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Abstract

Pulmonary arterial hypertension (PAH) is a severe disease caused by pro-

gressive distal pulmonary artery obstruction. One cause of PAH are loss‐of‐
function mutations in the potassium channel subfamily K member 3

(KCNK3). KCNK3 encodes a two‐pore domain potassium channel, which is

crucial for pulmonary circulation homeostasis. However, our understanding of

the pathophysiological mechanisms underlying KCNK3 dysfunction in PAH is

still incomplete. Taking advantage of unique Kcnk3‐deficient rats, we analyzed
the transcriptomic changes in the lungs from homozygous Kcnk3‐deficient rats
and wild‐type (WT) littermates and compared them to PAH patient tran-

scriptomic data. Transcriptome analysis of lung tissue obtained from WT and

Kcnk3‐deficient rats identified 1915 down‐ or upregulated genes. In addition,

despite limited similarities at the gene level, we found a strong common sig-

nature at the pathway level in PAH patients and Kcnk3‐deficient rat lungs,
especially for immune response. Using the dysregulated genes involved in the

immune response, we identified Spleen Associated Tyrosine Kinase (SYK), a

significantly downregulated gene in human PAH patients and Kcnk3‐deficient
rats, as a hub gene. Our data suggests that the altered immune system
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response observed in PAH patients may be partly explained by KCNK3 dys-

function through the alteration of SYK expression.
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INTRODUCTION

Pulmonary arterial hypertension (PAH) is a rare, severe,
and progressive disorder characterized by high blood
pressure in the pulmonary arteries. PAH is the conse-
quence of a progressive thickening of small pulmonary
arteries (<500 μm in diameter), which increases right
ventricular (RV) afterload and consequently leads to RV
hypertrophy, RV failure, and, ultimately, death.1

Approximately 15−20% of patients suffering from PAH
have heritable forms of PAH (hPAH) due to mutations in
several predisposing genes. Most cases of hPAH are due
to a pathogenic variant of the bone morphogenic protein
receptor type II (BMPR2) gene.2 However, at least 20
other PAH‐predisposing genes have recently been iden-
tified, including pathogenic variants in the potassium
channel subfamily K member 3 (KCNK3) gene.3,4 KCNK3
is an outward K+ channel, also referred to as TWIK‐
related acid‐sensitive potassium channel 1 (TASK‐1) or
two‐pore‐domain K+ (K2P) channel 3.1 (K2P3.1).

5 KCNK3
is a member of the K2P channel family6 and possesses
several characteristics of background K+ current, extra-
cellular pH sensitivity, resistance to classic K+ channel
blockers, and insensitivity to intracellular calcium.3,4

KCNK3 contributes to resting membrane potential in
many different cell types, including pulmonary arterial
smooth muscle cells (PASMC).7,8

Since 2013, 28 variants of KCNK3 have been identi-
fied in different international PAH cohorts.4 Most
KCNK3 variants are heterozygous, and only three were
homozygous.4 Among these variants, only eight KCNK3
variants have been functionally analyzed by patch‐clamp
experiments, and these studies have revealed a loss of
function,4 while the functionality of the other 20 KCNK3
variants has not yet been investigated. In addition to
pathogenic KCNK3 variations in PAH, we and others
demonstrated cumulative evidence that decreased
KCNK3 expression and function are hallmarks of dif-
ferent forms of PAH at pulmonary vascular and cardiac
levels.4,7,9–11

As KCNK3 is not functional in mouse PASMC,12 we
have generated unique Kcnk3‐deficient rats. Using this
model, we previously highlighted that genetic
inactivation of Kcnk3 induces significant pulmonary
vascular alterations, facilitating the development of

age‐dependent‐PAH, exacerbated pulmonary arterial
constriction, impaired pulmonary artery relaxation,
increased number of muscularized pulmonary vessels,
increased perivascular collagen deposition, as well as
altered pulmonary arterial compliance.13,14 In addition to
pulmonary vascular cells, KCNK3 is known to be ubiq-
uitously expressed in the adrenal gland,15 the brain, and
carotid bodies, where it contributes to the regulation of
breathing,16–20 and also in lymphocytes (T and B cells)
were KCNK3 inhibition reduced lymphocyte prolifera-
tion and cytokine production.21,22

Despite several pieces of evidence pointing to the
contribution of KCNK3 dysfunction in the physio-
pathology of PAH, the mechanisms underlying KCNK3
dysfunction in PAH are not entirely understood. In the
present study, using an unbiased comparative tran-
scriptomic approach of PAH patients and Kcnk3‐deficient
rat lungs, we aimed to unravel the molecular signatures
of KCNK3 deficiency that predispose to PAH.

