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ABSTRACT
Introduction: DNA damage and resulting neoantigen formation is considered a 

mechanism for synergy between radiotherapy and PD-1/PD-L1 pathway inhibition to 
induce antitumor immune response.  We investigated neoadjuvant chemoradiotherapy 
(nCRT)-induced changes in CD8+ tumor infiltrating lymphocyte, PD-L1 and mucin 
expression in rectal cancer patients.

Materials and Methods: Tumor samples of rectal adenocarcinoma patients 
undergoing resection between 2008-2014 with (n = 62) or without (n = 17) nCRT 
treatment were collected. Sections were stained with CD8 and PD-L1 antibodies for 
immunohistochemistry.  The prevalence of CD8+ cells was recorded in the tumor, 
interface tumor and background rectal side. Image analysis was used to determine 
the density of CD8+ lymphocytes. The percentage of PD-L1 expression was manually 
counted in tumor cells (TC), tumor stroma (TS) and the invasive front (IF).  Mucin 
expression was determined as the percentage of the mucin area in the whole tumor 
area.

Results: PD-L1 expression on TCs was identified in 7.6% (6/79) of nCRT 
specimens (p = 0.33) and in none of the non-nCRT patients.  Median densities of CD8+ 
infiltrating T lymphocytes did not differ significantly between the two groups. Mucin 
expression was significantly higher in the nCRT cohort (p = 0.02). Higher neutrophil 
to lymphocytes ratio (NLR) after nCRT was associated with worse outcome (HR = 
1.04, 95% CI = 1.00–1.08). 

Conclusions: nCRT exposure was associated with a non-significant difference 
in PD-L1 expression in rectal adenocarcinoma patients, possibly due to sample size 
limitations. Further mechanistic investigations and comprehensive immune analysis 
are needed to understand nCRT-induced immunologic shift in rectal cancer and to 
expand the applicability of checkpoint inhibitors in this setting.

https://creativecommons.org/licenses/by/3.0/
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INTRODUCTION

Colorectal cancer (CRC) is the second most common 
cause of cancer death in the United States and rectal cancer 
comprise 44% of CRC [1]. Standard treatment for locally 
advanced rectal cancer (LARC) consists in neoadjuvant 
(preoperative) chemoradiotherapy (nCRT) combined with 
surgery [2], with the aim to reduce local recurrence and 
to increase the sphincter preservation rate. However, only 
a minority of patients achieve a complete response after 
nCRT treatment [3].

Antitumor activity of Radiation therapy (RT), and 
chemoradiotherapy (CRT), is thought to be partly due to 
the activation of tumor-specific adaptive immunity [4, 
5]. Upon radiation, there is upregulation of up- major 
histocompatibility complex molecules [6, 7] and release 
of tumor associated antigens [8] which in turns leads to 
release of inflammatory cytokines, especially interferon-γ 
(IFN-γ) from tumor and immune cells [9]. As results, the 
immunologic equilibrium of the tumor microenvironment 
(TME) is shifted towards a more immunogenic one 
[10, 11]. However, activation of immune suppressive 
pathways, including PD-1/PD-L1 pathway also happens, 
limiting the potential beneficial effects of this increased 
immunogenicity [12–16].

Recent preclinical studies showed that combining 
PD-1/PD-L1 inhibitors with CRT improved both 
local and systemic tumor control in animal models 
[17–20]. The synergistic effects of CRT and PD-1/
PD-L1 immunotherapy has been supported by several 
retrospective analyses in different cancer types, including 
esophageal cancer, bladder cancer, and lung cancer also 
support [14, 21, 22]. However, the role of nCRT to interact 
synergistically with for immune checkpoint inhibitor 
treatment to improve tumor control in rectal cancer remain 
uncertain. Additionally, controversies exist regarding the 
prognostic value of PD-L1 expression in rectal cancer. 
The aim of this study was to evaluate nCRT-induced 
alterations in the TME of post-CRT resected specimens of 
rectal cancer, with a particular focus on PD-L1 expression 
and the density of CD8+ tumor-infiltrating lymphocytes 
(TILs). We used rectal cancer cases where nCRT was 
not delivered as control cases. We also examined the 
densities of CD8+TILs and PD-L1 expression on the 
basis of their localization. Finally, we aimed to analyze 
mucin expression within the tumor, as mucins might play 
an important role in inflammation and immune responses. 

