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Abstract

Norwalk virus and human papilloma virus, two viruses that infect humans at mucosal surfaces, have been found capable of
rapidly penetrating human mucus secretions. Viral vectors for gene therapy of Cystic Fibrosis (CF) must similarly penetrate
purulent lung airway mucus (sputum) to deliver DNA to airway epithelial cells. However, surprisingly little is known about
the rates at which gene delivery vehicles penetrate sputum, including viral vectors used in clinical trials for CF gene therapy.
We find that sputum spontaneously expectorated by CF patients efficiently traps two viral vectors commonly used in CF
gene therapy trials, adenovirus (d,80 nm) and adeno-associated virus (AAV serotype 5; d,20 nm), leading to average
effective diffusivities that are ,3,000-fold and 12,000-fold slower than their theoretical speeds in water, respectively. Both
viral vectors are slowed by adhesion, as engineered muco-inert nanoparticles with diameters as large as 200 nm penetrate
the same sputum samples at rates only ,40-fold reduced compared to in pure water. A limited fraction of AAV exhibit
sufficiently fast mobility to penetrate physiologically thick sputum layers, likely because of the lower viscous drag and
smaller surface area for adhesion to sputum constituents. Nevertheless, poor penetration of CF sputum is likely a major
contributor to the ineffectiveness of viral vector based gene therapy in the lungs of CF patients observed to date.
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Introduction

Nearly 20 years of clinical and laboratory research has thus far

failed to realize successful gene therapy for cystic fibrosis (CF)

[1,2]. Viral gene vectors have dominated gene therapy efforts for

CF, with adenovirus (AdV) and adeno-associated virus (AAV)

representing two of the most widely tested systems to date [1,2].

Although significant gene transfer has been observed for AdV and

AAV vectors in cell lines and in a variety of animal models [3–5],

neither vector has provided sufficient therapeutic end points in CF

patients. Poor gene transfer has been attributed primarily to

limited cellular uptake across the apical membrane of the lung

airways, unproductive intracellular trafficking, vector toxicity, and

immunological barriers [6].

We reasoned the CF sputum is a largely overlooked bottleneck

that may limit gene therapy directed to the airways of CF patients.

CF sputum possesses a bulk viscosity as high as 104–105 -fold

greater than that of water at low shear [7,8], and, thus, may

physically exclude gene vectors from reaching epithelial cells.

Although some viruses that infect mucosal surfaces (e.g. human

papilloma virus and Norwalk virus) diffuse through human

ovulatory cervical mucus as fast as through water [9], we recently

found that other viruses (e.g. HIV and Herpes Simplex Virus) can

be extensively trapped in non-ovulatory human cervicovaginal

mucus collected from donors with healthy vaginal flora [10,11].

Little is known about the ability of viral gene carriers commonly

used in humans to penetrate CF sputum.

To investigate whether CF airway sputum serves as a transport

barrier to viral vectors most commonly used in clinical trials, we

performed high resolution multiple particle tracking (MPT)

[12,13] on both AdV and AAV serotype 5 (AAV5) in fresh,

undiluted purulent sputum expectorated by CF patients. Although

the average mesh spacing in purulent CF sputum (d ,
140650 nm; range 60–300 nm) is substantially smaller than that

in human cervicovaginal mucus (d ,340670 nm; range 50–

1800 nm), the openings are sufficiently large that both AdV (d

,80 nm) and AAV5 (d ,20 nm) should readily penetrate CF

sputum if they are not slowed by adhesive interactions with

sputum constituents [11,14].

Results and Discussion

Despite their native tropism for infecting airway cells, the

diffusion of both AdV and AAV5 was strongly hindered in five of

five independent human sputum samples. The highly constrained

virus trajectories (Figure 1A & 1B) were similar to uncoated
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200 nm polystyrene (PS) beads that are strongly immobilized in

sputum (Figure 1C). We also tested 200 nm PS beads that were

densely coated with low MW polyethylene glycol (PS-PEG), which

we previously found to exhibit minimal adhesion to human mucus

and CF sputum [11,12,14]. The PS-PEG particles exhibited traces

spanning distances far larger than their diameters over the same

duration in the same sputum samples (Figure 1D). We quantified

the translational motions of particles and viruses by their time-

scale dependent ensemble mean squared displacements

(,MSD.). The ensemble-averaged ,MSD. for AdV, AAV5

and muco-adhesive PS beads were all smaller than 1022 mm2

across the time scales measured, whereas the ,MSD. value for

PS-PEG was at least 20-fold greater at a time scale of 1 s (Figure 2).