METHODS

Kcnk3‐deficient rats

Kcnk3‐deficient rats were generated using CRISPR/Cas9
with a specific sgRNA‐rKCNK3 and Cas9 messenger
RNA (mRNA)13,14,16,23 targeting the first exon of the
Kcnk3 gene to induce a shift in the reading frame of exon
1 of the Kcnk3 gene. We used a strain with 94 bp deleted
in the first exon of Kcnk3 (Δ94ex1), as previously
described.13,14,16 In one newborn rat, a deletion of 94 bp
(Δ94ex1) was found, which resulted in an out‐of‐frame
shift in the open reading frame, leading to a premature
stop codon and generation of a completely different
amino acid (aa) sequence. However, premature stop
codons can cause mRNA degradation.24 The deletion of
94 bp in the mRNA was not associated with the absence
of mRNA, indicating the absence of mRNA degrada-
tion.24 We studied homozygous rats (Kcnk3Δ94ex1/Δ94ex1,
named Kcnk3‐deficient rats in this study) and wild‐type
(WT) littermates. Only male rats at 3 months old were
analyzed in this study.

As we previously described,13,14,16 a putative transla-
tion of the truncated mRNA could produce a truncated

2 of 11 | RUFFENACH ET AL.



90 aa protein instead of the 411 aa of the WT protein and
share only the first 14 aa with the WT protein.
Sequencing of the Kcnk3 mRNA from Kcnk3+/+ and
Kcnk3Δ94ex1/Δ94ex1 rats confirmed the deletion of the 94 bp
and an aberrant protein sequence with eight potential
premature stop codons.13

The founder animal with the Δ94ex1 deletion was
crossed with aWT partner, and the deletion was transmitted
to the offspring, as shown by genotypic DNA analysis,
demonstrating that the rats were either Kcnk3+/+, hetero-
zygous Kcnk3Δ94ex1/+, or homozygous Kcnk3Δ94ex1/Δ94ex1. In
this study, we used only Kcnk3+/+ and homozygous
Kcnk3Δ94ex1/Δ94ex1.

RNA sequencing and data analysis

RNA extraction and purification

Total RNA was extracted from lung tissues using TRIzol
(Invitrogen) with DNase digestion. RNA concentration
and purity were evaluated on a NanoDrop (Thermo
Scientific) spectrophotometer measuring absorbance at
230, 260, and 280 nm. RNA integrity was controlled on a
Bioanalyzer 2100 using the RNA 6000 Nano kit (Agilent
TechnologiesA). RNA concentration was measured on a
Xenius (Safas, Monaco) fluorimeter using the Quanti-
fluor® RNA System kit (Promega).

Transcriptome analysis by RNA sequencing

Directional RNA‐Seq Libraries were constructed from
1 μg of total RNA using the TruSeq Stranded mRNA
Library Prep kit (Illumina), following the manufacturer's
instructions. Final libraries were qualified on a Bioana-
lyzer 2100 using the High Sensitivity DNA Kit (Agilent
Technologies), and library concentration was measured
on a Xenius fluorimeter (Safas) using the PicoGreen™ kit
(Invitrogen). Libraries were pooled in equimolar pro-
portions and sequenced in one 100‐bp single read P2 run
on a NextSeq. 2000 instrument (Illumina) by the I2BC
High‐throughput sequencing facility.

RNA‐seq data analysis

All analyses were performed using R (https://www.r-
project.org/) and RStudio (http://www.rstudio.com/).
Reads were independently mapped to the rat genome
mRatBN7.2 using a subread aligner25 from the Rsubread
package.26 Mapped reads were counted with gtf ensembl
release 110 at the gene level using featureCounts27 from

Rsubread.26 Genes with a raw count mean lower than ten
were discarded for downstream analyses. Then, data
were first normalized using TPM,28 TMM normaliza-
tion29 was done using edgeR packages,30 and data were
linearized, and quantile normalized using voom func-
tion31 from limma package.32 Then, we applied a one‐
way analysis of variance for the treatment factor for each
gene and made pairwise Tukey's post hoc tests between
groups.33

Human microarray analysis

We obtained the human lung microarray data from
GSE117261.34 We compared lungs from failed donors for
transplantation (n= 25) to lungs from PAH patients
(n= 58). We performed the differential gene expression
analysis using the R limma package (R Core Team
(2018).32

Bioinformatic analysis and statistical
analysis

Bioinformatic analysis was carried out following the
comprehensive workflow described hereafter. 1. We uti-
lized Gene Set Enrichment Analysis (GSEA) software in
conjunction with human Gene Ontology biological pro-
cess gene sets with 1000 permutations, a gene set size
between 15 and 1000, and a classic enrichment statistic
method to analyze the human and rat transcriptomic
datasets. We considered gene set dysregulation statisti-
cally significant for an FDR below 0.25, as per the GSEA
documentation.35,36 2. We performed hierarchical clus-
tering in Cytoscape using the significant and overlapping
gene sets between humans and rats. 3. We employed
String software to cluster genes involved in the immune
response with a p‐value below 0.05 in humans.37,38 4. To
identify the most relevant gene, we correlated the clus-
tered gene between the Edges and Nodes of the hierar-
chical clustering.

