
fphys-12-693067 June 14, 2021 Time: 13:3 # 1

REVIEW
published: 16 June 2021

doi: 10.3389/fphys.2021.693067

Edited by:
Luis A. Martinez-Lemus,

University of Missouri, United States

Reviewed by:
Myriam Gorospe,

National Institutes of Health,
United States

Camilla Ferreira Wenceslau,
University of Toledo, United States

Allison B. Herman,
National Institutes of Health,

United States, in collaboration
with MG

*Correspondence:
Xinghui Sun

xsun17@unl.edu
Mark W. Feinberg

mfeinberg@bwh.harvard.edu

Specialty section:
This article was submitted to

Vascular Physiology,
a section of the journal
Frontiers in Physiology

Received: 09 April 2021
Accepted: 07 May 2021

Published: 16 June 2021

Citation:
Sun X and Feinberg MW (2021)

Vascular Endothelial Senescence:
Pathobiological Insights, Emerging

Long Noncoding RNA Targets,
Challenges and Therapeutic

Opportunities.
Front. Physiol. 12:693067.

doi: 10.3389/fphys.2021.693067

Vascular Endothelial Senescence:
Pathobiological Insights, Emerging
Long Noncoding RNA Targets,
Challenges and Therapeutic
Opportunities
Xinghui Sun1,2,3* and Mark W. Feinberg4*

1 Department of Biochemistry, University of Nebraska–Lincoln, Lincoln, NE, United States, 2 Nebraska Center
for the Prevention of Obesity Diseases Through Dietary Molecules, University of Nebraska–Lincoln, Lincoln, NE,
United States, 3 Nebraska Center for Integrated Biomolecular Communication, University of Nebraska–Lincoln, Lincoln, NE,
United States, 4 Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA, United States

Cellular senescence is a stable form of cell cycle arrest in response to various
stressors. While it serves as an endogenous pro-resolving mechanism, detrimental
effects ensue when it is dysregulated. In this review, we introduce recent advances
for cellular senescence and inflammaging, the underlying mechanisms for the reduction
of nicotinamide adenine dinucleotide in tissues during aging, new knowledge learned
from p16 reporter mice, and the development of machine learning algorithms in cellular
senescence. We focus on pathobiological insights underlying cellular senescence of
the vascular endothelium, a critical interface between blood and all tissues. Common
causes and hallmarks of endothelial senescence are highlighted as well as recent
advances in endothelial senescence. The regulation of cellular senescence involves
multiple mechanistic layers involving chromatin, DNA, RNA, and protein levels. New
targets are discussed including the roles of long noncoding RNAs in regulating
endothelial cellular senescence. Emerging small molecules are highlighted that have
anti-aging or anti-senescence effects in age-related diseases and impact homeostatic
control of the vascular endothelium. Lastly, challenges and future directions are
discussed including heterogeneity of endothelial cells and endothelial senescence,
senescent markers and detection of senescent endothelial cells, evolutionary differences
for immune surveillance in mice and humans, and long noncoding RNAs as therapeutic
targets in attenuating cellular senescence. Accumulating studies indicate that cellular
senescence is reversible. A better understanding of endothelial cellular senescence
through lifestyle and pharmacological interventions holds promise to foster a new frontier
in the management of cardiovascular disease risk.

Keywords: cellular senescence, vascular endothelium, long noncoding RNAs, DNA damage, SASP, anti-
senescent therapies
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INTRODUCTION

Cellular senescence is a stable form of cell cycle arrest in
response to various stressors. Senescent cells are characterized
by a number of hallmarks, such as DNA damage, mitochondrial
dysfunction, expression of cyclin-dependent kinase inhibitors
and senescence-associated β-galactosidase (SA-β-gal), induction
of the senescence-associated secretory phenotype (SASP), and
changes in chromatin remodeling and metabolism (Munoz-Espin
and Serrano, 2014; Sharpless and Sherr, 2015; Herranz and Gil,
2018; Hernandez-Segura et al., 2018; Gorgoulis et al., 2019;
Khosla et al., 2020; Di Micco et al., 2021). It is increasingly
recognized that cellular senescence is heterogeneous and cell-
specific with diverse functions (Munoz-Espin and Serrano, 2014;
Sharpless and Sherr, 2015; Lecot et al., 2016; Herranz and Gil,
2018; Hernandez-Segura et al., 2017, 2018, 2019; Gorgoulis et al.,
2019; Khosla et al., 2020; Di Micco et al., 2021). Senescent cells
are required for tissue remodeling and morphogenesis during
embryonic development (Munoz-Espin et al., 2013; Storer et al.,
2013), are essential for wound healing (Demaria et al., 2014),
and promote heart regeneration after injury (Feng et al., 2019;
Sarig et al., 2019). In contrast, senescent cells are found in
obesity (Brodsky et al., 2004; Minamino et al., 2009; Wang
et al., 2009; Ogrodnik et al., 2017), diabetes (Brodsky et al.,
2004; Palmer et al., 2015), and atherosclerosis (Minamino et al.,
2002; Childs et al., 2016), and contribute to the pathogenesis
of these chronic and metabolic diseases. Targeted elimination
of senescent cells in mice prevents neurodegeneration (Bussian
et al., 2018), extends healthy life span (Baker et al., 2016),
prevents type 1 diabetes (Thompson et al., 2019), and improves
obesity-associated metabolic parameters (Palmer et al., 2019).
To reconcile the beneficial and detrimental effects of cellular
senescence, it was proposed that cellular senescence is an
endogenous pro-resolving mechanism (Davan-Wetton et al.,
2021). Controlled cellular senescence is important to maintain
tissue homeostasis; however, when it is dysregulated leading to
the over accumulation of senescent cells, cellular senescence
triggers chronic inflammation and tissue damage contributing to
the pathogenesis of various age-related diseases.

Long noncoding RNAs (lncRNAs) are an important class
of RNAs lacking protein coding capacity and are longer than
200 nucleotides in length. Genomic studies have identified a
number of disease-associated gene variants overlapping with
lncRNA genes (Iyer et al., 2015; Dechamethakun and Muramatsu,
2017; Freedman et al., 2017; Hon et al., 2017; Giral et al., 2018;
Castellanos-Rubio and Ghosh, 2019). Accumulating studies have
identified a growing list of lncRNAs involved in human disease
(Halim et al., 2017; Hennessy et al., 2019; Lyu et al., 2019).
Recently, several lncRNAs have emerged as crucial regulators

Abbreviations: SA-β-gal, senescence-associated β-galactosidase; SASP,
senescence-associated secretory phenotype; lncRNAs, long noncoding RNAs; ECs,
endothelial cells; NAD+, nicotinamide adenine dinucleotide; ERCC1, excision
repair cross complementing-group 1; TERF2, telomeric repeat-binding factor
2; HMGB2, high-mobility group box protein 2; Snhg12, small nucleolar host
gene-12; Meg3, maternally expressed gene 3; NORAD, lncRNA noncoding RNA
activated by DNA damage; Aerrie, age and endMT regulated RNA in endothelium;
mTORC1, mTOR complex 1.

of cellular senescence in the vascular endothelium in mice
(Hofmann et al., 2019; Shihabudeen Haider Ali et al., 2019; Bian
et al., 2020; Haemmig et al., 2020).

The vascular endothelium, the innermost lining of blood
vessels, is a critical interface between blood and all tissues.
Emerging studies highlight that perturbation of endothelial cell
(EC) senescence is a potential link between inflammation and
aging. Here, we review the recent advances in our understanding
of cellular senescence focusing on cellular senescence of the
vascular endothelium, endothelial-leukocyte interactions, and
how regulation by epigenetic mechanisms such as lncRNAs
impacts the pathobiology in a range of aging-associated diseases.
At the end, we discuss the therapeutic intervention, challenges
and opportunities for targeting endothelial cellular senescence.

RECENT ADVANCES IN CELLULAR
SENESCENCE

Cellular Senescence and Inflammaging
Inflammaging is a term describing the chronic low-grade sterile
inflammation due to the impaired capacity of a host body
to cope with stressors in the aging process (Franceschi et al.,
2000). It underlies the increased risk of many diseases such as
obesity, diabetes, and cardiovascular disease with age. The role
of cellular senescence in inflammaging was first proposed about
two decades ago (Franceschi et al., 2000), which was quickly
accepted by other scientists (Butcher and Lord, 2004; Giunta,
2008). The number of senescent cells that increase dramatically
in aging mice and humans likely results from at least one of
two reasons. First, the accumulative effects of repetitive stresses
increase the number of senescent cells during aging. Second,
the impaired immune surveillance system cannot efficiently
eliminate senescent cells with increasing age. These accumulated
senescent cells secret a number of inflammatory cytokines and
mediators that contribute to inflammaging. For example, CD4+
T cells from normoglycemic older subjects display a diabetes-
associated Th17 profile that contributes to inflammaging
(Bharath et al., 2020). These CD4+ T cells have defects in
autophagy, mitochondrial function, and redox homeostasis
(Bharath et al., 2020). Metformin alleviates inflammaging by
enhancing autophagy and normalizing mitochondrial function in
CD4+ T cells (Bharath et al., 2020).

Reciprocally, inflammation also induces cellular senescence,
thereby contributing to an amplifying effect (Desdin-Mico et al.,
2020). For example, metabolic failure of T cells causes the
accumulation of cytokines in circulation (Desdin-Mico et al.,
2020). This inflammatory status resembles inflammaging, and
acts as a systemic inducer of cellular senescence. The premature
aging in mice induced by T cell metabolic failure can be prevented
by blocking tumor necrosis factor-α signaling and restoring
nicotinamide adenine dinucleotide (NAD+) levels.

