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Abstract

Assessment of repetitive movements (e.g., finger tapping) is a hallmark of motor examina-

tions in several neurologic populations. These assessments are traditionally performed by a

human rater via visual inspection; however, advances in computer vision offer potential for

remote, quantitative assessment using simple video recordings. Here, we evaluated a pose

estimation approach for measurement of human movement frequency from smartphone vid-

eos. Ten healthy young participants provided videos of themselves performing five repetitive

movement tasks (finger tapping, hand open/close, hand pronation/supination, toe tapping,

leg agility) at four target frequencies (1–4 Hz). We assessed the ability of a workflow that

incorporated OpenPose (a freely available whole-body pose estimation algorithm) to esti-

mate movement frequencies by comparing against manual frame-by-frame (i.e., ground-

truth) measurements for all tasks and target frequencies using repeated measures ANOVA,

Pearson’s correlations, and intraclass correlations. Our workflow produced largely accurate

estimates of movement frequencies; only the hand open/close task showed a significant dif-

ference in the frequencies estimated by pose estimation and manual measurement (while

statistically significant, these differences were small in magnitude). All other tasks and fre-

quencies showed no significant differences between pose estimation and manual measure-

ment. Pose estimation-based detections of individual events (e.g., finger taps, hand

closures) showed strong correlations (all r>0.99) with manual detections for all tasks and fre-

quencies. In summary, our pose estimation-based workflow accurately tracked repetitive

movements in healthy adults across a range of tasks and movement frequencies. Future

work will test this approach as a fast, quantitative, video-based approach to assessment of

repetitive movements in clinical populations.

Introduction

Several neurologic conditions–including Parkinson’s disease (PD; [1]) and cerebellar disorders

[2]–impair the ability to execute repetitive movements. This has led to the inclusion of
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repetitive movements in many clinical examinations of motor function. For example, the

MDS-UPDRS (the clinical standard for motor assessment in PD) contains several items that

test repetitive movements across different tasks, including finger tapping, hand opening and

closing, hand pronation and supination, toe tapping, and leg agility [3]. These assessments

provide important insights into disease severity that influence treatment decisions and enable

tracking of disease progression over time.

Traditional assessments of repetitive movements rely on subjective clinical scales rated

by a trained clinician. For example, when performing Part III of the MDS-UPDRS [3], a

neurologist rates the performance of each repetitive movement task from 0 (no

impairment) to 4 (severe impairment) via visual assessment. Other approaches have used

research-grade equipment (e.g., motion capture systems), wearables [4, 5], and mobile

devices [6–8] to quantify performance of repetitive movements. However, motion capture

systems are inaccessible to many clinicians and researchers, and wearable- or smart-

phone-based approaches typically assess only specific movements (e.g., finger tapping).

There is a need for a rapid, low-cost approach capable of providing quantitative measure-

ment of repetitive movements across multiple extremities using equipment that is readily

accessible in the home or clinic.

Recent developments in computer vision have produced pose estimation algorithms

capable of tracking human movement with a high degree of accuracy and minimal techno-

logical requirement [9–14]. These algorithms have shown an impressive ability to track

specific features of the human body (e.g., fingers, leg joints) from digital videos recorded

by common household devices (e.g., smartphones, tablets, laptop computers). There is sig-

nificant potential for these approaches to provide rapid, automated measurement and

analysis of repetitive movements from videos recorded in the home or clinic, enabling

remote assessment that does not require a patient visit to the clinic or manual assessment

from a clinician.

In this study, we used OpenPose (a freely available human pose estimation algorithm [11,

15, 16] to measure the frequencies of repetitive upper and lower extremity movements using

smartphone videos. More specifically, we developed an analysis workflow that first used Open-

Pose to track key anatomical landmarks on the human body (i.e., “keypoints”) from digital

videos containing only a single person in the field of view performing a series of prescribed

tasks that are common to neurological motor examinations (finger tapping, hand opening and

closing, hand pronation and supination, toe tapping, and heel tapping). We then developed

post-processing software to input the OpenPose keypoints and measure the frequencies of

each of these repetitive movement tasks.