RESULTS 

Clinicopathologic characteristics

From 2008 and 2014, 79 patients with rectal 
adenocarcinoma were included in this analysis who 
were treated with surgery with or without nCRT at the 
Johns Hopkins Hospital and had resection specimens 

available for analysis. Baseline patient and tumor-related 
characteristics of the study group are given in Table 1. 
The median age was 52 years (range, 21–88 years), with 
majority of male patients (70%) were men. Most patients 
(58%) had pT3 tumors. At time of diagnosis 50 patients 
(63%) had node-positive disease and 41 patients (52%) 
had pathologically positive nodal status. 

Significant differences were found between the two 
groups in terms of clinical stage at the time of diagnosis: 
patients in the nCRT arm had more advanced stage at the 
time of diagnosis, with 50 patients (92.6%) diagnosed 
with stage 3 or 4 disease and 4 (4,2%) with stage 1 or 2 
cancer. In the groups that did not receive nCRT (N = 17), 
7 patients had stage 3 or 4 disease, while 10 (58.8%) were 
diagnosed with stage 1 or 2 cancer (p = 0) (Table 2). Other 
clinical features were assessed for imbalance, and arms 
were well matched.

nCRT consisted of fluoropyrimidines- based 
chemotherapy administered concomitant with RT. 
Radiotherapy consisted of 50.4 Gy radiation in 28 fractions 
delivered to the primary tumor and the mesorectal, pre-
sacral and internal iliac lymph nodes. The median time 
interval between n CRT and surgery (total mesorectal 
excision) was 63.3 days. Pathologic downstaging was 
observed in 25 patients (41%). Mismatch repair status was 
available for 43 patients (53%) and only one patient was 
found to have microsatellite unstable diseases (1%).

PD-L1, CD8+ TILs and mucin expression with 
and without neoadjuvant radiochemotherapy

PD-L1 expression in rectal adenocarcinoma 
cells and immune cells was evaluated in the surgical 
specimens of the two patient cohorts: patients who did 
receive nCRT before surgery (n = 61) and patients who 
had surgery without nCRT (n = 17). One patient received 
only chemotherapy and not radiation before surgery 
and was excluded from analysis. PD-L1 expression was 
studied according to spatial localization: tumor cells (TC), 
tumor stroma (TS) and invasive front (IF). Figure 1A–1C 
shows the representative slide views. Considering the 
overall population, both the maximum staining intensity 
and the proportion of PD-L1-expressing cells were more 
pronounced in the TS (70.5%) and IF (67.9%). 

PD-L1 expression on TCs was identified in only 7.7 
% (6/79) of specimens. All 6 cases had received nCRT (p 
= 0.33) (Table 2). Generalized estimating equation (GEE) 
was used to account for the repeated measures obtained 
from the same patient. The results of GEE are consistent 
with what we found using Chi-square test, except for PD-
L1: comparisons between the patient groups with and 
without nCRT showed a significant difference in PD-L1+ 
rectal cancer cells (p = 0) (Table 3).

