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Abstract

Statistical methods for molecular dating of viral origins have been used extensively to infer the time of most common recent
ancestor for many rapidly evolving pathogens. However, there are a number of cases, in which epidemiological, historical, or
genomic evidence suggests much older viral origins than those obtainedviamolecular dating.We demonstrate howpervasive
purifying selection canmask the ancient origins of recently sampled pathogens, in part due to the inability of nucleotide-based
substitution models to properly account for complex patterns of spatial and temporal variability in selective pressures. We
use codon-based substitution models to infer the length of branches in viral phylogenies; these models produce estimates
that are often considerably longer than those obtainedwith traditionalnucleotide-based substitutionmodels. Correcting the
apparent underestimation of branch lengths suggests substantially older origins formeasles, Ebola, and avian influenza viruses.
This work helps to reconcile some of the inconsistencies between molecular dating and other types of evidence concerning
the age of viral lineages.

Key words:measles virus, rinderpest virus, Ebola virus, avian influenza virus, molecular clock, substitution rate, codon model,
purifying selection.
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Introduction
One of the most powerful forces shaping the human
genome is adaptation to pathogens, and the pathogens that
appear to have exerted the strongest influence are viruses
(Worobey et al. 2007; Emerman and Malik 2010). Genes
which bear the mark of some of the most potent selective
forces detected in the genomes of humans and our rela-
tives are directly related to combating RNA viruses (Meyer-
son and Sawyer 2011). Moreover, the ancient history of this
association with RNA viruses is evidenced by a diverse ar-
ray of defective viral remnants incorporated into vertebrate
genomes, including mounting support for endogenization
of RNA viruses other than Retroviridae (Gifford et al. 2008;
Belyi et al. 2010; Gilbert andFeschotte 2010; Horie et al. 2010;
Taylor et al. 2010). However, according to molecular dating
analyses, many RNA viruses have extraordinarily recent ori-
gins (Holmes 2003a).

At first glance, a recent introduction of many RNA
viruses into the human population is unsurprising. Epi-
demiological, historical, and phylogenetic approaches agree
that some of the most notable RNA viruses (e.g., HIV-1,
Worobey et al. 2008; influenza A virus, Taubenberger et al.
2005; Ebola virus [EBOV] Zaire, Walsh et al. 2005; and SARS
coronavirus, Hon et al. 2008) emerged as zoonoses within
the last century. As one looks further back in evolutionary
time, however, specific inconsistencies arise. For example,
defective remnants of ancient integrations of Filoviridae, the
viral family containing the EBOV, are found in mammalian
lineages that diverged tens of millions of years ago (Belyi
et al. 2010; Taylor et al. 2010), even though molecular dating

suggests a time of most recent common ancestor (tMRCA)
for Filoviridae on the order of only thousands of years ago
(Suzuki and Gojobori 1997). Another inconsistency can be
seen in the zoonotic origin of measles virus (MeV) from
rinderpest virus (RPV) and peste-des-petits ruminants virus
(PPRV), two viruses capable of infecting large and small ru-
minants, respectively.MeV required at least two conditions
to emerge: 1) Humans had to live in close proximity to RPV,
which became commonplace only after the domestication
of cattle over the last 10,000 years (Perkins 1969; Loftus et
al. 1994; Beja-Pereira et al. 2006) and 2) humans needed
societies with a population size above 250,000–500,000 to
sustain the epidemic, which did not exist until about 5,000
years ago (Black 1966). Furthermore, the first unambiguous
historical account of measles dates back to the ninth cen-
tury (Rāz̄ı 1848). Therefore, historical and epidemiological
considerations, which place the tMRCA of MeV and RPV at
thousands of years ago, are at odds with molecular dating
analysis, which infers the tMRCA to be only hundreds of
years ago (Furuse et al. 2010).

The same phylogenetic dating methods that provide
convincing and reasonable tMRCA estimates for recent
zoonotic transfers seem to be dramatically underestimating
the age of older viral divergence events. Therefore, over
longer periods of time, the extent of evolutionary change
has been lost. In many viral genes, there is remarkable
sequence conservation, indicating that purifying selection
is a dominant evolutionary force, acting to maintain
evidence of homology by preserving amino acid residues,
while allowing nucleotide sequences to continue evolving
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(Holmes 2003b; Edwards et al. 2006; Pybus et al. 2007).
Although the effect of purifying selection on mutations in
RNA viruses is becoming better understood (Belshaw et al.
2008), the importance of spatial and temporal variation in
selection pressures has not been explicitly explored in the
context of tMRCA estimation.