Previous studies have used OpenPose to study human gait [17–21] and quantify tremor

severity in persons with PD [22]. Other pose estimation algorithms have been used to measure

the degree of levodopa-induced dyskinesias [23] and finger tapping frequency in PD that cor-

related well with clinical ratings [24, 25]. While emerging evidence suggests significant poten-

tial for tracking repetitive movements using video-based pose estimation approaches, here we

addressed two important unmet needs: 1) testing across a range of clinically relevant tasks

spanning the upper and lower extremities, and 2) assessment of accuracy via validation against

ground-truth measurement. Based on our prior work [26], we expected good agreement

between the OpenPose estimates of movement frequency and ground-truth measurement. We

also share our perspectives regarding limitations, potential problems, and suggestions for suc-

cessful analysis. All code used for this project is freely available at https://github.com/

RyanRoemmich/PoseEstimationApplications.
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Materials and methods

Participants

We recruited ten healthy adults (four male, six female, age (mean ± standard deviation): 28 ± 4

years) to participate. All participants provided written informed consent in accordance with

the Johns Hopkins University School of Medicine Institutional Review Board.

Data collection

Participants provided digital videos of themselves (using their own recording device) perform-

ing five repetitive movement tasks included on the MDS-UPDRS [3]: finger tapping, hand

opening and closing, hand pronation and supination, toe tapping, and leg agility (i.e., heel tap-

ping). We asked participants to perform each task at four target frequencies (1 Hz, 2 Hz, 3 Hz,

and 4 Hz) using an online metronome for approximately 10 seconds each. We tested across

the different frequencies because the movement frequencies exhibited by patients with neuro-

logic conditions vary widely, and we considered it important to test across a spectrum of fre-

quencies that may be encountered in these populations. Each participant received instructions

for filming the videos and we provided example videos of each task to promote uniformity in

the recordings. The instructions were as follows:

Setup:

• Sit in a chair with knees pointing forward and feet flat on the floor (with the exception of

hand pronation/supination, where we asked participants to record sagittal views–“record

from the side”–of themselves performing the movement).

• Make sure hand is held to the side when performing hand and finger tasks, not in front of

the body.

• The phone should be approximately five feet from the participant and at their eye level

when filming.

• Capture the whole body.

• Film with a smartphone camera at standard sampling rate (approximately 30 frames/sec).

• Use an online metronome to pace movement frequency and try to match the metronome

as closely as possible.

Video recording:

• Record approximately 10 seconds of the participant performing each of the following

tasks with one hand at 4 different speeds (1–4 Hz).

• Finger tapping: tap index finger to the thumb (opening as big as possible between taps).

• Hand opening and closing: fully open and close the hand repeatedly (opening as big as

possible between hand closures).

• Hand pronation and supination: alternate pronating and supinating the hand (pronate on

one beat, supinate on the next).

• Toe tapping: keep the heel planted and tap the toe to the ground.

• Leg agility: lift the entire foot and strike the ground with heel.
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Pose estimation

Our data analysis workflow is shown in Fig 1. First, we analyzed video recordings in OpenPose

using a Python environment to obtain two-dimensional pixel coordinates of OpenPose key-

points. Importantly, we used OpenPose in an “out of the box” manner without any modifica-

tions or additional training on specific tasks studied here. We did this because we assume that

this is the manner in which clinicians or researchers with minimal technical training will use

the algorithm. We used both the Hand [27] and BODY_25 [16] keypoint models simulta-

neously. The Hand keypoint model tracks 21 keypoints on each hand: one on each tip and all

three joints per finger, and one at the base of the hand. The BODY_25 keypoint model tracks

keypoints at the nose, neck, midhip, and bilateral eyes, ears, shoulders, elbows, wrists, hips,

knees, ankles, heels, big toes, and small toes. The outputs of the OpenPose analyses yielded: 1)

JSON files containing frame-by-frame pixel coordinates of each keypoint, and 2) an output

video file in which a skeleton figure representing the detected keypoints is overlaid onto the

original video recording. We then analyzed the JSON files using custom MATLAB (Math-

works, Natick, MA) software to calculate movement frequency (detailed below).

Calculation of movement frequency

We performed several steps to calculate movement frequencies from the JSON files. First, we

filled gaps in all keypoint trajectories (i.e., frames where OpenPose did not detect all keypoints

due to occlusions, difficulty identifying specific body landmarks, etc) using linear interpola-

tion. Second, we filtered keypoint trajectories using a zero-lag 4th order low-pass Butterworth

filter with a cut-off frequency at 5 Hz. Third, we identified events (finger taps, hand closures,

hand pronations/supinations, toe taps, heel taps) using the following criteria:

a. Finger tapping and hand opening and closing tasks: local minima in the distance between

index finger and thumb keypoints.

b. Hand pronation and supination: local maxima (thumb up, supination) and minima (thumb

down, pronation).

