strategy for the
treatment of CNS trauma.

MicroRNAs (miRNAs) regulating necroptosis involved in CNS trauma

MicroRNAs (miRNAs) are endogenous, small noncoding RNAs
with a length of approximately 19–22 nucleotides [72]. Since miR-
NAs were first observed in Caenorhabditis elegans [73], scholars
have discovered more than 1000 miRNA genes in the human gen-
ome through continuous advances in the maturity of sequencing
technologies [74,75]. Notably, miRNAs jointly control approxi-
mately 30% of the human genome, highlighting their probable sig-
nificance as regulators of gene expression. Importantly, miRNAs
regulate gene expression at the transcriptional level and have the
capacity to regulate particular cellular and physiological processes,
which has recently been extended to necroptotic cell death [76,77].

Recently, some studies have elucidated the mechanism by
which miRNAs regulate necroptosis. Wang et al reported that
miR-223-3p is downregulated during H2O2-induced spinal neuron
necroptosis. In addition, miR-223-3p binds to the 30-UTR of RIPK3
mRNA and negatively regulates the RIPK3 necroptotic signalling
pathway [78]. This evidence supports the hypothesis that miR-
223-3p negatively regulates necroptosis pathways. In other sys-
temic diseases, Liu et al reported that miR-155 targets RIPK1 to
inhibit cardiomyocyte necroptosis [79]. In addition, miR-181b-1
and miR-19 bind to CLYD to alleviate the necroptosis signalling
pathway during tumour progression [80,81]. Furthermore, miR-
874 has been suggested to enhance necroptosis by targeting
caspase-8, becoming a vital modulator of necroptosis spread [82].
Wang et al reported that miR-103/107 contributes to H2O2-
induced necrotic cell death by targeting FADD, but it is not
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involved in TNF-a-induced necrosis in myocardial ischaemia/
reperfusion injury [83]. As shown in the study by Jiang et al, hsa-
miR-500a-3P inhibits MLKL phosphorylation and membrane
translocation by binding to its 30-UTR and attenuates cisplatin-
induced programmed cell death and NF-jB-driven renal inflamma-
tion in tubular epithelial cells [84]. However, researchers have not
determined how miRNAs regulate other key necroptotic factors,
including RIPK3 and PGAM5. Numerous miRNAs are expressed in
the mammalian brain and spinal cord [85,86]. To date, only one
study has reported miRNAs that regulate necroptotic cell death
in CNS trauma. Nevertheless, the role of miRNAs in regulating
necroptosis targets has been widely reported in other diseases.
Therefore, the role of the miRNAs mentioned above in CNS trauma
is worthy of further study and will be a very promising area of
research.

Necroptosis involved in the regulation of apoptosis and autophagy

An increasing number of studies have reported a correlation
between apoptosis, autophagy and necroptosis. In addition, it has
been suggested that it is possible for the same cell to suffer them
all. For whether an individual cell would experience survival, apop-
tosis or necroptosis, the determining factor is the state of caspase-
8. Apoptosis can be induced by the interaction between RIPK1 and
caspase-8 [87]. In autophagic death, the JNK pathway mediates
RIPK-induced autophagic cell death after caspase-8 inhibition.
Moreover, zVAD (a short peptide that acts as a general caspase
inhibitor) can robustly induce necroptosis and prevent autophagy
through its inhibitory effect on lysosomal cathepsins, underscoring
the prosurvival function of autophagy against necroptosis [88,89].
However, it has been widely suggested that caspase-8 is a core tar-
get to activate necroptosis [31,35]. Based on the aforementioned
research, caspase-8 is emerging as a critical link between apopto-
sis, autophagy and necroptosis [90]. However, further studies are
needed to determine whether these phenomena occur in CNS
trauma. Recently, inhibition of apoptotic activation was shown to
enhance TBI-induced activation of necroptosis and autophagy
through a feedback mechanism. In addition, the application of
the specific necroptosis inhibitor necrostatin-1 suppresses autop-
hagy and apoptosis [91]. These results suggested complex crosstalk
among different types of cell death after CNS trauma. Further
research is needed to understand the relationship between differ-
ent types of cell death in CNS trauma.
Potential treatment strategies for necroptosis in CNS trauma