CD8+ tumor-infiltrating T cells, were evaluated by 
IHC staining within the tumor and the interface (inner and 
outer interface). No significant differences in CD8+T cells 
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Table 1: Clinicopathologic characteristics
Characteristic n (%)
Age (y)

Median (range) 52 (21–88)
<52 38 (48)
≥52 41 (52)

Sex
Male 55 (70)
Female 24 (30)

Tumor location
Rectum 62 (78)
Recto-sigmoid 17 (21)
Unknown 1 (1)

Clinical Stage at Diagnosis
Stage 1 7 (9)
Stage 2 9 (11)
Stage 3 50 (63)
Stage 4 13 (17)

Tumor grade (resected)
Well to moderately differentiated 60 (76)
Poorly- differentiated 9 (11)
NE (no residual tumor) 10 (13)

pT stage
T0 3 (4)
T1 3 (4)
T2 17 (21)
T3 46 (58)
T4 7 (9)
NA 3 (4)

pN Stage
Nx 3 (4)
N0 35 (44)
N1 25 (32)
N2 16 (20)
N3 0 (0)

Downstage of  after CRT, n = 61
Yes 25 (41)
No 31 (51)
NE 5 (8)

Lymphatic Invasion
Yes 24 (30)
No 32 (40)
Unknown 18 (23)

Vascular Invasion
Yes 7 (9)
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density by location (tumor or interface) were observed in 
the two cohorts of patients (Table 2).

Differences in CD8+T cells infiltrated between 
surgery-alone and nCRT cases were observed, although 

not statistically significant: the median density (cells/mm2) 
of CD8+ TILs was 319.66 (range, 20.76–978.08) in the 
surgery alone group and 787.05 (range, 101.39–2100.85) 
in the nCRT, respectively.

No 57 (72)
Unknown 15 (19)

Microsatellite instability
MSS/MSI-Low 42 (53)
MSI-H 1 (1)
Unknown 36 (46)

Values are number (percentage) unless otherwise noted. Abbreviations: CRT: chemoradiation; MSI-H: microsatellite 
instability-high; MSS: microsatellite stable; NE: not evaluable.

Table 2: Stage at the time of diagnosis, PD-L1, CD8+TILs and mucin expression by radiation therapy
NO nCRT nCRT p-Value

Stage at Diagnosis, n (%) N = 17 N = 54
1, 2 10 (58.8) 4 (7.4) 0
3,4 7 (41.2) 50 (92.6)
PD-L1 TC, n (%) N = 17 N = 61
neg 17 (100) 55 (90.2) 0.329
pos 0 (0) 6 (9.8)
PD-L1 IF N = 17 N = 61
median 25 10 0.942
mean 30.9 30.2
PD-L1 TS, n (%) N = 17 N = 61
Neg 6 (35.3) 17 (27.9) 0.559
Pos 11 (64.7) 44 (72.1)
PD-L1 Interface, n (%) N = 17 N = 61
Neg 4 (23.5) 21 (34.4) 0.558
Pos 13 (76.5) 40 (65.6)
CD8+ Intratumor, N = 15 N = 49
Median 105.8 99.5 0.793
Mean 229.3 207.1
CD8 inner interface, N N = 9 N = 29
Median 131 173.5 0.47
Mean 348.8 220.9
CD8 outer interface, N N = 7 N = 28
Median 330 202 0.2156
Mean 634 283.3
Mucin ratio N = 2 N = 9
Median 0 0.3 0.02
Mean 0 0.2

Abbreviations: nCRT: neoadjuvant chemoradiation; IF: interface; TC: tumor cells; TS: tumor stroma.



Oncotarget911www.oncotarget.com

Mucin ratio, defined as mucin area versus total 
tumor area (Figure 1C), was evaluable in a total of 11 
specimens, and was significantly higher in the cohort of 
patient who received nCRT (median 0.3 versus 0, p = 
0.02) (Table 2).

Independent prognostic risk factors 

Among 79 patients who underwent curative surgery, 
21 (31.8%) had postoperative recurrences. Primary 
recurrence was found in, lung, liver, lymph node, and 
local sites for 7, 6, 5, and 5 patients, respectively. The 
majority of these patients received further treatment but, 
due the retrospective nature of this study we did not have 
access to full data regarding post recurrence treatment. As 
post recurrence therapy could have impacted on overall 
survival rates., we decided to focus our analysis on relapse 
free survival (RFS).