Fig 1. We used a three-step workflow to measure movement frequency from smartphone videos. Participants first provided a video recording of

themselves performing the task of interest (we assessed five different tasks in this study: finger tapping, hand opening/closing, hand pronation/

supination, toe tapping, and leg agility or heel tapping). Next, we used OpenPose to estimate body and hand keypoint locations on each video. We

then developed post-processing software to calculate movement frequency using the OpenPose outputs.

https://doi.org/10.1371/journal.pone.0261450.g001
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c. Toe tapping: local minima of the big toe keypoint.

d. Leg agility: local minima of the heel keypoint.

Finally, we calculated movement frequency from the identified event times.

Manual ground-truth identification of event times

We obtained a ground-truth benchmark by manually identifying event times through frame-

by-frame visual inspection for all videos. We used the same criteria listed above to identify

events manually. From these manually-identified event times, we calculated ground-truth

movement frequency.

Statistical analysis

We compared movement frequencies between methods and among target frequencies using a

2x4 method (pose estimation, manual) x target frequency (1, 2, 3, 4 Hz) repeated measures

ANOVA. All events identified by the pose estimation and manual methods were included in

calculations of movement frequencies.

For all correlational analyses, we isolated events that had been detected by both the pose

estimation and manual identification methods (the overwhelming majority of events were

detected by both methods, as described in the Results section below). To do this, we first com-

pared the number of events identified by both methods in each individual video. If the num-

bers of events were not equal between the two methods (i.e., either the pose estimation

approach identified more events than the manual identification or vice versa), we discarded

the events from the method with more detected events that had video timestamps (“event

times”) most dissimilar to any event time detected by the other method until the number of

detected events were equivalent in both methods. Most often, this meant that the pose estima-

tion approach detected (or failed to detect) an additional event at the beginning or end of the

trial, and these events that were not detected by both methods were then discarded from the

correlational analyses. We also observed a few trials where both methods detected the same

number of events, but one method had detected an additional event at the beginning of the

trial and the other an additional event at the end of the trial; in this case, we discarded both

unmatched events. From the matched events, we calculated Pearson correlation coefficients

(r) and intra-class correlation coefficients (ICCC-1 and ICCA-1) to assess correlations (r), con-

sistency (ICCC-1) and agreement (ICCA-1) between event time estimates by our pose estima-

tion approach and those identified manually. We used an alpha level of 0.05 for all analyses

and performed post-hoc pairwise comparisons with Bonferroni corrections where

appropriate.

Results

Finger tapping

Repeated measures ANOVA revealed a significant main effect of target frequency (F(3,27) =

416.31, p<0.001) but no significant main effect of method (F(1,9) = 1.43, p = 0.26) or target

frequency x method interaction (F(3,27) = 0.97, p = 0.42) on frequency of finger tapping (Fig

2A). As expected, post-hoc analyses revealed significant differences in movement frequency

between each pair of target frequencies (all p<0.001). This confirmed that participants

changed their tapping frequency in accordance with the metronome-paced target frequencies,

and these changes were similar in the pose estimation and ground-truth measurements.
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Across all trials, our pose estimation approach identified 993 finger taps and manual identi-

fication detected 1002 finger taps across all participants and trials; of these, there were 986

common finger taps detected by both methods. Distributions of errors between the pose esti-

mation and manual detections of each finger tap (i.e., time of manually-detected finger tap

minus time of pose estimation-detected finger tap) for all taps detected by both methods are

shown in Fig 2B. Fig 2C shows associations between manually-detected finger tap times and

pose estimation-detected finger tap times for target frequencies of 1 Hz, 2 Hz, 3 Hz, and 4 Hz.

Full statistical results for the correlational analyses of the pose estimation-detected and manu-

ally-detected finger tap times are shown in Table 1.