Real‐time‐ quantitative PCR

Total RNA from lungs and PASMCs was isolated with
TRIzol (Thermo Fisher) and reverse‐transcribed with a
combination of random primers and poly‐dT primers
using the Omniscript reverse transcription kit (Qiagen).
Real‐time polymerase chain reaction was performed on
cDNA with specific primers using iTaq Universal SYBR
(Bio‐Rad). PARK7 (Parkinson Disease Protein 7) was
used as a housekeeping gene to normalize the transcript
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expression. Primer sequences used are as follows PARK7
Forward: CGGGGTGCAGGCTTGTAAA and Reverse:
TGACCACATCACGGCTACAC; SYK Forward CTTGGT
CAGCGGGTGGATAATCT and Reverse: AGGCTTTGGG
AAGGAGTATGATTT.

RESULTS

To determine the molecular consequences of KCNK3
deficiency in the lung and its link to PAH patho-
physiology, we conducted RNA‐seq to profile the tran-
scriptome of lung tissues from 5 WT and 5 Kcnk3‐
deficient rats. Through the RNA‐seq experiments, we
detected 17606 unique genes, including 2940 unidentified
genes (noncoding genes or unconfirmed new genes)
(Supporting Information S1: Table 1). The principal
component analysis showed clear, distinct patterns of the
gene expression profiles for WT and Kcnk3‐deficient rats
(Figure 1a).

RNA‐seq analysis revealed 1915 differentially ex-
pressed genes (DEG) between WT and Kcnk3‐
deficient rat lungs (p < 0.05 and fold change > 1.2)
(Figure 1b). As illustrated in Figure 1c, gene ontology
analysis found that dysregulated genes (DEG) in lungs
from Kcnk3‐deficient rats were involved in the regu-
lation of cell movement, cell communication, and
immune regulation.

To unravel the molecular signature of KCNK3 defi-
ciency that predisposes to PAH, we examined the gene
expression relationship between Kcnk3‐deficient rats and
PAH patient lungs (Figure 2a−c). We integrated our
RNA‐seq on the lungs of Kcnk3‐deficient rats with an
available online human microarray comparing the gene
expression of lungs from control subjects and PAH pa-
tients34,39 (Figure 2a,b). We then overlapped the DEG
from both comparisons and found a small number of
commonly DEG, 0.5% of human DEG and 1.1% of rats
DEG (Figure 2c).

Given the restricted overlap in DEG and the estab-
lished link between PAH and KCNK3 dysfunction, we
hypothesized that the relationship operates at the path-
way level rather than the gene level (Figure 2d,e).
Therefore, we identified commonly dysregulated biolog-
ical processes in humans and rats and discovered 268
processes altered in PAH patients and Kcnk3‐deficient
rats, including 18 upregulated and 250 downregulated
processes (Figure 2f).

To obtain a coherent image of these biological
processes, we performed hierarchical clustering using
Cytoscape (Figure 3). This analysis showed that
downregulated processes in humans and rats were
predominantly associated with the immune response.

Subsequently, we employed String software to identify
hub genes by clustering genes related to the immune
response with a significant p‐value (Figure 4a) to
determine the most interconnected genes in the
hierarchical clustering (Figure 4b). The analysis
revealed that the downregulation of SYK (Spleen
Associated Tyrosine Kinase) gene in Human PAH and
Kcnk3‐deficient rats (Figure 4c) was central to one
cluster and displayed the highest connectivity
(Figure 4a,b). In addition, using online lung single
cell (LungGENS) on healthy adult human, we found
that Syk was primarily expressed by expressed by
dendritic cells and macrophages (Supporting Infor-
mation S2: Figure 1).

Together, these data show that Kcnk3‐deficiency
induces a transcriptome‐wide deregulation, vastly
affecting immune response and creating a fertile ground
for PAH genesis.

DISCUSSION

This study compared gene expression between the lungs
of PAH patients and Kcnk3‐deficient rats. We demon-
strated that despite limited similarities in DEGs,
numerous biological processes, especially the ones
involved in immune response, were highly similar. Using
the DEGs involved in the immune response, we identi-
fied SYK as a hub gene.

In a previous study, we found that KCNK3 function is
impaired in PAH patients regardless of whether they
carry a mutation or not.7 Here, we demonstrate that the
transcriptome landscape modification in Kcnk3‐deficient
rats is related to the one found in humans with PAH.
This relationship is found at the pathway level rather
than gene expression. Pathway analysis is based on the
aggregation of genes into one biological pathway and
how the expression of this group of genes changes
between conditions. This gives access to readily inter-
pretable data that may carry more information than gene
expression alone.