It has been well established that failing to account for
site-to-site rate variation can lead to an underestimation
of branch lengths due to repeated substitutions at rapidly
evolving sites (Brown et al. 1982; Sullivan and Joyce 2005),
and the use of models, which permit such variation (e.g.,
Yang 1993), have become standard.More recently, Suchard
and Rambaut (2009) observed that synonymous substitu-
tions appeared to saturate faster than could be handled by
nucleotide models in mitochondrial DNA, which is subject
to strong overall purifying selection. Over longer periods of
evolutionary time (i.e., along long internal branches on a
phylogenetic tree), evidence of evolution at the nucleotide
level could be lost, which could bias tMRCA estimates to-
wards younger dates (i.e., underestimate the length of these
branches). If a substitution model can account for this evo-
lution,we hypothesize that a comparative analysis of recent
viral isolates could be used tomake inference about ancient
viral divergence events.

Our work addresses two questions. First, can purifying
selection mask the ancient history of RNA viruses? And
second, by using evolutionary models that account for
selection, can we infer more realistic estimates of the
ages of these viruses? We investigate these questions us-
ing two groups of viruses thought to be older than current
molecular dating evidence would suggest: MeV/RPV/PPRV
and EBOV. We also consider avian influenza virus (AIV)—
another well-characterized viral lineage with a young
inferred tMRCA and long internal branches between differ-
ent serotypes (Chen and Holmes 2006, 2010). The results
presented here demonstrate that not accounting for puri-
fying selection may bias tMRCA estimation in RNA viruses
towards more recent dates, and a degree of correction
can be realized by employing more realistic codon-based
substitutionmodels, capable of partially accounting for the
biasing effect of purifying selection.

Materials and Methods
Viral Gene Sequence Alignments
For MeV/RPV/PPRV, all available full-length nucleoprotein
sequences with known years of isolation were downloaded
from GenBank. Vaccine-associated sequences and MeV
isolates implicated in subacute sclerosing panencephali-
tis, which experience hypermutation (Woelk et al. 2001,
2002), were excluded. The curated MeV/RPV/PPRV virus
data set contained 145 sequences sampled between 1981
and 2007. Alignment was trivial due to a lack of in-
sertions or deletions and was performed by eye. Next,
EBOV full-length glycoprotein sequences with known years
of isolation were downloaded from GenBank. Regions
containing multiple reading frames (Volchkov et al. 1995;
Sanchez et al. 1996) and the mucin-like region—which

evolves extremely rapidly due to relaxed selective con-
straints (Wertheim and Worobey 2009b)—were removed.
The curatedEBOVdata set contained34 sequences sampled
between 1976 and 2005. As before, alignmentwas trivial and
performed by eye. The final alignment, AIV neuraminidase,
was provided by Chen and Holmes (2010). It contained
270 sequences sampled between 1972 and 2005. All
three alignments in NEXUS format can be downloaded
from http://www.hyphy.org/wiki/codondating. Redundant
sequences were excluded from the alignments for branch
length comparisons and selection analyses.

Phylogenetic and Substitution Rate Inference
We used a Bayesian Markov chain Monte Carlo (BM-
CMC) method implemented in BEAST v1.5.4 for phyloge-
netic inference and tMRCA estimation (Drummond and
Rambaut 2007). For each data set and substitution model,
four independent BMCMC runs of 25 or 50 million gener-
ations were performed. A codon-based substitution model
was implemented in BEAGLE (Suchard and Rambaut 2009).
The first 10% of the generations were discarded as burn-in.
All BMCMC analyseswere performedusing an uncorrelated
lognormal relaxed molecular clock and a Bayesian skyline
plot coalescent prior, which places the fewest demographic
constraints on the analysis (Drummond et al. 2005, 2006).
Tracer v1.5was used to check for convergence and adequate
mixing (i.e., estimated sample size>200 for all relevant pa-
rameters). Finally, the maximum clade credibility (MCC)
phylogenywas identifiedand annotatedusing the posterior
distribution of trees. Substitution rates and tMRCAs are re-
ported as mean and 95% highest posterior density values.