Hand opening and closing

Repeated measures ANOVA revealed a significant main effect of target frequency (F(3,27) =

1032.07, p<0.001), a significant main effect of method (F(1,9) = 9.08, p = 0.02), and a

Fig 2. A) Representative example of stillframes from an OpenPose output video of a participant performing the finger tapping task (left) and violin plots showing

comparisons of individual participant mean finger tapping frequencies measured manually (“actual”, blue) and using our pose estimation workflow (“OpenPose”, red)

across all four target frequencies (right). B) Violin plots showing event time errors (i.e., differences between video timestamps of finger taps as measured manually and

using pose estimation) for each individual finger tap across all participants. In Fig 2A and 2B, white circles indicate group mean values, shaded circles indicate individual

data points. These conventions are consistent across Figs 2–6. C) Scatter plots showing relationships between the video timestamps of all individual finger taps across all

participants as measured manually (x-axis) or using our pose estimation workflow (y-axis) across all four target frequencies. Relevant correlation coefficients are included

in the Results section of the text for Figs 2–6.

https://doi.org/10.1371/journal.pone.0261450.g002

Table 1. Statistical results for correlational analyses of pose estimation vs. manual identification of finger tapping.

r p ICCC-1 p ICCA-1 p
1 Hz 1.00 <0.001 1.00 <0.001 1.00 <0.001

2 Hz 1.00 <0.001 1.00 <0.001 1.00 <0.001

3 Hz 1.00 <0.001 1.00 <0.001 1.00 <0.001

4 Hz 1.00 <0.001 1.00 <0.001 1.00 <0.001

https://doi.org/10.1371/journal.pone.0261450.t001
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significant target frequency x method interaction (F(3,27) = 4.70, p = 0.01) on frequency of

hand opening and closing (Fig 3A). Post-hoc analyses revealed significant differences in move-

ment frequency between each pair of target frequencies (all p<0.001). The movement frequen-

cies estimated by the pose estimation approach were significantly slower than the frequencies

identified manually at target frequencies of 2 Hz, 3 Hz, and 4 Hz (all p<0.02); however, the

magnitudes of these differences were very small (mean difference between methods no larger

than 0.03 Hz for any target frequency).

Across all trials, our pose estimation approach identified 960 hand closures and manual

identification detected 973 hand closures across all participants and trials; of these, there were

955 hand closures detected by both methods. Distributions of errors between the pose estima-

tion and manual detections of each hand closure detected by both methods are shown in Fig

3B. Fig 3C shows associations between manually-detected hand closure times and pose estima-

tion-detected hand closure times for target frequencies of 1 Hz, 2 Hz, 3 Hz, and 4 Hz. Full sta-

tistical results for the correlational analyses of the pose estimation-detected and manually-

detected hand closure times are shown in Table 2.

Hand pronation and supination

Repeated measures ANOVA revealed a significant main effect of target frequency (F(3,27) =

656.54, p<0.001), but no significant main effect of method (F(1,9) = 0.33, p = 0.58) or target

frequency x method interaction (F(3,27) = 2.15, p = 0.12) on frequency of alternating hand

pronation and supination (Fig 4A). Post-hoc analyses revealed significant differences in move-

ment frequency between each pair of target frequencies (all p<0.001).

Fig 3. A) Representative example of stillframes from an OpenPose output video of a participant performing the hand opening and closing task (left) and violin plots

showing comparisons of individual participant mean hand closure frequencies measured manually (“actual”, blue) and using our pose estimation workflow (“OpenPose”,

red) across all four target frequencies (right). B) Violin plots showing event time errors (i.e., differences between video timestamps of hand closures as measured manually

and using pose estimation) for each individual hand closure across all participants. C) Scatter plots showing relationships between the video timestamps of all individual

hand closures across all participants as measured manually (x-axis) or using our pose estimation workflow (y-axis) across all four target frequencies.

https://doi.org/10.1371/journal.pone.0261450.g003
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Across all trials, our pose estimation approach identified 974 hand pronation or supination

events and manual identification detected 991 hand pronation or supination events across all par-

ticipants and trials; of these, there were 958 common hand pronation or supination events

detected by both methods. Distributions of errors between the pose estimation and manual detec-

tions of each hand pronation or supination event detected by both methods are shown in Fig 4B.

Fig 4C shows associations between manually-detected hand pronation or supination event times

and pose estimation-detected hand pronation or supination event times for target frequencies of

1 Hz, 2 Hz, 3 Hz, and 4 Hz. Full statistical results for the correlational analyses of the pose estima-

tion-detected and manually-detected hand pronation/supination times are shown in Table 3.