As evidenced by the above examples (Bharath et al.,
2020; Desdin-Mico et al., 2020), inflammaging is targetable.
Improving our understanding of the relationship between cellular
senescence and inflammaging will likely provide new therapeutic
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targets to treat age-related disease by inhibiting the vicious cycle
between cellular senescence and inflammaging.

Cellular Senescence Reduces the Levels
of NAD+ in Tissues During Aging
It is well-known that the levels of NAD+ decrease in our bodies
during aging. The proposed underlying molecular basis involves
the infiltration of macrophages in response to SASP factors
elaborated by senescent cells. The levels of NAD+ decrease
in part due to the increased expression and activity of CD38
during aging (Camacho-Pereira et al., 2016; Tarrago et al.,
2018). CD38 is a NAD+-consuming enzyme that decreases the
levels of tissue NAD+ through its ecto-enzymatic activity. The
SASP factors secreted from senescent cells such as senescent
ECs can increase the expression of CD38 in non-senescent
cells in vitro (Chini et al., 2019). Recently, studies from two
independent groups (Chini et al., 2020; Covarrubias et al.,
2020) revealed that CD38+ proinflammatory macrophages are
the major cells that cause the decline of NAD+ levels in
white adipose tissue and liver of mice. The expression of
CD38 is induced in the proinflammatory macrophages through
the SASP factors of senescent cells in vivo. These studies
uncovered a new causal link among senescent cells, CD38+
proinflammatory macrophages, and NAD+ decline in mice
during aging. The levels of NAD+ also decline in vascular
endothelium in aging, which leads to a decrease in blood flow
of major organs whose function is critically dependent on
blood flow (Das et al., 2018). A major question arose from
this observation–does the aging-induced decrease of endothelial
NAD+ result from impaired NAD+ biosynthesis or increased
NAD+ consumption? ECs express NAD+ consuming enzymes
including CD38, SIRT1, and poly(ADP-ribose) polymerases.
In the cerebro-microvasculature, activated poly (ADP-ribose)
polymerase is the main enzyme that utilizes NAD+ and
contributes to the cognitive decline in mice (Tarantini et al.,
2019). Future studies are needed to tease out the mechanisms that
underlie the decline of NAD+ levels in the vascular endothelium
in aging and disease.

Cellular Senescence in vivo–Insights
Learned From p16 Reporter Mice
There are different mouse models available to study the
phenotypes of senescent cells in vivo. The p16LUC reporter
mouse was generated in 2014 that harbors a knockin of the
luciferase gene into the p16INK4a locus (Sorrentino et al.,
2014). The p16-3MR (trimodality reporter) is a very complex
reporter mouse that can be used for the detection of highly
expressing p16+ senescent cells by luciferase activity, selective
elimination with ganciclovir, and isolation by red fluorescent
protein (Demaria et al., 2014). p16 tdTom mice carry a
reporter allele with tandem-dimer Tomato (tdTomato) knocked
into the endogenous p16INK4a locus (Liu J. Y. et al., 2019).
Recently, in vivo dynamics and heterogeneity of senescent cells
were examined using novel p16 reporter mice and single cell
transcriptome analysis (Omori et al., 2020). In this mouse
strain, a tamoxifen controlled Cre expression cassette was

inserted into the endogenous Ink4a locus of the p16 gene
without affecting p16 expression. This line of mice was then
intercrossed with the tdTomato line to excise the stop cassette
upstream of the tdTomato gene to allow the expression of
tdTomato in the presence of Cre expression. The authors
revealed several very interesting observations (Omori et al.,
2020): (1) the majority of but not all cells with high p16
expression are senescent; (2) the number of senescent cells is
about 1–3% in different organs when the mice are at the age
of 1 year old; (3) the half-life of senescent cells are about
2.6–4.2 months for different organs; (4) gene ontology analysis
of downregulated genes in senescent cells revealed that genes
involved in protein catabolism, modification, and degradation
are enriched; and (5) short-term (3 weeks) elimination of
senescent cells reduces lipid droplet accumulation and alleviates
inflammation in the liver of a mouse model of nonalcoholic
steatohepatitis. In a different line of p16 reporter mice, a
Cre expression cassette was inserted into the endogenous p16
genomic locus that allows for the constitutive expression of Cre,
which can be used to label or eliminate p16-expessing cells
(Grosse et al., 2020). With the elimination of p16-expressing
cells when mice were young, some of them became increasingly
sick with untreatable skin ulcerations or requiring euthanasia
at the age of 1-year old. The highest number of senescent
cells (EGFP positive cells in the mTmG reporter mice) was
found in the liver and the majority of them are vascular ECs
(Grosse et al., 2020), which is consistent with the results from
the first line of new p16 reporter mice (Omori et al., 2020).
Moreover, CD31-positive cells (representing ECs) also dominate
among senescent cells in other organs, including in the heart
and lung. The liver senescent ECs had increased expression
of SASP markers, and underwent major metabolic changes
in fructose/mannose, nucleotides, and glutathione metabolism.
Surprisingly, endocytic capacity and detoxifying function are
enhanced in senescent liver sinusoidal ECs from mice at the
age of 1-year old. Age-induced pseudo-capillarization eventually
impairs both functions later in life that in turn contributes
negatively to lifespan (Grosse et al., 2020). Continuous long-
term removal of senescent liver sinusoidal ECs causes liver
perivascular fibrosis because the removed cells are not replaced
with new ECs. Acute elimination of senescent cells in old mice
also results in a significant decrease of CD31-positive cells
in the liver and other tissues which leads to an increase in
blood-vessel permeability and subsequent perivascular fibrosis.
These data demonstrate cell-specific effects associated with
elimination of senescent cells. In particular, senescent liver
sinusoidal ECs are structurally and functionally distinct; the
removal of them can lead to detrimental consequences due
to the activation of a fibrotic response in the absence of
the replacement of these removed ECs (Grosse et al., 2020).
Future studies will be needed to clarify what underlies the
discrepancy in the consequences of eliminating senescent
cells between the two studies described above. This also
raises the possibility that selective senolytics may need to be
designed to eliminate a specific population of senescent cells
in different organs or at different senescent stages to avoid
adverse consequences.
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Machine Learning in Cellular
Senescence
Deep learning is a subfield of machine learning that employs
biology-inspired neural networks to learn and model the
complicated associations between data and output for
classification and prediction (Tang et al., 2019). It has been
studied for many different applications, such as cancer
diagnostics (Kleppe et al., 2021), medical image analysis
(Wiestler and Menze, 2020), multi-omics and big data analyses
(Krassowski et al., 2020; Haemmig et al., 2021; Mahmud et al.,
2021), long noncoding RNA research (Alam et al., 2020), and
protein structural modeling and design (Gao et al., 2020).
Recently, deep learning was employed to identify senescent ECs
(Kusumoto et al., 2021). The authors developed a quantitative
scoring system to examine cellular senescence of ECs. This Deep
Learning-Based Senescence Scoring System by Morphology was
also used to screen and identify compounds that suppress the
senescent phenotypes. Moreover, meta-analysis was performed
to study EC senescence utilizing eight published datasets of
transcriptome analysis (Park and Kim, 2021). Then Meta-
analytic-based machine learning analysis was used to identify
common features of EC senescence in genes and pathways.
The authors identified 36 core features of genes (top five genes
are IGFBP5, IFI27, PLAT, MX1, and IFIT1), 57 core features
of pathways (e.g., glycine-serine and threonine metabolism
and phosphoglycerate dehydrogenase), and 13 SASP genes
that are EC-specific (e.g., PLAT, PLAU, ICAM1, MMP1, FAS,
IGFBP7, SERPINE1, TIMP2, KITLG, VEGFA, TIMP1, CCL8,
and TNFRSF1A). Of note, the data inputs of the study are from
different types of ECs and sources. The identified SASP genes
might not be simultaneously activated in a specific type of EC
senescence. As more scientists will feed their experimental data
into computer models, machine learning and deep learning will
yield many more surprises in the field of cellular senescence.
It would be anticipated that a “digital” senescent cell could be
produced in the future.

CELLULAR SENESCENCE OF
ENDOTHELIAL CELLS

Early studies have demonstrated that EC senescence occurs
in vivo. Senescent ECs are detected in animal models and human
tissues in many different patho-physiological conditions. For
example, single and double balloon denudations of rabbit carotid
arteries induces EC senescence revealed by SA-β-gal staining
(Fenton et al., 2001), a commonly used marker of cellular
senescence. The authors postulated that vascular cell senescence
may contribute to atherogenesis and postangioplasty re-stenosis.
Senescent ECs were also observed in Zucker diabetic rats (Chen
et al., 2002; Brodsky et al., 2004). The number of senescent ECs
increased sixfold at the age of 22 weeks old, which is associated
with a dramatic induction of p53, p21, and p16 (Brodsky et al.,
2004). These β-gal-positive ECs can be reduced by treatment
with ebselen, a peroxynitrite scavenger (Brodsky et al., 2004).
Recently, single-cell RNA sequencing revealed that about 10%

of cerebromicrovascular ECs undergo cellular senescence in the
brain of 28-months-old mice (Kiss et al., 2020). SA-β-gal-positive
ECs are also present in human atherosclerotic plaques of aorta
and coronary arteries (Vasile et al., 2001; Minamino et al., 2002),
and adipose tissues of obese human subjects (Villaret et al., 2010).
Senescent ECs exhibit a number of structural and functional
changes, have more protein aggregation than young cells (Hwang
et al., 2019; Kopacz et al., 2020), and display pro-inflammatory,
pro-thrombotic, vasoconstrictive phenotypes, thereby promoting
age-associated diseases (Jia et al., 2019).