This pathway‐level analysis revealed that pathways
involved in the immune response were at the core of
similarities found between Kcnk3‐deficient rat and
PAH patient lungs. This finding is in line with the
well‐described dysregulation of immune/inflammatory
response in PAH40 (Supporting Information S2: Figure 2).
In another animal model, using Kcnk3 knockout mice
fed with a Western diet, similar dysregulation of the
immune system was observed.41 We previously showed
that chemical inhibition of KCNK3 in rats led to
increased serum concentration of inflammatory
markers, such as monocyte chemoattractant protein‐1,
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FIGURE 1 The consequence of KCNK3 deficiency at the transcriptomic level. (a) Principal component analysis (PCA) was performed
on the relative mRNA expression level between lung tissues from WT and Kcnk3‐deficient rats obtained by spectral counting (WT [Red] or
Kcnk3‐deficient rats [blue]). n= 5 rats. (b) Heatmap representation for RNA sequencing results in lung tissues from WT and Kcnk3‐deficient
rats. (c) Gene ontology analysis of upregulated (left) and downregulated (right) expressed genes between lung tissues from WT and Kcnk3‐
deficient rats. KCNK3, potassium channel subfamily K member 3; mRNA, messenger RNA; WT, wild‐type.
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FIGURE 2 Expression profiling of lung genes in PAH and Kcnk3‐deficient rats. (a) Volcano plot of differentially expressed genes in PAH lungs
versus control lungs. (b) Volcano plot of differentially expressed genes in Kcnk3‐deficient rat lungs versus control rat lungs. (c) Venn diagram of
commonly dysregulated genes between humans and Kcnk3‐deficient rats. (d) Gene set enrichment analysis of biological processes in PAH lungs.
(e) Gene set enrichment analysis of biological processes in Kcnk3‐deficient rat lungs. (f) Venn diagram of commonly enriched gene sets between
humans and Kcnk3‐deficient rats. KCNK3, potassium channel subfamily K member 3; PAH, pulmonary arterial hypertension.
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tissue inhibitor of metalloproteinase‐1, and Gro‐1
(melanoma growth stimulating activity, alpha 1).7

Other studies showed that Kcnk3 knockout mice had a
decreased number of circulating lymphocytes41 or
impaired T cell effector functions.22 Hence, this study
adds strong support for the role of KCNK3 in the
regulation of the immune response, which has yet to
be uncovered.

We found the SYK gene as a hub common gene
related to inflammation and dysregulated in PAH
patients and Kcnk3‐deficient rat lungs, as it was
the most connected to the dysregulated inflamma-
tory pathways. SYK is a cytoplasmic kinase, mainly
expressed by dendritic cells and macrophages
(Supporting Information S2: Figure 1), that binds to
the immunoreceptor tyrosine‐based activation motif
of Fc receptors, C‐type lectin receptors (CLECs), and
B cell receptors.42 SYK is involved in various
biological processes, including innate immunity
recognition, platelet activation, and vascular devel-
opment,43 all of which are known to play a role in
pulmonary hypertension. In PAH, the role of SYK
remains unknown. One study on primary cultured
vascular SMC demonstrated whether it is protective
or deleterious. The effect of platelet‐derived growth
factor subunit B (PDGF‐BB) on SMC proliferation
was, in part, attributable to SYK.44 We recently
identified the KCNK3 interactome using proximity
labeling and mass spectrometry analyses,45 and we

have found that KCNK3 interacts with more than
1000 different proteins, notably different kinases or
receptor tyrosine kinases, including Src Kinase,
C‐Jun, and VEGF‐VEGFR2, PI3K/AKT, insulin
receptor signaling cascade, PDGF.45,46 In addition, we
also found that KCNK3 knockdown in hPECs reduced
VEGFR signaling, which could affect SYK expression
and function since the VEGFR signaling pathway and
SYK are intimately linked.47,48

Our data suggests that the altered immune system
response observed in PAH patients could be partly ex-
plained by KCNK3 dysfunction through decreased SYK
expression and open a new avenue of research in the role
of KCNK3 in PAH physiopathology.

LIMITATIONS

Considering the sex differences that exist in PAH pa-
tients, it would be exciting to investigate the sex differ-
ences in the context of KCNK3 deficiency. However, no
report thus far suggests a gender bias in KCNK3 ex-
pression, and we did not find a difference in KCNK3
expression between male and female patients in our
Human PAH samples. Moreover, we previously demon-
strated that female Kcnk3‐deficient rats are predisposed
to develop PAH similarly to males.13 Further experi-
ments are needed to investigate the consequence of
Kcnk3‐deficiency in female rats.

FIGURE 3 Hierarchical clustering of commonly dysregulated gene sets. (a) Immune response, (b) cytoskeleton organization, (c) other
small clusters.
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