AdV and AAV5 were slowed by over 3,000 and 12,000-fold in

sputum compared to their theoretical speeds in water, respectively.

In contrast, 200 nm PS-PEG particles were only slowed 40-fold in

sputum as compared to in water. By fitting MSD vs. time scale (t)
to the equation MSD = 4D0t

a, where D0 is the time scale-

independent diffusion coefficient, an average value for a can be

obtained that provides insight into the extent of impediment to

particle motion (a= 1 for purely Brownian, unobstructed diffusion;

the lower the value of a, the more constrained the particle motion).

The average a-value of AdV and AAV5 (,0.37 for each) is

comparable to that for PS beads (,0.39) and indicative of

substantial impediment to free diffusion. In contrast, the average

a-value for PS-PEG particles was ,0.70, reflecting motions

markedly less hindered by sputum across the time scales examined.

The diffusive nature and substantially faster speeds achieved with

muco-inert synthetic particles (d,200 nm; roughly 2.5 times

larger than AdV and nearly 10 times larger than AAV5), and the

markedly larger average pore size for CF sputum compared to the

size of both viral vectors, suggest that the hindered diffusion of

adenovirus and AAV5 cannot be attributed to steric hindrance

from a dense sputum mesh or to the high bulk viscoelasticity of CF

sputum. Instead, both viral vectors are likely trapped in sputum by

adhesion, and the small and hindered motions for AdV and AAV5

likely reflects, in part, thermal motions of mucin fibers to which the

viruses are bound.

Despite the slow ensemble averaged virus penetration speeds,

there may exist fast moving ‘outlier’ virions within the sample

capable of rapidly penetrating the sputum layer and, thus,

mediating gene transfer. To evaluate the effectiveness of the

sputum barrier, it is thus essential to measure the transport rates of

all individual viral particles and, in particular, the speeds of the

most rapidly moving fractions. The use of MPT allowed collection

of quantitative data on the transport of individual particles, data

that would otherwise be unavailable with ensemble methods such

as FRAP. We plotted the distribution of the logarithms of

individual particle effective diffusivities (Deff) at a time scale of 1 s

(Figure 3). Over 30% of the 200 nm PS-PEG particles exhibited

Deff values greater than 0.1 mm/sec2, whereas only 0.4% and 0%

of AdV and PS particles, respectively, exhibited such speeds

(Figure 3). AAV5 had a higher fraction of faster moving particles,

with 9% of virions displaying speeds greater than 0.1 mm/sec2. We

used a Monte Carlo method that sorts the transport modes of

particles based on their time-scale independent effective diffusion

coefficients [12,15–17], and found that over 98% of AdV and 90%

of AAV were classified as either hindered or immobile, in good

agreement with the distribution of effective diffusivities (Figure 4).

It is not apparent whether the fast moving diffusive population of

AAV5 represents a phenotypically unique subset of virions due to

inherent vector packaging differences between individual virions,

as the ratio of genomic particles to infective particles of AAV

preparations can be as high as 200–10,000 [18]. It is unlikely that

the differences in viral mobility can be attributed to the

heterogeneity of the sputum microstructure, since the smallest

pores present in CF sputum (range: 60–300 nm [14]) are

substantially larger than the size of an AAV.

Based on our MSD measurements at short time scales, we used

Fick’s second law to estimate the fraction of AdV and AAV5 that

may penetrate a sputum layer of a given thickness over time

(Figure 5A). Although the thickness of CF sputum coating airways

epithelial cells varies from patient to patient, by location within the

respiratory tract, and likely depends on disease progression, most

estimates are in the range of 10–55 mm [19–21]. Assuming the

sputum layer to be 10 mm thick, only 0.4 and 2.7% of AdV and

AAV5 are expected to penetrate after one hour, respectively

(Figure 5B). In contrast, roughly 20% of the PS-PEG particles may

penetrate the sputum layer over the same duration. If the sputum

layer were 55 mm thick, we predict only 0.2% of AdV and 0.7% of

AAV5 would be capable of penetrating within one hour, as

compared to nearly 40% of PS-PEG particles.

While this analysis provides insight into the extent sputum may

serve as a barrier to viral vectors, the fraction of vectors that can

mediate gene transfer will likely be much smaller than this

estimate. Upon reaching the epithelial cells, the glycocalyx and the

paucity of receptors on the apical membrane further limit cell

entry [6,22]. The efficiency of AAV entry into unpolarized cells

was 13% [23] and likely even lower for polarized epithelium [24].