In the univariate analysis of RFS, the following 
parameters were associated with patients’ outcome: 

pathological stage (and not clinical stage at diagnosis) 
(hazard ratio (HR) = 2.31, 95% CI:1.02, 5.20, p = 0.0435), 
margins status at the time of resection (HR = 5.63; 95% 
CI: 1.87,16.96, p = 0.0021) and post nCRT neutrophil to 
lymphocyte ratio (NLR) (HR = 1.04, 95% CI: 1.00, 1.08, 
p = 0.0348). 

On the basis of the results obtained in the 
univariable analyses, pathological stage, margins status 
and post CRT NLR were included in the multivariable 
Cox regression model for RFS. Margins status and 
post nCRT NLR confirmed the statistically significant 
association with survival. Neither PD-L1 expression nor 
CD8+ TILs density was significant predictive factors 
(Table 4).

DISCUSSION

Within the recent years, immunotherapy with 
immune checkpoint inhibitors (ICIs) has revolutionized 
the field of oncology [23–26]. However, despite the 

Figure 1: Representative images of PD-L1 (A), CD8 (B) and mucin (C) and staining. The percentage of PD-L1 membranous expression 
was manually counted in tumor cells tumor stroma and invasive front. The prevalence of CD8+ TILs was recorded in tumor, interface 
tumor side (inner), interface background rectal side (outer). Mucin expression (green) was determined as percentage of the mucin area in 
the whole tumor area mass (yellow). Abbreviations: I: inner; IF: invasive front; O: outer front; T: tumor.

Table 3: PD-L1 expression by radiation therapy using GEE (generalized estimating equations) 
analysis

NO nCRT (N = 17) nCRT (N = 61) p-Value
PD-L1 TC, n (%)
Neg 17 (100) 55 (90.2) 0*
Pos 0 (0) 6 (9.8)
PD-L1 IF
Median 25 10 0.94
Mean 30.9 30.2
PD-L1 TS, n (%)
Neg 6 (35.3) 17 (27.9) 0.56
Pos 11 (64.7) 44 (72.1)

Abbreviations: nCRT: neoadjuvant chemoradiation; IF: interface; TC: tumor cells; TS: tumor stroma.



Oncotarget912www.oncotarget.com

current success of immunotherapy, not all patients 
respond similarly and the benefits of this approach 
have been limited in non-immunogenic, “cold, 
tumors [27]. This natural resistance is in part due to 
various immunosuppressive factors present in the 
TME that prevent infiltration of CD8+ T cells, unlike 
in immunogenic tumors. Therefore, to unleash an 
optimal antitumor immune response, combinatorial 
approaches that combine immune checkpoints with 
other modalities, have been investigated and developed 
[22, 28]. Salient to our work, studies have investigated 
the immunomodulatory impact of radiation therapy 
and its ability to alter the immunogenicity of the TME 
and increase T cell infiltration and antigen processing 
and presentation [19, 29]. This has paved the way 
for investigation of combinatorial approaches with 
immune checkpoint inhibition in different cancer types, 
and numerous reports have shown clinical benefit of 
the combination of RT and PD-1/PD-L1 blockade in 
melanoma [30], non-small cell lung cancer (NSCLC) 
[31], Hodgkin lymphoma [32], renal cell carcinoma 
(RCC) [33].

Durable responses, including in non-radiated areas 
with the use of low dose radiation in combination with ICI 
therapy, have also been reported in microsatellite stable 
(MSS) CRC [34].

However, the clinical significance of PD-
1(L)1 pathway upregulation in rectal cancers remains 
controversial and it is important to acknowledge that 
PD-L1 is an imperfect biomarker and that different 
analyses have highlighted how immunohistochemistry 
staining cut off differ among studies and how PD-L1 

expression is not uniform, which could induce possible 
biased results related to sampling [35–38]. However, 
our findings are consistent with other studies in rectal 
cancer patients looking at matched pre and post radiation 
specimens [39–41]. In our analysis, tumor cell PD-L1 
expression was overall low (7.7%), which is in line 
with results presented by other groups [39, 41, 42]. 
For instance, Hecht et al. reported that the percentage 
of tumor PD-L1 high expression was 2.1% in rectal 
cancer [39]. Lee et al. reported that high tumor PD-L1 
expression was identified in only 4.8% of the total cohort 
of rectal cancer [43].