One of the intriguing features of EC senescence is the changes
in metabolism, which is not well-understood (Sabbatinelli et al.,
2019). In quiescent ECs, glycolysis generates up to 85% of the
total cellular ATP content (De Bock et al., 2013; Eelen et al.,
2018; Rohlenova et al., 2018); and the primary function of
mitochondria is to serve as a biosynthetic and signaling hub
(Quintero et al., 2006; Groschner et al., 2012; Diebold et al., 2019)
rather than to produce ATP. In general, senescent cells demand
more energy from glycolysis. Senescent ECs seem to display a
different senescence-associated metabolic shift. Studies revealed
that senescent ECs have a decline in glycolysis (Unterluggauer
et al., 2008; Kuosmanen et al., 2018), or in mitochondria-
mediated oxidative phosphorylation (Kim Y. M. et al., 2018;
Haemmig et al., 2020; Cheng et al., 2021). So what could be the
energy source for senescent programming and SASP in ECs? It
turns out that glutaminolysis substantially contributes to energy
regeneration in senescent HUVECs (Unterluggauer et al., 2008);
senescent HUVECs (late passage with 90% beta-gal positivity)
exhibit very high glutamine consumption rates leading to more
glutamate and lactate production, which is not sufficient to
retain the levels of ATP in these cells. Interestingly, inhibition of
glutaminase, the first enzyme within the glutaminolytic pathway,
induces cellular senescence in early passage of HUVECs.
Recently, it was found that glutaminolysis is required for the
survival of senescent cells in vitro and in vivo–the inhibition of
glutaminolysis eliminated senescent cells and ameliorated age-
associated organ dysfunction (Johmura et al., 2021). Examination
of glutaminolysis on EC metabolism under different disease states
may offer new druggable targets to control EC senescence.

Common Stressors That Cause
Endothelial Cell Senescence
DNA Damage
The DNA damage response resulting from genotoxic, oxidative,
and metabolic stress is controlled by three phosphoinositide
3-kinase-related kinases: Ataxia-telangiectasia mutated (ATM),
ATM- and Rad3-related, and DNA-dependent protein kinase
(Shimizu et al., 2014; Blackford and Jackson, 2017). The DNA
damage response orchestrates the appropriate repair of DNA
damage coordinating with other ongoing cellular processes such
as proliferation, cell survival, apoptosis, and senescence. p53-
mediated signaling downstream of ATM is one of the key
branches of the DNA damage response (Shiloh and Ziv, 2013),
which plays important roles in cellular senescence. In response
to DNA damage, cGAS-STING signaling is also important in
promoting cellular senescence (Sun and Harris, 2020). Human
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primary ECs are more sensitive to genotoxic substances such as
beno[a]pyrene, a component in cigarette smoke and a common
mutagen in the environment than human primary smooth
muscle cells, and pericytes, because nucleotide excision repair
proteins Excision repair cross complementing-group 1 (ERCC1),
XPF, and ligase I are expressed at lower levels in human
primary ECs in culture.

Are ECs also more sensitive to genotoxic substances in vivo?
Unrepaired DNA damage contributes importantly to vascular
aging and the development of cardiovascular disease (Durik et al.,
2012; Bautista-Nino et al., 2016; Uryga et al., 2016; Shah et al.,
2018). ERCC1 is a mammalian endonuclease that is required
for both nucleotide excision repair and Fanconi anemia inter-
strand crosslink repair. ERCC1 also prevents endogenous DNA
damage through an uncharacterized mechanism (Mulderrig
and Garaycoechea, 2020). ERCC1-deficiency in mice is also a
mouse model of accelerated aging. Its deficiency leads to cellular
senescence in cells and mice (Kim et al., 2020) and is dependent
upon ATM kinase (Zhao et al., 2020). ATM is activated in
senescent cells in culture and tissues from ERCC1-deficient mice
and naturally aged mice. Genetic and pharmacologic inhibition of
ATM attenuates senescent phenotypes in ERCC1-deficient cells
and mice. Recently, mice with EC-specific loss of ERCC1 were
generated (Bautista-Nino et al., 2020). These mice died at the age
of 5.5–6 months. At the age of 5 months, these mice developed
an increased permeability of the renal microvasculature.
Aorta and iliac arteries of ERCC1 EC-specific knockout
mice exhibited decreased endothelium-dependent relaxations
in response to acetylcholine, which is associated with reduced
NO availability and increased oxidative stress. Endothelium-
dependent relaxation was also impaired in coronary arteries.
ERCC1 EC-specific knockout mice showed a hypertrophic aorta
wall with outward remodeling. These data demonstrated that
endothelial genomic instability can cause vascular aging and
macrovascular and microvascular dysfunction.

Mitochondrial Dysfunction
Mitochondrial dysfunction in ECs can cause cellular senescence
(Schleicher et al., 2008). Mitochondria are dynamic organelles
and their function is maintained through proper coordination
of mitochondrial biogenesis, dynamics (fission and fusion), and
turnover (mitophagy). Alterations in mitochondrial morphology
and function in ECs have been observed in obesity and diabetes
(Shenouda et al., 2011; Costa et al., 2016). For example,
increased mitochondrial fission was observed in venous ECs
freshly isolated from patients with diabetes mellitus (Shenouda
et al., 2011). Defects in mitochondrial function play a key
role in the regulation of cellular senescence through different
mechanisms such as mitochondria-borne reactive oxygen species
(Ziegler et al., 2015; Wiley et al., 2016; Chapman et al.,
2019; Vasileiou et al., 2019), though a recent study raised
the question whether mitochondria are the main source of
reactive oxygen species in the cell (Pak et al., 2020). In
comparison to young HUVECs, old senescent HUVECs have
extended and interconnected mitochondria, which is associated
with the reduced expression of Fis1 and Drp1, two important
proteins involved in mitochondrial fission (Mai et al., 2010;

Lin et al., 2015). Silencing of Drp1 induces senescence in
young HUVECs with increased SA-β-gal staining, elongated
mitochondria, impaired autophagy, as well as increased p21
and p16 expression. Drp1 expression is also reduced in the
endothelium of aorta in old rats associated with impaired
autophagic processing. Drp1 knockdown also impairs autophagic
flux in the vascular endothelium of common carotid arteries in
rats (Lin et al., 2015). Excessive mitochondrial fission also induces
endothelial senescence (Kim Y. M. et al., 2018). Loss of protein
disulfide isomerase A1 causes EC senescence through inducing
mitochondrial fragmentation and mitochondrial reactive oxygen
species production. The underlying molecular basis is that
knockdown of protein disulfide isomerase A1 results in
mitochondrial fragmentation by increasing Drp1 sulfenylation at
cysteine 644 and in turn Drp1 activity (Kim Y. M. et al., 2018).

Disturbed Flow
The vascular endothelium is exposed to different mechanical
stimuli that can be detected and converted into biochemical
signals and responses through mechanoreceptor proteins (Jufri
et al., 2015; Xu et al., 2018), mechanosensitive transcription
factors (Niu et al., 2019), other types of mechanosensors (Fang
et al., 2019), and endothelial glycocalyx (Dragovich et al., 2016;
Moore et al., 2021). Disturbed flow is one type of mechanical
stimuli that occurs in arterial bifurcations and curvatures, areas
where atherosclerosis develops with the presence of senescent
ECs (Chiu and Chien, 2011; Warboys et al., 2014). It plays
important roles in regulating gene expression, metabolic changes,
endothelial function, atherogenic pathways, and EC fates such
as cellular senescence (Wu et al., 2017; Demos et al., 2020;
Dominic et al., 2020; Nakayama et al., 2020). The molecular
mechanisms by which disturbed flow promotes endothelial
senescence are incompletely characterized (Dominic et al., 2020).
First, disturbed flow activates the DNA damage response.
It has been demonstrated that disturbed flow induces EC
senescence via a p53-p21 signaling pathway, which is attenuated
by sirtuin 1 activation (Warboys et al., 2014). Moreover,
disturbed flow causes telomere dysfunction. Disturbed blood flow
induces the phosphorylation of telomeric repeat-binding factor
2 (TERF2)-interacting protein and subsequent nuclear export
of its complexes with TERF2 in vitro and in vivo, instigating
atherosclerosis (Kotla et al., 2019b). EC-specific knockout of
TERF2-interacting protein inhibited disturbed flow-induced
EC senescence and atherosclerotic plaque formation. In a
separate study, Makorin-1 was identified as a major downstream
molecule of TERF2-interacting protein (Kotla et al., 2019a).
Makorin-1 is a transcriptional co-regulator and an ubiquitin E3
ligase. Phosphorylated TERF2-interacting protein reduced the
expression of makorin-1, which is critical for EC senescence and
SASP induced by disturbed flow (Kotla et al., 2019a). Although
the molecular mechanism downstream of makorin-1 was not
studied yet, these results indicate that protein posttranslational
modification and proteasome-dependent degradation are likely
important players in EC senescence and SASP. Lastly, disturbed
flow induces the production of excessive reactive oxygen
species (Heo et al., 2011). These three primary mechanisms
are interconnected. While neither the mechanosensors nor the
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endothelial glycocalyx have been examined for the underlying
mechanisms linked to senescence, it has been speculated that
impaired structure and function of endothelial glycocalyx could
mediate the adverse effects of disturbed flow and lead to cellular
senescence. This is in part because disturbed flow leads to the
degradation of endothelial glycocalyx (Mensah et al., 2020) and
the thickness and barrier function of the endothelial glycocalyx
decreases in aging (Machin et al., 2018).