After endocytosis, numerous potentially rate-limiting intracellular

events must also be overcome for successful transduction [25,26].

Nevertheless, the limited gene carrier penetration observed here in

purulent CF sputum helps to explain the very poor gene transfer

observed with AAV in the human airways as compared to human

Figure 1. Sample 20 s trajectories. Representative trajectories of (A) Adenovirus (Adv), (B) AAV5, (C) muco-adhesive PS control nanoparticles and
(D) muco-inert control PS-PEG nanoparticles. All trajectories have MSD values within one standard deviation of the ensemble average.
doi:10.1371/journal.pone.0019919.g001
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nares, since CF sputum in the lung likely constitutes a far more

tenacious barrier than sputum in human nares or mucus in the

lungs of other animals [27,28]. Previously, aerosol doses as high as

2.561010 infectious adenovirus (AdV) were administered to CF

patients, but #2.4% of airway cells were shown to contain nuclear

localized vector DNA, as estimated by fluorescence in situ

hybridization experiments [29]. A major Phase II clinical trial

utilizing AAV was also recently dropped due to inadequate

efficacy, even though efficient gene transfer was evident in both

rabbits and monkeys [30], as well as in the maxillary sinuses of

humans [31].

The extracellular fluids in the lung have long been considered

an integral part of a complex barrier that minimizes infections of

the airway epithelia. For example, the airway surface liquid has

both antimicrobial and antiviral properties, with high concentra-

tions of lysozyme [32] and antibodies [33]. Antibodies were found

to limit adenoviral infection of airway epithelium in both animal

models and humans [33–35]. In CF patients, proteins associated

with chronic inflammation, such as high concentrations of

uninhibited neutrophil elastase [36], may further decrease vector

efficiency. Recent studies have shown that bronchoalveolar lavage

[29] fluid from CF patients reduces both AdV and AAV2-

mediated gene transfer [37–39]. Although it has been reported

that AAV5 transduction is maintained in the presence of BAL

fluids from CF patients [40], 20% of the population harbor

neutralizing antibodies against AAV5 [41]. The results presented

here indicate that CF sputum can also act as a critical diffusional

barrier, trapping viral vectors via adhesion and, thereby, limiting

penetration. The reduced penetration speeds of viruses in sputum

are also likely to increase the probability of viral inactivation by

native protective mechanisms.

Although the specific nature of the adhesive interactions

between viral vectors and sputum constituents remain unclear, it

is likely a complex interplay of adhesion based on hydrophobic,

ionic, hydrogen-bonding and/or van der Waals interactions.

Mucins, the primary building block of CF sputum, are highly

flexible molecules that are densely glycosylated, and therefore

carry a negative charge due to the presence of carboxyl or sulfate

groups. In addition, they also contain periodic hydrophobic

‘‘naked’’ globular regions interspersed along the mucin fibers,

stabilized by multiple internal disulfide bonds [42]. Thus, mucins

may form hydrophobic, electrostatic and/or hydrogen bonding

adhesive interactions with foreign particles [43]. Elevated levels of

bacterial and endogenous DNA, as well as actin filaments from

degraded neutrophils in CF sputum, further contributes to its

dense mesh structure and increased adhesivity [43–45]. The high

density of adhesive domains, coupled with the highly flexible

nature of mucins and other macromolecules, allows formation of

multiple adhesive interactions with surfaces of foreign particles

[43]. Even if each adhesive interaction is low affinity and can be

readily disrupted by thermal energy, a large number of low-affinity

adhesive interactions with the sputum mesh can effectively

immobilize particles with permanent high viscidity [46]. Alterna-

tively, it is possible that some viruses may bind directly to specific

domains along mucins. For example, AAV4 binds to O-linked

sialic acids highly expressed on mucins in CF sputum, and

presence of MUC1 inhibited gene transfer with AAV4 [47]. While

AAV5 also binds to 2,3-linked sialic acids, AAV5 interacts with

sialic acids on N-linked carbohydrates which are rarely expressed

on mucins, and MUC1 did not block gene transfer with AAV5

[47].

Although a number of scientists initially speculated that only 6–

10% of airway epithelial cells need to have CFTR corrected to

restore Cl2 transport in an in vitro cell culture model [48], it is

now thought that a larger number of cells must be transduced for

the normalization of both Cl2 secretion and Na+ absorption [49].