We showed that nCRT exposure was associated with 
a higher PD-L1 expression in tumor cells as compared to 
non-nCRT cases. Moreover, although not significant, we 
observed also an increased overall PD-L1 expression on 
TS and IF in the nCRT group as compared to patients 
who had surgery only. CD8+ T cell and their spatial 
distribution remains a crucial component in eliciting an 
antitumor immune response [40–42]. Paired analysis of 
PD-L1 expression and density of CD8+ TILs showed 
that CRT induce an immunologic shift toward increases 
in both PD-L1 expression and density of CD8+TILs in 
rectal cancer patients [43–46]. For this purpose, we 
developed an IHC approach incorporating both an image 
analysis approach and a manual approach to quantitate the 
density of each immune cells’ subsets in different areas 
of the TME. We applied this approach in this study and 
were able to assess CD8-TILs in the whole tumor, and 
in the tumor margins (tumor interface, inner and outer 
interface). Although no statistically significant differences 
between the two cohorts were observed, there was a trend 

Table 4: Univariate and multivariate analysis of clinicopathologic parameters on RFS

Variable
Univariate Multivariate

HR 95% CI p-Value HR 95% CI p-Value
All patients (N = 79)

PD-L1 TS (positive vs. negative) 1.15 0.53–2.50 0.7238 NA NA NA
PD-L1 IF (positive vs. negative) 0.92 0.43–1.95 0.8192 NA NA NA
CD8-interface (high vs. low) 1.00 1.00–1.00 0.1785 NA NA NA
Pre CRT NLR (high vs. low) 0.80 0.56–1.12 0.1966 NA NA NA
Post CRT NLR (high vs. low) 1.04 1.00–1.08 0.0348 1.04 1.00–1.09 0.0415
Age (≥52 vs. <52) 1.23 0.60–2.51 0.5780 NA NA NA
Sex (male vs female) 0.57 0.28–1.18 0.1290 NA NA NA
Margins (positive vs negative) 5.63 1.87–16.96 0.0021 13.59 2.32–79.57 0.0038
Stage at diagnosis (3,4 vs. 1–2) 2.19 0.28–17.35 0.456 1.04 0.00-Inf 1.0000
Interaction between Stage at diagnosis and Radiation NA NA NA NA 0.85-Inf 1.0000
Pathological stage (3,4 vs. 0–2) 2.31 1.02–5.20 0.0435 1.47 0.49–4.40 0.4862

Abbreviations: CI: confidential interval; CRT: chemoradiation; HR: hazard ratio; IF: interface; NLR: neutrophils to 
lymphocytes; pStage (pathological stage) TS: tumor stroma.
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toward higher CD8+ cell density in the nCRT cohorts 
compared to surgery-alone cases, suggesting a different 
immunological milieu between the two cohorts based on 
radiation exposure.

Mucins are a class of glycoproteins that play a role 
in suppressing inflammation abnormal expression of 
mucins has been observed in various adenocarcinomas, 
including CRC [47, 48]. Studies have supported mucins’ 
role in regulating T cells function and modulating 
immune response, for instance through interaction 
with intercellular adhesion molecule-1 (ICAM-1) 
and other inhibitory receptors on T-cells, leading to 
impaired antigen recognition, [49–51]. Cancer cells 
can exploit the immune-modulatory ability of mucins 
to evade immune surveillance [52–55]. We observed a 
higher mucin concentration in patients who underwent 
nCRT, as compared to the surgery alone cases. These 
findings suggest a novel way through which radiation 
therapy can impact the immune TME towards a more 
immunosuppressive phenotype.