As a set of special proteins are considered the major molecules
involved in the necroptosis pathway, researchers have developed
highly effective inhibitors targeting these proteins. Next, the pro-
cess used to develop various inhibitors targeting necroptosis is pre-
sented, with the aim of identifying new and effective therapeutic
agents for necroptosis (Fig. 2). These findings of necroptosis inhibi-
tors will provide potential treatment strategies for CNS trauma

RIPK1 inhibitors

A particularly effective small-molecule inhibitor of necroptosis
named Nec-1 was confirmed by Degterev et al in 2005 and has
been widely applied in various diseases [15]. Subsequently, many
studies have confirmed the exact effect of Nec-1 on inhibiting
necroptosis and attenuating nerve injury [51,52]. Nec-1 binds to
the hydrophobic pocket of the carboxyl and amino lobes of the
RIPK1 kinase domain and is externally located at the ATP-binding
site [19,92]. In addition, Nec-1 was observed to exert a protective
effect on the mitochondria and the endoplasmic reticulum by



Fig. 2. Targeting necroptosis-regulated cell death for potenticaly therapeutic implications in CNS trauma. Under the stimulation of CNS trauma, complex I forms first and
leads to the formation of complex IIb. Then, complex IIb recruits and phosphorylates MLKL to form necrosomes composed of RIPK1, RIPK3, and MLKL. According to the
components of necrosomes, drugs targeting various targets have been developed to inhibit necroptosis. Nec-1 combines with RIPK1 and MLKL to inhibit necroptosis. In
addition, GSK2982772, as a novel inhibitor of RIPK1, also has a good effect on inhibiting necroptosis. GSK’872, GSK’843 and GSK’840 are the preferable inhibitors for targeting
RIPK3. Dabrafenib, another RIPK3 inhibitor, has been approved for clinical use, while the new RIPK3 inhibitor HS-1371 has great potential. There are few reports about small-
molecule inhibitors targeting MLKL; Nec-1 and NSA may be the only drugs to target MLKL.
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inhibiting the phosphorylation of the MLKL protein [52]. Mito-
chondrial dysfunction depletes cellular energy stores and subse-
quently results in death, and high endoplasmic reticulum stress
triggers suspended protein synthesis and protein unfolding or mis-
folding [93,94]. Both processes are basic mechanisms of CNS
trauma. Thus, Nec-1 exerts a protective effect on CNS trauma. In
addition to Nec-1, GSK2982772 was confirmed as an emerging
inhibitor of RIPK1 [95]. GSK2982772 binds to RIPK1, exhibiting
high kinase specificity, and displays a highly active state when it
blocks TNF-induced necroptosis. Meanwhile, GSK2982772 has
advanced to phase IIa clinical trials to treat nonneurological confu-
sion [96]. However, GSK2982772 is not blood–brain barrier perme-
able [97], which may limit its application in CNS trauma.
RIPK3 inhibitors

Recently, the phosphorylation of RIPK3 was shown to critically
alter the activation of the relevant downstream substrate MLKL
[41]. RIPK3 inhibitors have been classified into three types: ATP
mimic inhibitors that target active ATP-binding sites in kinases
located between the lobes of two catalytic regions, ATP mimic inhi-
bitors for the inactivated state, and unclassified inhibitors.
Mocarski and colleagues identified a class of specific RIPK3 inhibi-
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tors of necroptosis, such as GSK’872, GSK’843 and GSK’840 [98–
100]. Yang et al found that GSK’872 reduces the phosphorylation
of MLKL by inhibiting RIPK3 [101]. Furthermore, the B-Raf inhibitor
dabrafenib is the only type I RIPK3 inhibitor approved for clinical
use [102]. Dabrafenib decreases RIPK3 phosphorylation of MLKL,
which leads to the disruption of the interaction between RIPK3
and MLKL [103,104]. Recently, HS-1371 has been reported to be
a new type II RIPK3 inhibitor that interacts with the ATP-binding
pocket of RIPK3 [105].
MLKL inhibitors