Oxidative Stress
Hydrogen peroxide is widely used to induce cellular senescence in
cell culture. While it is a signaling mediator under physiological
conditions, it is also a main form of endogenous reactive
oxygen species that can induce oxidative stress and cellular
senescence in vivo. The main sources of hydrogen peroxide are
NAPDH oxidase, xanthine-oxido-reductase, endothelial nitric
oxide synthase, and mitochondrial respiration complexes in
vascular endothelium (Cai, 2005; Breton-Romero and Lamas,
2014). The levels of hydrogen peroxide also increase in vascular
endothelium resulting from impaired antioxidant machinery
such as endothelial loss of thioredoxin reductase 2 (Kirsch et al.,
2016). When hydrogen peroxide levels exceed the antioxidant
capacity of cells, it induces cellular senescence through different
mechanisms. In late-passage ECs, the levels of intracellular
reactive oxygen species increase which contribute to cellular
senescence by accelerating telomere shortening (Haendeler et al.,
2004; Kurz et al., 2004). Interestingly, this is mediated by inducing
the nuclear export of telomerase reverse transcriptase into the
cytosol (Haendeler et al., 2004). Early studies indicated that
oxidative stress rather than telomere shortening plays a dominant
role in inducing cellular senescence of ECs isolated from
atherosclerotic chronic smokers (Farhat et al., 2008). Oxidative
stress causes oxidative DNA, lipid, and protein damage, all can
promote cellular senescence of vascular endothelium. It should
be noted that the exogenously added hydrogen peroxide in many
studies does not mimic the more selective spatiotemporal pattern
of endogenous hydrogen peroxide flux, even its concentration
is much higher than endogenous hydrogen peroxide, and has
different functional consequences (Saeedi Saravi et al., 2020).

Telomere Shortening
Inhibition of telomere function induces senescence, while the
introduction of telomerase restores the impaired function
associated with senescence in human aortic ECs (Minamino
et al., 2002). In coronary ECs obtained from 11 patients with
coronary artery disease, telomere length is shorter than in age-
matched patients without coronary artery disease. In addition,
the telomere length is also shorter in cells at atherosclerotic
lesions than at the same location of non-atherosclerotic lesions
(Ogami et al., 2004). When the telomere reaches a critical length,
it activates the DNA damage response (d’Adda di Fagagna et al.,
2003; Takai et al., 2003), thereby promoting cellular senescence.
As discussed above, oxidative stress and disturbed flow can
promote cellular senescence, at least in part, by accelerating
telomere shortening.

Radiation
Radiation-induced vascular injury is commonly observed in
cancer patients after radiation therapy (Murphy et al., 2012;
Venkatesulu et al., 2019; Ramadan et al., 2021). The major
drivers of radiation-induced vascular injury are oxidative stress,
DNA damage, and inflammation (Lafargue et al., 2017; Baselet
et al., 2019). The vascular endothelium is likely more susceptible
to radiation-induced cellular senescence (Aratani et al., 2018;
Venkatesulu et al., 2018) and contributes to the higher rates
of radiation-induced cardiovascular disease in cancer patients
(Wang et al., 2016). Chronic low-dose levels of gamma radiation
accelerates endothelial senescence as revealed by an increase in
SA-β-gal staining (Yentrapalli et al., 2013a). The expression of a
great number of radiation-induced proteins are altered, including
an increase in p53, p21, and plasminogen activator inhibitor-1
(PAI-1) expression. These irradiated cells also display increased
oxidative stress, decreased nitric oxide availability, and impaired
PI3K-Akt signaling (Yentrapalli et al., 2013a,b; Azimzadeh
et al., 2015). Radiation-induced endothelial senescence was also
observed in rat cerebromicrovascular ECs in response to a higher
amount of gamma-irradiation (2–8 Gy) (Ungvari et al., 2013).
The gamma-irradiated cells expressed a higher level of p16
expression and acquired SASP characterized by an increased
expression of proinflammatory cytokines and chemokines,
including IL-6, IL-1α, IL-8, and monocyte chemotactic protein-
1 (Ungvari et al., 2013). A large number of proteins were altered
in their expression in the secretome of senescent ECs induced by
irradiation. This irradiation-induced SASP affects the function of
nonirradiated neighbor cells in a STAT3- and ICAM-1-mediated
mechanism (Philipp et al., 2017). In response to radiation,
endothelial function is impaired with the following features
(Venkatesulu et al., 2018; Baselet et al., 2019): (1) ECs manifest
a sterile pro-inflammatory state resulting from DNA damage
and oxidative stress; (2) endothelium-mediated vasodilation is
impaired; (3) ECs display a pro-coagulant and pro-thrombotic
phenotype; (4) ECs exhibit mitochondrial dysfunction and
metabolic perturbations; (5) radiation induces EC death; and (6)
ECs become senescent.

The common causes and features of endothelial cellular
senescence are summarized in Figure 1. In addition to
the common causes of cellular senescence of the vascular
endothelium, amyloid β 1-42 oligomer (Donnini et al., 2010;
Singh Angom et al., 2019), hyperglycemia (Prattichizzo et al.,
2018), oxidized LDL, homocysteine (Zhang et al., 2015), and
angiotensin II (Yang D. et al., 2019; Khemais-Benkhiat et al.,
2020) all can induce or accelerate endothelial cellular senescence.

Recent Advances in Endothelial Cell
Senescence
In the last several years, a number of new mechanisms
and regulators such as lncRNAs (discussed in Section
“Long Noncoding RNAs in Cellular Senescence of Vascular
Endothelium” below) were identified in EC senescence (Liu B.
et al., 2019; Pan et al., 2021). Here, we discuss recent progress in
EC senescence focusing on in vivo studies within the last 3 years
unless otherwise being discussed in other sections.
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FIGURE 1 | Common causes and features of endothelial cellular senescence. EC, endothelial cell.

Loss of sirtuin activities is involved in the pathogenesis
of cardiovascular and metabolic disease (Kane and Sinclair,
2018). Here, we discuss several recent studies about the role
of sirtuins in cellular senescence of the vascular endothelium.
SIRT1 is a member of the sirtuin family consisting of seven
histone deacetylases requiring NAD+ for enzymatic activity.
EC-specific SIRT1 knockout mice exhibit a decrease in blood
flow and endurance with age (Das et al., 2018). In contrast,
overexpression of endothelial SIRT1 has a protective effect.
NAD+ repletion rescued the age-associated decrease in capillary
density and blood flow, an effect that can be boosted by hydrogen
sulfide (Das et al., 2018). The protective effects of SIRT1 on
vascular aging is mediated, at least in part, by inhibiting the
expression of PAI-1. PAI-1 was first identified as a marker and
mediator of cellular senescence in fibroblasts (Kortlever et al.,
2006; Vaughan et al., 2017). PAI-1 is a master contributor
of homocysteine-induced endothelial senescence and vascular
aging. Pharmacological inhibition of PAI-1 blunts homocysteine-
induced cellular senescence of ECs in culture and in mice,
indicating that PAI-1 is a potential target to improve endothelial
and cardiac health (Sun et al., 2019). Inhibition of PAI-1
expression by SIRT1 mediates in part the protective effects of
SIRT1 in vascular endothelial senescence (Wan et al., 2014).
SIRT1 is inversely correlated with PAI-1 in senescent HUVECs,
aortas of aged mice, and human atherosclerotic plaques.
Furthermore, SIRT1 inhibition increases PAI-1 expression

in young HUVECs, and conversely, SIRT1 overexpression
decreases PAI-1 expression in senescent HUVECs. Importantly,
EC-specific transgenic SIRT1 overexpression decreased PAI-1
expression in the aortas of old mice mediated by binding to the
PAI-1 promoter and reducing the acetylation of histone H4 lysine
16 (Wan et al., 2014).

Another family member, SIRT6, also protects ECs from
senescence. Its expression is decreased in senescent ECs and EC-
specific deletion of SIRT6 exacerbated vascular aging through
forkhead box M1, a critical transcription factor for cell cycle
progression and senescence (Lee et al., 2020). These studies
demonstrate that SIRT6 has a protective role in the aging
vasculature (Lee et al., 2020). In a separate study, EC-specific
deletion of SIRT6 enhanced blood pressure by impairing
endothelial function, whereas SIRT6 overexpression ameliorated
EC senescence (Guo et al., 2019). Mechanistically, SIRT6
prevented hypertension by inducing the expression of GATA-
binding protein 5 (GATA5) through inhibiting the expression of
NK3 homeobox 2, a transcriptional repressor, by deacetylating
histone H3 lysine 9 in its promoter (Guo et al., 2019). The
potential role of GATA5 and NK3 homeobox 2 in regulating
EC senescence was not examined in this study (Guo et al.,
2019). Recently, it was found that SIRT7 expression was reduced
in the vascular endothelium of a mouse model of progeria–
a premature aging syndrome (Sun et al., 2020). EC-specific
restoration of SIRT7 by recombinant adeno-associated virus
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serotype 1 ameliorated aging features and extended life span
in progeria mice (Sun et al., 2020). These new studies provide
additional evidence for EC-specific sirtuin-activating therapies in
treating and preventing aging and aging-related cardiovascular
and metabolic diseases.