Toe tapping

Repeated measures ANOVA revealed a significant main effect of target frequency (F(3,27) =

794.24, p<0.001), but no significant main effect of method (F(1,9) = 4.86, p = 0.06) or target

Table 2. Statistical results for correlational analyses of pose estimation vs. manual identification of hand closures.

r p ICCC-1 p ICCA-1 p
1 Hz 1.00 <0.001 1.00 <0.001 1.00 <0.001

2 Hz 1.00 <0.001 1.00 <0.001 1.00 <0.001

3 Hz 1.00 <0.001 1.00 <0.001 1.00 <0.001

4 Hz 1.00 <0.001 1.00 <0.001 1.00 <0.001

https://doi.org/10.1371/journal.pone.0261450.t002

Fig 4. A) Representative example of stillframes from an OpenPose output video of a participant performing the hand pronation/supination task (left) and violin plots

showing comparisons of individual participant mean hand pronation/supination frequencies measured manually (“actual”, blue) and using our pose estimation workflow

(“OpenPose”, red) across all four target frequencies (right). B) Violin plots showing event time errors (i.e., differences between video timestamps of hand pronation or

supination events as measured manually and using pose estimation) for each individual hand pronation or supination event across all participants. C) Scatter plots

showing relationships between the video timestamps of all individual hand pronation or supination events across all participants as measured manually (x-axis) or using

our pose estimation workflow (y-axis) across all four target frequencies.

https://doi.org/10.1371/journal.pone.0261450.g004

PLOS ONE Measurement of movement frequency using pose estimation

PLOS ONE | https://doi.org/10.1371/journal.pone.0261450 December 20, 2021 8 / 15

https://doi.org/10.1371/journal.pone.0261450.t002
https://doi.org/10.1371/journal.pone.0261450.g004
https://doi.org/10.1371/journal.pone.0261450


frequency x method interaction (F(3,27) = 2.18, p = 0.11) on frequency of toe tapping (Fig

5A). Post-hoc analyses revealed significant differences in movement frequency between each

pair of target frequencies (all p<0.001).

Across all trials, our pose estimation approach identified 989 toe taps and manual identifica-

tion detected 1003 toe taps across all participants and trials; of these, there were 969 common toe

taps detected by both methods. Distributions of errors between the pose estimation and manual

detections of each toe tap detected by both methods are shown in Fig 5B. Fig 5C shows associa-

tions between manually-detected toe tap times and pose estimation-detected toe tap times for tar-

get frequencies of 1 Hz, 2 Hz, 3 Hz, and 4 Hz. Full statistical results for the correlational analyses

of the pose estimation-detected and manually-detected toe tap times are shown in Table 4.

Leg agility

Repeated measures ANOVA revealed a significant main effect of target frequency (F(3,27) =

2005.84, p<0.001), but no significant main effect of method (F(1,9) = 2.66, p = 0.14) or target

Table 3. Statistical results for correlational analyses of pose estimation vs. manual identification of hand pronation/supination.

r p ICCC-1 p ICCA-1 p
1 Hz 1.00 <0.001 1.00 <0.001 1.00 <0.001

2 Hz 1.00 <0.001 1.00 <0.001 1.00 <0.001

3 Hz 1.00 <0.001 1.00 <0.001 1.00 <0.001

4 Hz 1.00 <0.001 1.00 <0.001 1.00 <0.001

https://doi.org/10.1371/journal.pone.0261450.t003

Fig 5. A) Representative example of stillframes from an OpenPose output video of a participant performing the toe tapping task (left) and violin plots showing

comparisons of individual participant mean toe tapping frequencies measured manually (“actual”, blue) and using our pose estimation workflow (“OpenPose”, red) across

all four target frequencies (right). B) Violin plots showing event time errors (i.e., differences between video timestamps of toe taps as measured manually and using pose

estimation) for each individual toe tap across all participants. C) Scatter plots showing relationships between the video timestamps of all individual toe taps across all

participants as measured manually (x-axis) or using our pose estimation workflow (y-axis) across all four target frequencies.

https://doi.org/10.1371/journal.pone.0261450.g005
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frequency x method interaction (F(3,27) = 1.69, p = 0.19) on frequency of heel tapping (Fig

6A). Post-hoc analyses revealed significant differences in movement frequency between each

pair of target frequencies (all p<0.001).