While the number of cells that need to be genetically corrected for

clinical benefit remains unresolved, improved gene carrier

penetration across the sputum layer is likely a critical step towards

more reliable gene transfer in the CF lung airways. Our results

suggest that engineering muco-inert surfaces on virus-sized

Figure 3. Distribution of logarithms of individual particle
effective diffusivities (Deff). Distributions of Deff of AdV, AAV5, PS
and PS-PEG particles represented as a percentage of particles in CF
sputum at a time scale of 1 s.
doi:10.1371/journal.pone.0019919.g003

Figure 4. Transport mode distributions of AdV, AAV5, PS and
PS-PEG particles. Particles were classified into either (i) immobile or
hindered and (ii) diffusive [12,15–17]. *Statistically significant difference
when compared with AAV5, AdV or PS within the same transport mode
classification (p,0.05).
doi:10.1371/journal.pone.0019919.g004

Figure 2. Averaged ensemble mean squared displacements
,MSD. of viral vectors and synthetic particles with respect to
time scale. Data represent n = 5 independent experiments with ,100
particles tracked per experimental condition. Error bars represents
standard error. *Statistically significant difference when compared with
AAV5, AdV or PS (p,0.05).
doi:10.1371/journal.pone.0019919.g002
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particles can greatly improve vector penetration through purulent

CF sputum. One possible approach may be to engineer viral

vectors lacking specific surface epitopes that cause them to adhere

to sputum constituents. For example, Muzyczka and colleagues

have engineered AAV2 mutants without the normal heparin

sulfate binding of the virus and discovered that the mutant virus

produced a larger area of transduction upon injection in the striata

of rat brains (unpublished observations; personal communication).

This was presumably due to the increased diffusion of mutant

AAV2 in the brain. In the scenario where specific epitopes

responsible for mucoadhesion is not known, an alternative

approach may be to employ directed evolution techniques to

evolve non-mucoadhesive viruses. This approach is exemplified by

previous work that evolved AAV vectors more efficient at CFTR

delivery to human ciliated airway epithelium, or AAV vectors that

evade neutralizing antibodies [50,51].

Alternatively, vector penetration across sputum may be enhanced

with adjuvant therapies targeted at reducing the barrier properties

of CF sputum, such as bronchoalveoloar lavage (BAL) to reduce

sputum, or clinically prescribed mucolytics that degrade specific

constituents of the sputum mesh [43]. Two commonly prescribed

mucolytic agents, N-acetyl-cysteine (NAC; Mucomyst H) and

recombinant human DNAse (rhDNAse; Pulmozyme H), have been

shown to reduce the bulk rheological properties of CF sputum [52–

54]. Dawson et al previously found that rhDNase treatment failed to

improve the diffusion of polystyrene nanoparticles in CF sputum

[7], whereas Suk et al showed that NAC markedly enhanced the

diffusion of coated, muco-inert nanoparticles in CF sputum, but not

the diffusion of uncoated particles that were muco-adhesive [55]. It

remains to be determined whether these mucolytic treatments will

enhance or hinder viral vector transport.

We have demonstrated that human CF sputum is likely a critical

barrier to overcome for successful CF gene therapy. Much of the

current effort on improving AAV vectors for CF gene therapy has

focused on identifying and characterizing novel variants of AAV

with improved lung tropism. For example, AAV serotype 1 and 6

has been shown to transduce airway epithelia in mice or polarized

human cell cultures significantly more efficiently than the most

widely tested serotype, AAV2 [56,57]. Further efforts have led to the

development of AAV6.2, with a single point mutation and a 2-fold

improvement in the transduction of airway epithelium compared to

parental AAV6 vectors in both in vivo mouse studies and in vitro

human ciliated airway epithelium [58]. However, improved vector

penetration across sputum remains a critical step to reduce the viral

dosage necessary for efficient transduction in the CF lung. Our work

further suggests that high transgene expression in cell culture models

or in animal models may not be sufficient justification to initiate

clinical trials in CF patients without evidence that the same systems

are capable of penetrating sputum.

Materials and Methods

Ethics Statement
Sputum samples were collected at the Johns Hopkins Adult

Cystic Fibrosis Program conforming to ethical standards of the

Johns Hopkins Medicine Institutional Review Board. Written

informed consent was obtained from all participants.