Angiopoietin-like 2 promotes vascular inflammation,
endothelial dysfunction, and atherosclerosis (Farhat et al.,
2013; Horio et al., 2014). In support of this, knockdown of
angiopoietin like-2 by a small hairpin RNA mediated by
adeno-associated virus serotype 1 delayed the formation of
atherosclerotic plaques and reduced cellular senescence and
inflammation in the aortic endothelium (Caland et al., 2019).
One week after the knockdown of angiopoietin like-2, the
number of senescent ECs was reduced due to apoptosis.
Four weeks post knockdown, the expression of endothelial
progenitor markers was increased in the endothelium suggesting
endothelial repair. In arteries of atherosclerotic patients,
the expression of angiopoietin like-2 strongly correlates
with p21 expression. These data suggest that therapeutic
down-regulation of angiopoietin like-2 may be protective for
atherosclerosis by eliminating senescent ECs and stimulating
endothelial repair.

CD9 is an important regulator of senescence in ECs.
Its expression is increased in arteries of older humans and
in the atherosclerotic plaques in humans and mice (Cho
et al., 2020; Kim and Choi, 2020). Knockdown of CD9 in
senescent ECs attenuates senescence, and its overexpression
in young ECs promotes senescence. CD9 neutralization
or ablation decreased the formation of atherosclerotic
lesions in ApoE−/− mice. These data indicate that CD9
is a potential target for preventing and treating vascular
aging and atherosclerosis. CD9 is highly expressed in
leukocytes (Reyes et al., 2018). Future studies will need
to clarify whether leukocyte-derived extracellular vesicles
containing CD9 contribute to the increase of CD9 in
ECs during aging.

Cdc42, a member of the Rho GTPase family, is involved
in the regulation of actin cytoskeleton and serves as
a focal node of various signaling pathways in cells.
Endothelial deletion of CDC42 reduced pro-inflammatory
markers, endothelial senescence, and atherosclerotic lesion
formation in mice (Ito et al., 2014). Knockdown of cdc-
42 in mutant worms restored the shortened lifespan
highlighting an evolutionary conserved role for this
protein in aging.

The role of senescent ECs was examined recently in
diabetic retinopathy (Crespo-Garcia et al., 2021). Senescent
ECs accumulate in retinas during peak pathological
neovascularization in a mouse model of ischemic
retinopathy and of patients with diabetic retinopathy. Small
molecule inhibitors of the anti-apoptotic protein BCL-
xL selectively eliminated a population of senescent ECs
by inducing apoptosis, and ameliorated oxygen-induced
retinopathy. These studies demonstrate that senescent
ECs are central to pathological retinal angiogenesis and
they rely on BCL-xL for survival. The broad implication
is the potential use of BCL-xL inhibitors for eliminating

senescent ECs in other diseases including cardiovascular and
metabolic diseases.

SASP in ECs
Senescent cells actively produce a complex secretome known
as the SASP (Coppe et al., 2010). An “SASP Atlas” was
recently identified using unbiased proteomic profiling in several
types of senescent cells induced by different stimuli (Basisty
et al., 2020). The authors found that soluble SASP (as relative
to exosome SASP; see below) protein components of the
same cell type are highly heterogeneous and inducer-specific.
In addition, the soluble SASP protein components are also
largely distinct for each cell type. However, 17 soluble SASP
proteins are shared by all cell types and inducers examined.
Similarly, exosomes/extracellular vesicles-resident SASP proteins
are largely distinct for each senescent phenotype. These data
demonstrate that protein components of SASP is highly complex
and dynamic in a cell type- and inducer-specific manner. Future
studies are required to examine the RNA and lipid components of
SASP as our knowledge about them is limited. Below we discuss
what we know about SASP of ECs.

Senescent ECs can produce different SASP phenotypes
depending on the type, duration, and magnitude of stresses, and
their growth environment. HUVECs with replicative senescence
produce high levels of interleukin 8 (IL-8) (Hampel et al.,
2006), IL-6, PAI-1, and monocyte chemotactic protein-1 (Lin
et al., 2015). Senescent HUVECs induced by irradiation or
doxorubicin produce high levels of C-X-C motif chemokine 11
(Hwang et al., 2020). In senescent HUVECs induced by disturbed
flow, cells display a strong SASP phenotype including excessive
ROS, which is different from the SASP produced by HUVECs
with replicative senescence (Dominic et al., 2020). IL-1α was
recently identified as an important functional component of
SASP in both replicative and premature senescent HUVECs
(Barinda et al., 2020). Chronic TNF-α exposure promotes the
SASP characterized by high levels of adhesion molecules such
as E-selectin and ICAM1 (intercellular adhesion molecule 1),
cytokines including IL-6 and IL-8, as well as PAI-1 and IGFBP-5
(insulin-like growth factor binding protein-5) in HUVECs (Khan
et al., 2017). The dominant and functional SASP factors are
different in these in vitro studies. This is probably also determined
by epigenetic mechanisms (see Section “Long Noncoding RNAs
in Cellular Senescence of Vascular Endothelium” below). The
studies about SASP of ECs in vivo are scarce. In older adults,
a panel of seven SASP factors were detected in human plasma,
that associate with age, frailty, and adverse post-surgery outcomes
(Schafer et al., 2020). Circulating SASP factors such as GDF15
(growth differentiation factor 15), osteopontin, and IL-8 are
abundantly produced and secreted by senescent EC and their
circulating levels increase with aging. The complete catalog
of EC SASP factors needs to be created in the future using
quantitative proteome analysis. Circulating SASP factors may
serve as clinically useful biomarkers of age-related diseases to
predict disease risk.

Senescent ECs produce more functional extracellular
vesicles that exert autocrine or paracrine effects. These
extracellular vesicles are classified as small extracellular vesicles
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(Riquelme et al., 2020), microvesicles (Carracedo et al., 2019), or
microparticles (Abbas et al., 2017), and are thought to represent
different subpopulations of extracellular vesicles. They can
promote cell migration (Riquelme et al., 2020) and impact the
function of other vascular cells leading to the development of
cardiovascular disease (Carracedo et al., 2019). Microparticles
from senescent ECs or patients with acute coronary syndromes
promote premature EC aging under atheroprone low shear
stress and thrombogenicity through angiotensin II activated
signaling (Abbas et al., 2017). Extracellular vesicles can mediate
the communication between ECs and vascular smooth muscle
cells (Hergenreider et al., 2012). EC-derived extracellular
vesicles induced protein synthesis and senescence in vascular
smooth muscle cells in culture (Boyer et al., 2020). It is known
that extracellular vesicles contain non-coding RNAs, such as
microRNAs and lncRNAs (Hergenreider et al., 2012; Khalaj
et al., 2019). EC-derived extracellular vesicles can regulate gene
expression in recipient cells through these microRNAs and
lncRNAs. Thus, EC-derived extracellular vesicles are important
SASP components that warrant additional attention.

SASP can mediate many patho-physiological effects of
senescent cells (Gorgoulis et al., 2019; Birch and Gil, 2020). It is
well known that senescent ECs can affect the function of vascular
smooth muscle cells in the vessel wall due to reduced nitric oxide
bioavailability. Moreover, senescent ECs are sufficient to impair
insulin signaling in mice consuming normal chow diet through a
SASP factor - IL-1α (Barinda et al., 2020). Furthermore, the SASP
of ECs induced by irradiation or doxorubicin can adversely affect
the success of cancer therapy (Hwang et al., 2020). Lastly, the
SASP factors secreted by senescent ECs trigger platelet activation
in vitro (Venturini et al., 2020). Although it was not revealed
how the involved SASP factors mediated these effects, it would
be interesting to identify them and examine their roles in vivo.
Improving our understanding of SASP of senescent ECs will
add more tools in our arsenal to combat aging-related diseases
by tailoring SASP, which is of importance when elimination of
senescent cells could result in adverse effects.

Sex Differences in Vascular Endothelial
Senescence
Sex differences in cardiovascular aging and age-related diseases
have been observed in mice and humans (Merz and Cheng,
2016; DuPont et al., 2021), which can result from changes in
the expression of sex hormones, hormone receptors, and other
steroid receptors such as mineralocorticoid receptors during
aging. As an example, sex-specific mechanisms regulate arterial
stiffness, a pathological state defined as resistance to deformation
or a loss of elastic compliance caused by changes in the
geometry and microstructure of the vascular wall (Ogola et al.,
2018; DuPont et al., 2019). Arterial stiffness occurs naturally
in aging and accelerated by chronic metabolic disease states.
The causal role of endothelial senescence in arterial stiffness is
reviewed recently (Jia et al., 2019). One of the major underlying
mechanisms is that the impaired NO bioavailability in senescent
ECs promotes arterial stiffness (Ogola et al., 2018; Jia et al., 2019).
However, our knowledge about sex differences in endothelial

cellular senescence is very limited. An age-related increase in
arterial telomere uncapping and senescence is greater in women
than men (Walker et al., 2016), indicating a sex difference in
vascular senescence. Future studies should reveal the key players,
mechanisms, and signaling pathways about it in both preclinical
animal models and human subjects including postmenopausal
females and age-matched males.