Across all trials, our pose estimation approach identified 1009 heel taps and manual identifica-

tion detected 1001 heel taps across all participants and trials; of these, there were 996 common heel

taps detected by both methods. Distributions of errors between the pose estimation and manual

detections of each heel tap detected by both methods are shown in Fig 6B. Fig 6C shows associa-

tions between manually-detected heel tap times and pose estimation-detected heel tap times for

target frequencies of 1 Hz, 2 Hz, 3 Hz, and 4 Hz. Full statistical results for the correlational analyses

of the pose estimation-detected and manually-detected heel tap times are shown in Table 5.

Discussion

In this study, we demonstrated that outputs of video-based pose estimation can be used to

measure movement frequency across upper and lower extremity tasks in healthy adults. We

Table 4. Statistical results for correlational analyses of pose estimation vs. manual identification of toe tapping.

r p ICCC-1 p ICCA-1 p
1 Hz 1.00 <0.001 1.00 <0.001 1.00 <0.001

2 Hz 1.00 <0.001 1.00 <0.001 1.00 <0.001

3 Hz 1.00 <0.001 1.00 <0.001 1.00 <0.001

4 Hz 1.00 <0.001 1.00 <0.001 1.00 <0.001

https://doi.org/10.1371/journal.pone.0261450.t004

Fig 6. A) Representative example of stillframes from an OpenPose output video of a participant performing the leg agility (i.e., heel tapping) task (left) and violin plots

showing comparisons of individual participant mean heel tapping frequencies measured manually (“actual”, blue) and using our pose estimation workflow (“OpenPose”,

red) across all four target frequencies (right). B) Violin plots showing event time errors (i.e., differences between video timestamps of heel taps as measured manually and

using pose estimation) for each individual heel tap across all participants. C) Scatter plots showing relationships between the video timestamps of all individual heel taps

across all participants as measured manually (x-axis) or using our pose estimation workflow (y-axis) across all four target frequencies.

https://doi.org/10.1371/journal.pone.0261450.g006
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used the pretrained human network included in the OpenPose demo to track the movements

of healthy adults as they performed five different repetitive movement tasks (finger tapping,

hand opening and closing, hand pronation and supination, toe tapping, and leg agility) at tar-

get frequencies spanning 1–4 Hz. We observed that our analysis workflow accurately detected

movement events (e.g., finger taps, hand closures) and estimated movement frequencies that

closely agreed with ground-truth measurements derived from manual inspection across all

tasks and frequencies. Our results demonstrate that pose estimation can be used as a fast, inex-

pensive, video-based approach for quantitatively measuring human movement frequencies

across upper and lower extremity tasks.

Interest in pose estimation has increased rapidly in the machine learning and neuroscience

communities [9–14, 28]; however, clinical applications in humans are limited [18, 22–24, 29].

The pros and cons of using currently available pose estimation algorithms for measurement of

human movement have been discussed at length [30], and we will discuss our own impressions

and suggestions below. Despite current limitations, this study and our prior work [26] have

shown promising results when comparing pose estimation outputs to ground-truth measure-

ments of clinically relevant movement parameters. We anticipate that the accuracy of human

pose estimation algorithms will continue to improve, and we offer that this emerging technol-

ogy has significant potential for versatile, quantitative, remote assessment of human motor

function.

The repetitive movement tasks included in this study were selected because they are used in

the MDS-UPDRS [3] to assess bradykinesia of the upper and lower extremities in persons with

PD. This study is intended to be a preliminary step toward development of a quantitative,

comprehensive, video-based approach for assessment of bradykinesia of the upper and lower

extremities in persons with PD, and future work will be needed to assess the accuracy of move-

ment frequency estimation in patient populations. Moreover, applications for PD in particular

will need to expand upon our workflow to incorporate assessments of movement amplitude in

addition to frequency.

To calculate movement frequencies, we detected event times manually (ground-truth) and

using OpenPose keypoint trajectories. Across tasks, we tended to observe event time errors

(i.e., differences between manual and pose estimation detections) of 1–2 video frames on aver-

age. This suggests a small systematic bias in event detection between the two methods. How-

ever, we note that movement frequency can be estimated accurately since a phase shift (bias in

event times) will preserve the true frequency despite differences in when the event times are

detected. This is illustrated from our results demonstrating that OpenPose estimated move-

ment frequencies well across a repertoire of motor tasks.