Finally, our results for both univariate and 
multivariate analyses indicated that higher post-treatment 
NLR was an independent predictor of relapse free survival 
(RFS). Other studies in rectal cancer have focused on 
pretreatment NLR and showed that elevated higher NLR 
was associated with higher T stage, inferior RFS, and 
poorer pathological response to nCRT. These studies have 
not looked at post treatment NLR. Thus, our findings 
suggest a possible prognostic role of posttreatment NLR 
and might help personalizing adjuvant treatments, for 
instance by intensifying systemic treatment in patients 
with an elevated NLR after nCRT.

Our study has few limitations that need to 
be acknowledged. First, we did not have access to 
pretreatment tumor tissues and the analysis include a 
limited number of patients, which is a consequence of the 
retrospective design. It is also important to note that in our 
study, patients in the nCRT group had a more advanced 
tumor stage at the time of diagnosis, as compared to 
the group who received surgery upfront. A possible 
association between PD-L1 expression and higher TNM 
stage at diagnosis (regardless of radiation exposure) 
cannot be excluded, as it has been showed in other tumor 
types [35–37]. Finally, the variability in test cutoffs 
and standards for PD-L1 testing should be considered. 
However, we previously shown that different clones of 
PD-L1 antibodies, including 5H1, SP142, 28–8, 22C3, 
and SP263, have similar performance characteristics when 
used in a standardized IHC assay [38].

In conclusion, our study provides further data 
on the immunologic impact of nCRT in rectal cancer. 
We evaluated the effect of nCRT on CD8+TILsPDL-1 
expression by spatial localization as well as on mucin 
expression, and their clinical implications in rectal 
cancer patients, comparing data from non-CRT cases. 
Matched pre- and postsurgical specimen analysis with 

further mechanistic investigations are needed in order to 
better evaluate the immune milieu of rectal cancer and 
to expand the applicability of checkpoint inhibitors in 
this setting.

MATERIALS AND METHODS

Patients selection and evaluation

In this retrospective study, we collected surgical 
specimens from patients with rectal adenocarcinoma 
treated with surgery with or without nCRT at the Johns 
Hopkins between 2008 and 2014. We included patients with 
more evidence of distant metastasis at time of diagnosis, 
for which we had access to postsurgical tumor tissues 
obtained and clinicopathologic information. For patient 
who underwent nCRT further eligibility criteria was the 
completion of the planned course of preoperative CRT with 
conventional fractionation plus total mesorectal excision.

Clinical (at the time of diagnosis) and pathologic 
tumor stages were classified according to the 8th edition 
of the American Joint Committee on Cancer staging 
system. Dworak system was used to assess the pathologic 
regression grade, from 0 (no regression) to 4 (complete 
pathologic regression). Histological details of the tumors 
were retrieved from the archived pathological reports. 
Clinical data were obtained from patient records. The 
study was approved by the Johns Hopkins Institutional 
Research Board.

Immunohistochemical analysis

For immunohistochemistry tissue sections were 
stained with CD8 and PD-L1 antibodies. Whole slides 
images were acquired at 20× magnification. The 
prevalence of positive CD8 stained cells was recorded 
in the tumor-stroma interface was identified and drew by 
the pathologist (RAA) based on the H&E staining image 
and transferred to the analyzed images afterwards in Halo 
digital analysis software.

To assess if CD8+ cells have been enriched in tissue 
compartments, we measured the CD8+ cell density in 
different tissue compartments separately (tumor, interface 
tumor side, and interface background rectal side); each 
region was defined as 400 micrometers on both sides of 
the interface.

The density (# of cells/surface area analyzed) 
of CD8 expressing lymphocytes was assess via image 
analysis (HALO Indica Labs). Additionally, before we 
performed the digital analysis, we first did a quality check 
by eye with all the images and we didn’t observe a clear 
cluster pattern of CD8+ cell distribution [56].