LONG NONCODING RNAS IN CELLULAR
SENESCENCE OF VASCULAR
ENDOTHELIUM

The regulation of cellular senescence involves different layers
of mechanisms at chromatin, DNA, RNA, and protein levels
(Figure 2). The main epigenetic mechanisms including DNA
methylation, histone modifications, and regulation by non-
coding RNAs are all important in regulating cellular senescence.
Cellular senescence is associated with many changes in chromatin
structure and function (Criscione et al., 2016). Chromatin
accessibility is redistributed in HUVECs during senescence,
which is determined in part by the AP-1 transcription
factor family such as ATF3 (Zhang et al., 2021). Senescence-
associated changes in DNA methylation primarily involve global
hypomethylation and focal hypermethylation (Yang and Sen,
2018). Hypomethylation occurs particularly at repeat regions,
while focal hypermethylation occurs at CpG rich promoter
sequences (Yang and Sen, 2018). Histone methylation is an
important mechanism controlling EC senescence by regulating
gene expression (Yang et al., 2020). Specifically, Smyd3, a histone
H3 lysine 4 methyltransferase, induces the expression of PARP16
[poly(ADP-ribose) polymerase 16] by increasing the levels of
histone H3 lysine 4 trimethylation at the promoter region of
PARP16 gene, an endoplasmic reticulum membrane protein that
promotes cellular senescence of rat aortic ECs by increasing
endoplasmic reticulum stress in response to angiotensin II.
Recently, KAT7, a histone acetyltransferase, was identified as
a key driver of cellular senescence in human mesenchymal
precursor cells (Wang et al., 2021). KAT7 increases histone
H3 lysine 14 acetylation, activates p15INK4b transcription, and
induces cellular senescence (Wang et al., 2021). It remains
unclear if KAT7 is an important driver of cellular senescence by
inducing the expression of genes that promote cellular senescence
in other cell types such as ECs?

Three-dimensional genome organization is an early event
on the path to senescence of different cell types including
ECs (Zirkel et al., 2018). This is determined by DNA binding
proteins such as high-mobility group box protein 2 (HMGB2)
and CCCTC-binding factor. Both are key players in regulating
genome structure by determining interchromosomal and
intrachromosomal interactions (Aird et al., 2016; Lazniewski
et al., 2019; Wang et al., 2019). HMGB2 expression was depleted
from cell nuclei upon cellular senescence. The depletion
alters genome organization by inducing a heterochromatic
shift characterized by alterations in histone methylation
and acetylation and inducing spatial CCCTC-binding factor
clustering. These changes in genome structure allows the entry
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FIGURE 2 | The roles of functional RNA molecules in regulating endothelial cellular senescence are not well- studied.

of senescence. Relevant points to this process include: (1)
the intrachromosomal interactions of the same chromosomal
regions are cell-type-specific upon senescence entry; and (2)
at this stage on the path to senescence, the senescent program
is likely reversible. The remaining questions are: how does
the genome reorganization reprogram gene expression to
inhibit the expression of genes involved in cell proliferation
while inducing the expression of genes involved in SASP?
Is the structure of genomic loci containing SASP genes
maintained to allow active gene expression? How does
the genome reorganization coordinate with key signaling
pathways such as p53 signaling and cGAS-STING signaling
that promote cellular senescence? Are lncRNAs important
in determining the functional output of the genome during
genome reorganization upon senescence entry? With advanced
techniques such as ATAC-seq, chromatin conformation capture
(3C) and related approaches become available to more scientists,
these questions will be answered and new knowledge about
the role of genome structure and chromatin modification
in cellular senescence will be revealed. Below we describe
the role of lncRNAs in regulating cellular senescence of the
vascular endothelium.

Small Nucleolar Host Gene-12
Small nucleolar host gene-12 (Snhg12) regulates angiogenesis,
tumor cell growth, apoptosis, and immune escape (Wang et al.,
2017; Zhao et al., 2018). We recently identified this lncRNA
as an important regulator of DNA damage response in the
vessel wall (Haemmig et al., 2020). RNA-sequencing of the aortic
intima in Ldlr−/− mice revealed that the lncRNA Snhg12 was
significantly downregulated during the progression phase of
atherosclerosis (Haemmig et al., 2020). Mechanistically, Snhg12

positively regulated DNA repair machinery through a direct
lncRNA-protein interaction with DNA-PK and, in turn, potently
suppressed cellular senescence (Figure 3). Reduced DNA damage
in the vascular endothelium as a result of Snhg12 overexpression
prevented vascular senescence, LDL transcytosis (permeability to
LDL), and atherosclerotic lesion formation. In contrast, biweekly
intravenous injections of LNA gapmer Snhg12 achieved nearly
50% reduction in Snhg12 expression in the intima and increased
atherosclerotic lesion size (Haemmig et al., 2020). These findings
highlight that dynamic alteration of lncRNA-protein interactions
in the vascular endothelium can impact the DNA damage
response, endothelial senescence, and vascular disease.

The protective role of Snhg12 in the vessel wall was also
revealed by a separate study (Qian et al., 2021). Snhg12
expression was also reduced by Ang II in HUVECs. The
overexpression of Snhg12 inhibited EC senescence in vitro
through a miR−25−3p/SIRT6 pathway and alleviated vascular
endothelial injury in Ang II−induced hypertensive mice
(Qian et al., 2021).

Maternally Expressed Gene 3
Maternally Expressed Gene 3 (Meg3) was first identified as a non-
protein coding gene in mice (Schuster-Gossler et al., 1998). It
received considerable attention since it was revealed that Meg3
is one of the top 15 high expressing lncRNAs in HUVECs in
2014 (Michalik et al., 2014). Meg3 functions in many different
biological processes through its interaction with different binding
partners, including several proteins such as p53, EZH2, PTBP1,
and PTBP3 (Zhao et al., 2010; Zhu J. et al., 2015; Zhang et al.,
2017; Shihabudeen Haider Ali et al., 2019). Here, we summarize
the role of Meg3 in cellular senescence (Figure 4).
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FIGURE 3 | Deficiency of long noncoding RNAs (IncRNA) SNHG12 triggers DNA double-strand breaks, endothelial senescence, and atherosclerosis.

Emerging evidence have demonstrated that Meg3 expression
limits cellular senescence in vitro and in vivo. Meg3 expression
is elevated in senescent HUVECs compared with early passage
cells (Boon et al., 2016), and in HUVECs exposed to oxidative
stress (Fuschi et al., 2017) and hypoxia (Neumann et al.,
2018). We have shown that DNA damaging agents induce
Meg3 expression in HUVECs in a p53-dependent manner,
and Meg3 knockdown induces DNA damage and inhibits
EC proliferation (Shihabudeen Haider Ali et al., 2019). These
effects of Meg3 knockdown are mediated in part by its
protein binding partner PTBP3. Meg3 knockdown causes cellular
senescence of HUVECs characterized by accelerated telomere

length shortening, an increase in the levels of superoxide,
an increase in SA-β-gal activity, impaired autophagy, and
mitochondrial dysfunction (Lan et al., 2019; Cheng et al., 2021).
Moreover, we found that Meg3 deficiency promoted cellular
senescence of the hepatic endothelium with no or minimal
effects on cellular senescence of other cell types in the liver
in diet-induced obese mice (Cheng et al., 2021). Importantly,
Meg3 knockdown impaired systemic glucose homeostasis and
insulin signaling in the liver, which can be restored by
attenuating the cellular senescence of hepatic endothelium,
indicating that cellular senescence of the vascular endothelium
impairs glucose homeostasis and insulin signaling in obesity
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FIGURE 4 | The role of maternally expressed gene 3 (Meg3) in regulating endothelial cellular senescence.

(Cheng et al., 2021). How Meg3 limits cellular senescence of ECs
is unclear. We speculate that Meg3 is involved in DNA damage
repair or promotes autophagy in response to different stresses
(Shihabudeen Haider Ali et al., 2019; Cheng et al., 2021).

NORAD
LncRNA noncoding RNA activated by DNA damage (NORAD) is
also known as linc00657. The initial functional analysis revealed
that NORAD maintains genomic stability (Lee et al., 2016).
Norad-deficient mice undergo premature aging characterized
by genomic instability and mitochondrial dysfunction (Kopp
et al., 2019). NORAD interacts with proteins such as PUMILIO
and RBMX, which likely mediate its effects on genomic
stability (Munschauer et al., 2018; Elguindy et al., 2019).
NORAD is highly expressed in ECs (Michalik et al., 2014),
which is required to limit endothelial senescence (Bian et al.,
2020). The expression of NORAD increases in aged HUVECs,
and NORAD knockdown aggravated ox-LDL-induced cellular
senescence revealed by the increased number of SA-β-gal-
positive cells and the increased expression by p53 and p21
at the mRNA level (Bian et al., 2020). NORAD knockdown
also increased the production of reactive oxygen species
and lipid peroxidation, which likely mediates the effects of
NORAD knockdown on cellular senescence (Bian et al., 2020).
NORAD interacts with SFPQ (Bian et al., 2020), a ubiquitous
nuclear RNA-binding protein involved in RNA biogenesis. The
authors also showed that NORAD knockdown promoted the
expression of proinflammatory molecules and the development
of atherosclerosis in ApoE−/− mice (Bian et al., 2020).
However, the causal relationship between cellular senescence
of vascular endothelium and atherosclerotic lesion formation
was not examined. Future studies are needed to identify the

molecular basis by which NORAD knockdown induces cellular
senescence in primary ECs.