Other novel techniques that rely on wearables and mobile devices have been proposed to

quantify performance of repetitive movement [4–8]. While we show here that movement fre-

quencies of tasks included in Part III of the MDS-UPDRS can be accurately obtained using

video-based pose estimation in healthy adults, we did not test this approach against other

device-based quantification methods. Indeed, other measurement devices may offer advan-

tages that are difficult to quantify with our method. For example, wearable inertial

Table 5. Statistical results for correlational analyses of pose estimation vs. manual identification of heel tapping.

r p ICCC-1 p ICCA-1 p
1 Hz 1.00 <0.001 1.00 <0.001 1.00 <0.001

2 Hz 1.00 <0.001 1.00 <0.001 1.00 <0.001

3 Hz 1.00 <0.001 1.00 <0.001 1.00 <0.001

4 Hz 1.00 <0.001 1.00 <0.001 1.00 <0.001

https://doi.org/10.1371/journal.pone.0261450.t005
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measurement units (IMUs) may be more appropriate for free-living monitoring over longer

durations. It is possible that different approaches could be integrated into a more comprehen-

sive approach using different types of sensors to track various movement characteristics in PD.

For quantitative information on repetitive movement in PD for clinical use, we propose that

pose estimation may be favorable due to its ease of use, computational simplicity, and demon-

strated accuracy.

We also found that our approach was quite versatile, as successful analysis of videos was

achieved by variable methods of self-recording by participants, in variable environments, and

with variable recording devices. Some participants placed a phone on a stable surface at the

desired distance and height (as described in methods) and self-recorded without the assistance

of another person. Others asked a family member or friend to record them according to these

same guidelines, and both methods produced successful analyses. Additionally, participants

recorded the videos in various locations and used their personal smartphones (the model var-

ied among participants), and successful analyses were achieved for all participants. This under-

scores a significant advantage that this technique could have in clinical practice: all persons

with a smartphone or tablet can likely record videos that could be successfully analyzed.

We did encounter a few difficulties using our approach and offer some potential solutions

below. First, we chose to film the entire body and use both the OpenPose BODY_25 and Hand

keypoint models because, in preliminary trials, this produced better hand keypoint detection than

simply filming the hand and using the Hand keypoint model alone. Second, filming hand prona-

tion/supination from the frontal plane (i.e., participant directly facing the camera with arms

extended directly toward the camera) caused difficulty with consistent hand keypoint detection

during pilot data collection. To address this issue, we asked participants to film all hand prona-

tion/supination tasks in the sagittal plane (“from the side”). We found that this significantly

improved hand keypoint tracking. A third observation was that, during finger tapping and hand

opening and closing tasks, we achieved better tracking when the participant held the hand to the

side of the body rather than extended in front of the torso (due to less overlap of the body key-

point tags with the hand keypoints). Finally, we observed that some postures (e.g., sitting with legs

crossed) occasionally caused difficulty with BODY_25 keypoint tracking; therefore, we instructed

participants to sit with “knees pointing forward and feet flat on the floor”.

Limitations

We acknowledge several limitations of this study. First, we studied only ten healthy partici-

pants and did not include participants with any neurologic conditions. Therefore, the efficacy

of this approach in clinical populations has yet to be determined, and further testing will be

necessary before this approach should be considered valid for use in patients. Second, we used

OpenPose exclusively for our video-based pose estimation and did not contrast different pose

estimation algorithms; it is possible that other algorithms may outperform OpenPose in track-

ing of specific landmarks (e.g., finger landmarks). Third, we identified event times manually

from visual inspection of the videos and did not use any optical motion capture techniques to

track the movements with higher resolution. A comparison against optical motion capture

may provide higher resolution into the accuracy of the current approach. Finally, we only

included input videos where a single person was included in the field of view. The current

approach is not designed for multi-person detection or tracking.

Conclusions

In this study, we used a pose estimation approach for fast, quantitative measurement of

movement frequency during several upper and lower extremity tasks that are commonly
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included on neurological examinations. We found that this approach provided largely

accurate identifications of event times and estimations of movement frequencies when

compared to ground-truth measurements. Future work will aim to establish similar valid-

ity in clinical populations.
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