Collection of Cystic Fibrosis Sputum
Same day samples were placed on ice upon collection, pooled

together to minimize patient-to-patient variability and used within

24 hrs. The barrier properties of collected sputum were confirmed

by tracking fluorescent polystyrene (PS) beads that undergo

polyvalent adhesive interactions with sputum [14].

Preparation of Fluorescent Viruses and Particles
Green fluorescent protein–labeled AdV was constructed and

generously provided by Dr. Curiel (University of Alabama).

AlexaFluor 488 labeled AAV5 was provided by Dr. Chiorini

(NIH). Fluorescent uncoated polystyrene nanoparticles with

carboxyl-modified surfaces (Molecular Probes, Eugene, OR) were

used as provided. PEG-coated nanoparticles were prepared by

covalently modified surface carboxyl groups with polyethylene

glycol (PEG) as described previously [12,14]. Size and f-potential

(surface charge) of nanoparticles were determined by Zetasizer

Nano ZS90 (Malvern Instruments, Southborough, MA) to confirm

dense PEG conjugation [12,59].

Multiple Particle Tracking (MPT)
Fluorescently labeled virions were added to ,30 ml of CF

sputum at minimal dilution (3% v/v), placed in a custom made

glass chamber and incubated for 30 minutes prior to microscopy.

Figure 5. Theoretical model of particle penetration across a sputum layer. (A) Schematic of the model, where particles are deposited in
airway lumen on top of the CF sputum layer and must penetrate a 10 mm sputum layer to reach the epithelial cells. The pericilliary layer is much
smaller in CF patients due to the collapsed cilia from the accumulated sputum [60]. (B) Estimated fraction of viral and synthetic particles that are
capable of penetrating a 10 mm thick layer of CF sputum over time using Fick’s second law. *Statistically significant difference when compared with
AAV5, AdV or PS (p,0.05).
doi:10.1371/journal.pone.0019919.g005
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Movies were captured on an EMCCD camera (Cascade II: 512,

Photometrics, Tucson AZ) mounted on an inverted epifluores-

cence microscope (3-I Marianas, Zeiss, Thornwood, NY) equipped

with a 100X oil-immersion objective (numerical aperture 1.3).

Movies were recorded at a temporal resolution of 66.7 ms for 20 s

using Slidebook 4.2 Advanced Imaging software (Universal

Imaging Corp. Downington, PA). Movies were analyzed with

Metamorph software (Universal Imaging Corp. Downington, PA)

to extract x, y positional data over time. Time-averaged mean

square displacement (MSD) and effective diffusivity.

(Deff) for each particle were calculated as a function of time scale

(s) [12,14]. CF sputum was assumed to be locally isotropic but not

necessarily homogeneous; thus, 2D diffusivity is equal to 3D

diffusivity (see review [13] for more details). Five independent

experiments in sputum from different days, with n,100 virions

per experiment, were performed. Average transport rates were

calculated by geometric ensemble-averaging of individual trans-

port rates. Particle transport mechanism (immobile, hindered, and

diffusive) was classified as discussed previously [12,16]. Briefly, the

mechanism of particle transport over short and long time scales

was classified based on the concept of relative change (RC) of Deff.

RC values of particles at short and long time scales were calculated

by dividing the Deff of a particle at a probed time scale by the Deff

at an earlier reference time scale. By calculating RC values for two

time regimes (i.e., short and long time scales), one can obtain the

transport mode that describes the particle transport properties

over different length and temporal scales. Particles undergoing

hindered diffusion are expected to possess RC values below that

for typical diffusive particles. Due to the random nature of

diffusion, however, the RC values of a population of purely

diffusive particles will have a certain spread around the value 1.

Therefore, a Monte Carlo simulation of 10,000 random walks was

used to predict this distribution of RC values (please see [16] for

more details). The tracking resolution was 10 nm, as determined

by tracking particles immobilized with a strong adhesive [12,13].

Particle Penetration Model
Speeds of individual particles, obtained from particle tracking

data, were projected to 2 hours using the measured ,MSD.

versus t relationship. Concentration profiles over time were

obtained by numerically integrating Fick’s second law, du/dt =

Deff d2u/dx2 with the initial condition of particles present at the

apical side (u(x,0) = 1 when x = 0, u(x,0) = 0 otherwise) and

boundary conditions of constant particle concentration at the

apical side (u(0,t) = 1) and no flux out across the epithelium (du/

dx|x = 10 = 0).

Statistical Analysis
Statistical significance between two groups was determined with

the one-sided student’s t-test under the assumption of unequal

variance. P-values less than 0.05 were considered significant.
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