H19
H19 is one of the first lncRNAs discovered several decades
ago (Brannan et al., 1990). H19 is an important regulator of
cellular senescence in the vascular endothelium (Hofmann et al.,
2019). H19 expression is reduced in the vascular endothelium
of aged mice. Silencing of H19 leads to cell cycle arrest at the
G0/G1 phase, increases the number of SA-β-gal positive cells
and the expression of p16 and p21 in ECs. Moreover, H19
depletion impaired the sprouting capacity of ECs in an ex vivo
aortic ring assays and reduced capillary density in the ischemic
leg of mice subjected to hindlimb ischaemia. Furthermore, the
depletion of H19 enhanced inflammatory responses indicating
that the reduction in H19 expression in vascular endothelium
contributes to inflammaging. Mechanistically, H19 suppresses
STAT3 activity and the expression of STAT3 target genes to limit
endothelial senescence and inflammaging. However, the role of
H19 in regulating cellular senescence of vascular endothelium
is unclear in atherosclerosis. H19 expression might promote
it because H19 expression contributes to the development of
atherosclerosis (Huang et al., 2019; Yang Y. et al., 2019). The role
H19 in cellular senescence of hepatic endothelium is unknown,
although H19 induces hepatic steatosis (Liu et al., 2018; Wang
et al., 2020). Thus, the function of H19 in cellular senescence of
the vascular endothelium can be protective or detrimental in a
disease-specific manner.

Linc01013
Linc01013 is also known as Age and EndMT regulated RNA
in endothelium (Aerrie) (Pham et al., 2020). The function
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of linc01013 is poorly characterized. Recently, it was revealed
that its expression was induced by oscillatory flow and aging
in HUVECs, and induced in atherosclerotic plaques from
symptomatic patients compared to asymptomatic patients and in
ischemic heart tissues from the left ventricle (Pham et al., 2020).
Loss of Aerrie impaired cellular migration, barrier function, and
angiogenic sprouting of HUVECs (Pham et al., 2020). Aerrie
interacts with Y-Box protein 1 (YBX1), a protein involved in
stress response and DNA repair among other functions in
mammalian cells (Pham et al., 2020). Loss of Aerrie leads to
DNA damage and activated DNA damage signaling (Pham et al.,
2020). Silencing YBX1 rescued DNA damage signaling activated
by the loss of Aerrie without any effects on DNA damage itself
(Pham et al., 2020). Aerrie overexpression did not affect DNA
damage under basal conditions, while it reduced DNA damage
induced by doxorubicin in HUVECs (Pham et al., 2020). These
data demonstrated that lncRNA Aerrie and YBX1 and their
interaction are important for DNA damage repair in ECs (Pham
et al., 2020). It would be interesting to examine whether there is a
mouse homolog for human lncRNA Aerrie, and whether the role
of Aerrie in DNA damage operates in vascular endothelium in
mice and humans.

ANTI-SENESCENT THERAPIES
TARGETING THE VASCULAR
ENDOTHELIUM

Our understanding of cellular senescence has been greatly
improved making it an attractive target of therapies. The
class of pharmacological interventions targeting senescent cells,
known as senotherapeutics, has garnered significant attention.
Cellular senescence can be promoted, prevented, eliminated,
modulated, and reverted depending on the disease context
(Davan-Wetton et al., 2021). The pharmacological interventions
that inhibit cellular senescence can be classified into senolytics,
senomorphics, and senescent immunotherapy (Kim and Kim,
2019; von Kobbe, 2019; Song et al., 2020). Senolytics eliminate
senescent cells by attenuating apoptosis evasion to induce their
cell death; senomorphics disrupt key attributes of senescence
such as by blocking the SASP (without killing senescent
cells); and senescent immunotherapy clears senescent cells by
harnessing immune cells (Kim and Kim, 2019; Song et al.,
2020). Among many types of senotherapeutics (Niedernhofer and
Robbins, 2018; Kim and Kim, 2019; von Kobbe, 2019; Song et al.,
2020; Di Micco et al., 2021), we mainly discuss nicotinamide
riboside (NR) and rapamycin as examples of senomorphics, and
quercetin/dasatinib as an example of senolytics.

Nicotinamide Riboside
Nicotinamide riboside (NR) is one of the most studied
NAD+ precursors that holds promise of decreasing the body’s
susceptibility to different aging-related diseases (Trammell
et al., 2016). It can be used to restore the levels of NAD+
which steadily declines with age in multiple tissues including
endothelium (Csiszar et al., 2019). NAD+ is a cofactor in
many redox and nonredox reactions. Therefore, NR influences

many cellular functions that are regulated by NAD+, including
energy metabolism, DNA repair, cellular senescence, among
others (Covarrubias et al., 2021). In animal studies, NR has
shown beneficial effects in cardiovascular and metabolic diseases
(Kane and Sinclair, 2018). For example, administration of
NR in food fully attenuated the increases in DNA damage,
endothelial senescence, and lesion formation mediated by Snhg12
knockdown in the vessel wall in a mouse model of atherosclerosis
(Haemmig et al., 2020). In a recent preclinical study, NR
was shown to inhibit endothelial inflammation, promote NO-
mediated vasodilation, and prevent Ang II-induced endothelial
dysfunction (Mateuszuk et al., 2020). Atherosclerosis continue
to claim millions of lives annually, and endothelial dysfunction
and inflammation play an important role in the initiation and
progression of atherosclerosis. Future studies exploring NR in
combination with other goal-derived medical therapies (e.g.,
statins) will be of interest in the context of patients with
coronary artery disease or at risk for myocardial infarction.
Chronic supplementation with NR appears to be well-tolerated
in healthy middle-aged and older adults, which effectively
stimulates NAD+ metabolism (Martens et al., 2018). Several
clinical trials aiming to improve cardiovascular and metabolic
diseases have been completed using NR as a dietary supplement.
While NR supplementation alone had no beneficial effects on
insulin sensitivity, mitochondrial function, energy metabolism,
ectopic lipid accumulation, and plasma markers of inflammation
in healthy overweight or obese individuals (Dollerup et al., 2018,
2020; Remie et al., 2020), there is evidence demonstrating that
NR can reduce inflammaging in the elderly (Elhassan et al., 2019)
and prevent tissue senescence and inflammation in aged mice
(Desdin-Mico et al., 2020).

Several studies are currently underway to determine whether
NR improves functioning in peripheral artery disease1 (Identifier
NCT03743636), arterial stiffness and elevated systolic blood
pressure in patients with moderate to severe chronic kidney
disease (see footnote text 1; Identifier NCT04040959), and
memory and brain blood flow in older adults with mild cognitive
impairment (see footnote text 1; Identifier NCT03482167). Data
from these trials will be essential to advance our understanding of
the role of NR in improving cardiovascular health.

Rapamycin
Rapamycin is FDA approved to prevent transplant rejection
due to its immunosuppressive properties and is also used
in drug-eluting stents to inhibit coronary artery restenosis.
Accumulating studies over the past two decades demonstrate that
rapamycin exhibits senomorphic properties. Mechanistically, it
is known that rapamycin targets the activity of mTOR complex
1 (mTORC1) and mTOR complex 2 (mTORC2) (Kim and
Guan, 2015), although the exact mechanisms underlying its
senomorphic effects remain poorly understood in specific cell
types. Rapamycin-mediated inhibition of the TOR pathway
extends lifespan across several species from yeast to mice (Saxton
and Sabatini, 2017) in part by delaying cellular senescence and
suppression of the SASP. In ECs, rapamycin reduced cytokine or

1https://clinicaltrials.gov/
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oxLDL-induced adhesion molecules and macrophage adhesion to
ECs (Wang et al., 2014; Sun et al., 2018). However, another study
showed that rapamycin induced endothelial-to-mesenchymal
transition due to activation of autophagy and activation of the
TGF-β pathway in vitro (Sasaki et al., 2020). Because higher
doses of rapamycin typically used in transplant patients are
associated with a 20% increased risk of a range of side effects
such as mouth sores, rash, or hyperlipidemia, lower doses have
been used in anti-aging clinical studies. In one cohort of cardiac
rehabilitation patients, ∼60% experienced diarrhea (Singh et al.,
2016). Another trial using rapamycin at 1 mg for 8–16 weeks
in adults (n = 28) aged 70–95 years old with stable chronic
disease was tolerated reasonably better compared to placebo
with small decreases in hemoglobin, and only two participants
developed either diarrhea or facial rash. Interestingly, there was
no difference in circulating levels of SASP and surprisingly an
increase in TNFα (Kraig et al., 2018). Collectively, these data
highlight that long-term use of low-dose rapamycin may be
required to uncover potential benefits. Because mTOR signaling
is active in many cell types beyond the vascular endothelium
such as in immune cells, careful attention to impact on innate
immunity, susceptibility to sepsis, and cancer will be warranted
for its use as a senomorphic therapeutic.