PD-L1 membranous expression was manually 
counted in tumor cells (TC), tumor stroma (TS) and 
invasive front (IF), as previously described [34, 56]. Two 
5 µm-thick sections were cut from one FFPE specimen 
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and mounted on glass slides. After deparaffinization and 
antigen retrieval, the anti-PD-L1 antibody (SP142, Spring 
Bioscience) or a concentration matched isotype control 
were applied and allowed to incubate at 4°C for 22 
hours. Signals were developed by using an Avidin Biotin 
Complex (ABC) Method (Vector Laboratory) combined 
with the TSA system (PerkinElmer) [56].

The study pathologist (RAA) estimated the 
percentage of PD-L1 stained cells was estimated on tumor 
cells (membranous staining), stroma (all the inflammatory, 
fibroblast and vascular cells, cytoplasm and membranous 
pattern) and invasive front (stroma between tumor cells and 
non-tumor tissue). Mucin expression was determined as the 
percentage of the mucin area in the whole tumor mass area.

Signal quantitation

Slides were scanned at 20× objective equivalent 
(0.49 microns/pixel) with Hamamatsu NanoZoomer XR 
slide scanner. Each image was annotated for regions of 
tumor, invasive front (400 micron area toward the center 
of the tumor and 400 micron area outside the tumor edge) 
and non-tumor regions by the study pathologist (RAA). 
Positive signals were reported as cell density per mm2 
tissue area by digital analysis (Halo, Indicalab) [56].

Statistical analysis 

Density and other continuous variables were tested 
with Student’s t-test. Association between categorical 
variables were analyzed using Fisher exact test with 
continuity correction. The median value of multiple slides 
for the same patient were used for analysis.

Pretreatment and post treatment absolute neutrophil 
count (ANC) absolute and lymphocyte count (ALC) from 
the peripheral blood were also collected. Pretreatment 
ANC and ALC values were obtained between the time 
of cancer diagnosis and treatment initiation (nCRT or 
surgery). The lab values closest to the time of treatment 
initiation were used. Post treatment ANC and ALC values 
were obtained within 60 days from surgery. A pretreatment 
and post treatment neutrophil-lymphocyte ratio (NLR), 
NLR was calculated for each patient, defined as the ANC 
divided by the ALC. NLR was evaluated as a continuous 
variable. Generalized estimating equations (GEE) were 
used (assuming a compound symmetry correlation 
structure) for model estimation and hypothesis testing. 
Specifically, we modeled the vector of expression from 
samples among patients as a function of sample location, 
treatment group, and the interaction of the two. Recurrence 
free survival (RFS) and overall survival (OS) were 
analyzed with the Kaplan-Meier method. Univariate and 
multivariate regression analyses of RFS were performed 
using Cox’s proportional hazard model. P-Values <0.05 
were considered to be statistically significant. All the 
statistical analyses were performed using R 3.5.1.

Abbreviations

ANC: absolute neutrophil count; ALC: absolute 
and lymphocyte count; CRC: colorectal cancer; CRT: 
chemoradiotherapy; CT: chemotherapy; GEE: generalized 
estimating equations; HPF: high-power fields; HR: hazard 
ratio; ICI: immune checkpoint inhibitors; IF: invasive 
front; IFN-γ: interferon-γ; IHC: immunohistochemistry; 
ICAM: intercellular adhesion molecule-1; LARC: locally 
advanced rectal cancer; MSI: microsatellite instable; 
MSS: microsatellite stable; N: lymph node; nCRT: 
neoadjuvant chemoradiotherapy; NLR: neutrophil to 
lymphocytes ratio; NSCLC: non-small cell lung cancer; 
OS: overall survival; PD-1: programmed death 1; PD-L1: 
programmed death ligand-1; RCC: renal cell carcinoma; 
RFS: recurrence-free survival; RT: radiation therapy; TC: 
tumor cells; TILs: tumor-infiltrating lymphocytes; TME: 
tumor microenvironment; TRG: tumor regression grade; 
TS: tumor stroma.
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