Compared with RIPK1 and RIPK3, few effective inhibitors have
been reported to target MLKL, although the phosphorylation of
MLKL critically modulates necrosis. Therefore, finding additional
small molecules that target MLKL to prevent necroptosis is a future
goal [106]. Hildebrand and colleagues developed a small molecule
(unnamed) that retards MLKL translocation to membranes and
binds at the nucleotide binding site in the MLKL pseudokinase
domain to prevent necroptosis [107]. Moreover, necrosulfonamide
(NSA) was identified as an inhibitor of human MLKL that was
reported to bind MLKL as an affinity probe and block necroptosis
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[42]. Given that MLKL plays an essential role in the execution of
necroptosis, it may be a potential target for inhibiting necroptosis.
Conclusion and perspective

The cell death pathways responsible for the pathogenesis of
CNS trauma are complex and interlinked. According to accumulat-
ing evidence, necroptosis inhibition may exert a protective effect
on CNS trauma. Necroptosis refers to a novel type of programmed
necrosis that is induced by many different extracellular and intra-
cellular stimuli. In this review, we provide an overview of the
necroptosis signalling pathway and execution of necroptosis. We
discussed the temporal pattern of RIPK1/3 expression following
CNS trauma and focused on the peak phase of RIPK1/3 expression
during necroptosis. Notably, a slight difference was observed in the
peaks of RIPK1/3 and MLKL expression between CNS trauma. In
addition, differences in the peaks of RIPK1, RIPK3 and MLKL
expression have been detected in spinal cord injury. Thus, addi-
tional studies should be conducted to define the effects of RIPK1,
RIPK3, and MLKL on SCI based on their temporal expression pat-
terns. The occurrence of necroptosis involves not only temporal
expression patterns but also different cell types. Different molecu-
lar targets contribute to pathological mechanisms in various cell
types. Furthermore, the relationship between miRNAs and necrop-
tosis is also very interesting. We discussed the interactions of dif-
ferent miRNAs and different targets in the necroptosis signalling
pathway to inhibit necroptosis. For example, miR-223-3p directly
targets the 30-UTR of RIPK3. However, to date, only a few studies
have reported the effects of miRNAs on necroptosis in this field.
Thus, studies investigating whether circRNAs or lncRNAs affect
necroptosis, particularly in TBI and SCI, are critical. In addition,
studies investigating the crosstalk and connection between
necroptosis, apoptosis and autophagy will be important. Thus,
the relationship between different types of cell death in CNS
trauma deserves further exploration. Finally, we highlighted
agents that are likely to block this form of cell death.

Several open questions and vital points remain that will likely
guide subsequent research. First, the regulatory mechanisms of
RIPK1 and MLKL in CNS trauma are not clear. Some epigenetic
modifications, such as ubiquitination and phosphorylation, have
a primary role in the activation of the necrosome complex and cell
death induction [108]. RIPK1 self-phosphorylation at serine 166
(S166) determines the activation of RIPK3, its oligomerization
and phosphorylation, which in turn can activate MLKL [109]. In
addition, RIPK1 ubiquitination is necessary for RIPK1 to leave the
TNFR1 complex to form the necrosome [110]. These findings indi-
cate that epigenetic modifications regulate necroptotic pathways.
However, further studies are required to verify the epigenetic mod-
ifications regulating necroptosis in CNS trauma. Second, the role of
MLKL in nonnecroptotic functions following CNS trauma has not
been determined. In a model of sciatic nerve injury, MLKL was
reported to be highly expressed by myelin sheath cells to promote
breakdown and subsequent nerve regeneration [111]. It was also
found that activated MLKL accelerated demyelination in a
necroptosis-independent fashion and thereby worsened multiple
sclerosis pathology [112]. These results suggested that MLKL-
induced nonnecroptotic functions may exert neuroprotective
effects following CNS trauma, which needs further investigation.
Third, the stoichiometry of necroptotic MLKL oligomers remains
contentious, with reports of MLKL trimers [107,113,114], tramers
[115,116], hexamers [45], octamers [46], and high-order amyloids
[44]. How these findings relate to oligomers formed in cells during
necroptosis remains to be determined. The current consensus is
that oligomerization results in the formation of humanMLKL tetra-
mers and mouse MLKL trimers [117]. Undoubtedly, to fully define
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the oligomeric species of MLKL during necroptosis, new technolo-
gies that resolve oligomers both in vitro and in vivo will be essen-
tial. Many studies have been conducted on necroptosis thus far.
However, additional efforts are needed to explore necroptotic
mechanisms to achieve more efficient CNS trauma therapies.
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