Quercetin and Dasatinib
While dasatinib alone did not confer senolytic activity in ECs, a
combination of dasatinib (D; the pan–tyrosine kinase inhibitor)
and quercetin (Q; naturally occurring flavonoid) has been used
to attenuate senescence in HUVECs (Zhu Y. et al., 2015),
mice (Ogrodnik et al., 2017), and humans (Justice et al., 2019).
In preclinical studies, senolytic treatment (D+Q) reduced the
number of senescent cells in the vessel wall of chronologically
aged mice, which improved relaxation of carotid arteries to
acetylcholine (Roos et al., 2016). While in atherosclerotic mice,
D+Q only reduced the number of senescent cells in the media
and not in regions with established intimal atherosclerotic
plaques, it improved NO signaling, and reduced intimal plaque
calcification (Roos et al., 2016). Interestingly, quercetin alone
decreased lipid deposition in the arterial lumina of ApoE– mice
likely by inhibiting oxLDL-induced endothelial senescence (Jiang
et al., 2020). In p16-Cre/R26-mTmG reporter mice, the senolytic
combination of D+Q efficiently eliminated F4/80-positive cells
with high p16 expression, but not CD31-positive cells with
high p16 expression in the livers, indicating the senolytic
combination is ineffective to remove senescent liver ECs in mice
(Grosse et al., 2020).

Several clinical studies have been completed using D+Q.
For example, the first-in-human open-label study revealed that
the intermittent D+Q improved physical function in the 14
patients with idiopathic pulmonary fibrosis (Justice et al., 2019).
Specifically, 6 min walk distance, 4 m gait speed, chair-stands,
and short physical performance battery score were improved at
1 week following the completion of D+Q treatment. This study
suggests that it is feasible to examine D+Q in larger randomized
and controlled trials for idiopathic pulmonary fibrosis. In another
open label phase I pilot study, the 3-days administration of D
(100 mg) and Q (1,000 mg) reduced the burden of senescent cells

in adipose tissue as well as the levels of circulating SASP factors
in patients with diabetic kidney disease (Hickson et al., 2019).
In addition to the completed studies, several planned or ongoing
studies will be examining D+Q for Alzheimer’s disease and frailty
in adult survivors of childhood cancer (see footnote text 1;
identifiers NCT04063124, NCT04685590, and NCT04733534).
Additional clinical studies were completed using quercetin such
as on cerebral blood flow, blood sugar and blood vessel function
in type 2 diabetes, hypertension and endothelial dysfunction
(see footnote text 1; identifiers NCT01376011, NCT01839344,
and NCT01691404), others are ongoing about coronary artery
disease progression, glucose absorption in obesity and obesity
with type 2 diabetes, and Fanconi Anemia (see footnote text
1; identifiers NCT03943459, NCT00065676, and NCT01720147).
Because high doses of dasatinib alone is known to induce pleural
effusions in patients, an effect potentially mediated by endothelial
permeability (Phan et al., 2018), lower doses of dasatinib will
continue to be warranted for clinical applications.

In addition to NR, rapamycin and D+Q, there are other
compounds that can be used to attenuate cellular senescence.
Among them are resveratrol (Kim E. N. et al., 2018; Breuss et al.,
2019), metformin (Bharath et al., 2020; Kulkarni et al., 2020), an
inhibitor of glutaminase 1 that inhibits glutaminolysis (Johmura
et al., 2021), and β-hydroxybutyrate (Han et al., 2018, 2020).
These senotherapeutics target all types of senescent cells with
less or more efficacy, and they are not EC-specific. Until now,
there are a few studies that examined the effects of senotherapy
on senescent ECs. The effects of quercetin, rapamycin, and NR
have been examined on senescent ECs as discussed above. How to
target senescent ECs is still in its infancy. To ambitiously develop
EC-specific senotherapeutics, we will need to identify EC-specific
players, mechanisms, and features of cellular senescence, and
EC-specific mechanisms by which senescent ECs are eliminated
by the immune system. Alternatively, different strategies can
be developed and optimized to improve the selectivity of
senotherapy targeting senescent ECs (Childs et al., 2017). There
is still much to learn about how best to target senescent ECs in
aging and diseases.

CHALLENGES AND FUTURE
DIRECTIONS

Heterogeneity of ECs and EC
Senescence
ECs are present in all organs and have organ-specific properties.
Recently, two single-cell sequencing studies greatly advance
our understanding of unique signatures of organ-specific ECs
in mice (Kalucka et al., 2020; Paik et al., 2020). ECs are
also heterogeneous within an organ. For example, liver ECs
are heterogeneous in both mice and humans revealed by
single-cell transcriptome analysis (Ramachandran et al., 2019;
Xiong et al., 2019; Omori et al., 2020). A main subpopulation
of liver ECs are known as liver sinusoidal ECs that line
the hepatic sinusoids. In addition, there are other types of
liver ECs such as periportal and pericentral ECs in mice
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(Xiong et al., 2019; Omori et al., 2020) or hepatic artery, central
vein, lymphatic ECs in humans (Ramachandran et al., 2019).
Most of different subpopulations of liver ECs express common
endothelial markers such as CD31 (PECAM1) and VE-cadherin
at different levels (Ramachandran et al., 2019; Grosse et al.,
2020; Kalucka et al., 2020). However, different subpopulations
of liver ECs also have differently molecular signatures and
function. Because of the heterogeneity of ECs, EC senescence
are likely very heterogeneous in chromatin modification, genome
reorganization, gene expression and markers, SASP, life cycle
dynamics, fates, functional consequences, and response to
senolytics. With the increasing power and growing performance
of single cell sequencing, much more will be learned about
the heterogeneity of EC senescence particularly in vessel wall
and liver that provide new insight into the pathogenesis of
cardiovascular and metabolic diseases such as atherosclerosis and
fatty liver disease.

Senescent Markers and Detection of
Senescent ECs
Great efforts have been made to identify robust markers
of senescence (Hernandez-Segura et al., 2017; Aliper et al.,
2019; Casella et al., 2019; Wei et al., 2019). Transcriptome
analysis revealed that 68 RNA molecules are differentially
expressed in senescent ECs and fibroblasts induced by different
stressors. Some of them are non-protein coding RNAs (Casella
et al., 2019). The novel and unique transcriptome signatures
can be used to detect and differentiate different senescent
phenotypes (Hernandez-Segura et al., 2017). Senescent markers
are also needed to identify senescent ECs at different stages of
their life cycle.

In addition to novel senescent markers, novel methods to
detect senescent ECs in vivo are also needed. Several fluorescent
probes have been developed to visualize senescent cells in vivo
by detecting the activity of β–gal (Lozano-Torres et al., 2017;
Chen et al., 2020). For example, a small molecule-based near-
infrared fluorescent probe (BOD-L-βGal) was developed to detect
β-gal (Chen et al., 2020). When the probes were incorporated
into polymer nanoparticles, it can be used for the imaging and
visualization of senescent cells in atherosclerotic arteries of mice
(Chen et al., 2020).

Recently, a quantitative approach was established to identify
and characterize senescent cells in aging and disease (Biran et al.,
2017; Gal et al., 2019). The new approach requires the specific
instrument that is the ImageStreamX imaging flow cytometer.
It combines the quantitative power of flow cytometry with high
content image analysis. It detects SA-β-gal activity using the
bright field channel and additional senescence related markers
such as p16 via multiple fluorescence channels (Gal et al., 2019).
This also help identify the specific cell origin of senescent cells
including ECs (Gal et al., 2019).

Differences Between Mouse and Human
in Immune System
There are significant differences in the immune system between
mice and humans (Mestas and Hughes, 2004). The cells that

are involved in the immune surveillance of cellular senescence
are also different. For example, natural killer cells have different
inhibitory receptors, cell surface markers (e.g., the expression
of CD56 in human but not mouse natural killer cells), subsets,
and functions (Murphy et al., 2012). In addition, these cells
are likely exposed to different pathogens over the course
of theirs lives in mice and humans (Tao and Reese, 2017).
Given immunosenescence is important in regulating cellular
senescence, a reassessment of cellular senescence in the vascular
endothelium using a humanized immune system mouse models
will be of interest (Allen et al., 2019).

LncRNAs as Therapeutic Target
While numerous pre-clinical studies have investigated lncRNAs
as therapeutic targets, translating these findings to viable
therapeutics remains challenging, although significant progress
has been made. For example, unprotected nucleic acids in the
circulation are rapidly metabolized by the liver and kidneys. Even
when novel delivery platforms such as lipid-based formulations
and nanoparticles are utilized to improve pharmacokinetic
properties of oligonucleotide therapeutics, targeting oligo-based
therapies to diseased tissues remains a challenge to the field
of lncRNA therapeutics. While high levels of hepatotoxicity
were observed with the first generation of LNA gapmers in
both pre-clinical studies and phase I clinical trials (Swayze
et al., 2007; Burdick et al., 2014; Migawa et al., 2019; Shen
et al., 2019), emerging chemistries such as cEt gapmers exhibit
improved toxicity profiles (Seth et al., 2009, 2010). Emerging
cell-specific delivery platforms such as peptide nucleic acids
(PNAs) may facilitate targeting in tissues beyond the liver
or in response to pathobiological stimuli. Future studies that
modulate lncRNA-expressing loci using CRISPR-Cas9 or other
gene editing methods in combination with viral, LNPs, or
nanoparticle-based delivery platforms will be of interest. Finally,
unlike other classes of noncoding RNAs such as microRNAs,
lncRNAs are often thousands of base pairs long, making
packaging and delivery to target tissues difficult. Overcoming
these challenges will enable the translation of accumulating
studies that have demonstrating the importance of lncRNAs
in endothelial senescence to meaningful therapeutics and
clinical trials.
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