Codon Substitution Models
An earlier study (Kosakovsky et al. 2005) developed a hi-
erarchy of five models—all extensions of the Muse–Gaut
probabilisticmodel of sequence evolution (Muse and Gaut
1994)—of differing complexities that incorporate site-to-
site and lineage-to-lineage variation of synonymous (α) and
nonsynonymous (β) substitution rates.We investigatedthe
ability of these models to accurately infer branch lengths on
our viral data sets. The five models are summarized below,
with full details available in the original manuscript. Note
that in all models, E [α] = 1 to ensure identifiability.
Constant Rates: The baseline model, which extends the

original Muse–Gaut evolutionary model by in-
corporating general nucleotide substitution biases
(MG94 × REV). α and β rates are constant across
sites and lineages.

Proportional: A direct analog to nucleotide + Γ4 models;
β = ωα and α varies from site to site according
to a three-bin general discrete distribution (GDD).

Nonsynonymous: A standard “selection” model, where α
rates are constant and β rates are drawn from a 3-
bin GDD.

Dual: A model, where both α and β rates vary from
site to site, based on independent three-bin GDD
distributions.
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Lineage+Dual: In addition to site-to-site rate variation inα
andβ, some (or all) lineages are endowedwith their
ownmean E [β]/E [α] ratios, to correct for “lineage-
specific” effects of selection.

Unlike the original implementation, our version of the
Lineage+Dualmodel treated certain interior lineages differ-
ently to better reflect the biological reality of the sample.
Branches which separated clades containing different viral
species (MeV/RPV/PPRV), subtypes (EBOV), and serotypes
(AIV) were assigned separate E [β]/E [α] ratio parameters
because they represent different timescales and selective
regimes compared with terminal branches. Longer internal
branches are expected to bear the mark of stronger puri-
fying selection (Kosakovsky et al. 2006; Pybus et al. 2007).
We considered two variations of this model: Either 1) all
long internal lineages share the same ratio parameter, and
the remaining branches share another global ratio param-
eter (two-rate model) or 2) each deep lineage possesses its
own ratio parameter, and the remaining branches share a
global ratio parameter (multirate model). For each data set,
we selected themodel with the best Akaike information cri-
terion (AIC) score for further analysis. Note that we use the
ratio of the means E [β]/E [α] = E [β] (due to the E [α] = 1
identifiability constraint) instead of the mean of the ratio
E [β/α] ≡ ω becauseα = 0 is possible underDual and Lin-
eage+Dual models, rendering the mean of the ratio infinite.

For each data set, we obtained M = 1, 000 samples
from the approximate joint distribution of model param-
eter estimates using a modified Latin hypercube sampling
importance resampling scheme, described in detail else-
where (Kosakovsky et al. 2010). The approach is meant
to quickly obtain an approximate joint distribution of
maximum likelihood parameter estimators. First, an area
of parameter space to be sampled is defined by construct-
ing a d -dimensional rectangle, in which each dimension
represents a singlemodel parameter, the corresponding co-
ordinate interval is centered on the maximum likelihoodes-
timate of the parameter, and the lower and upper bounds
are determined by profile likelihood. Second, each coordi-
nate interval is partitionedintoN = 1, 000d subintervalsof
approximately equal probability, based on the asymptotic
normal approximation to the likelihood surface. Third, N
samples are drawn from the d -dimensional rectangle, using
the Latin Hypercube scheme (i.e., each interval in every co-
ordinate is sampled exactly once). Fourth, M � N points
are resampledbased on their importance (normalized likeli-
hood), following the procedure described elsewhere (Skare
et al. 2003).

Variance in estimated branch lengths was computed us-
ing this sample. All codon-based analyseswere performed in
HyPhy v2.0020110301 (Kosakovsky et al. 2005).

Codon-Based Simulations
We simulated codon sequences along a single branch using
the MG94 × REV codon substitution model (Kosakovsky
et al. 2005) with site-specific β and α values inferred us-
ing a fixed effects likelihood method on internal branches

(IFEL) (Kosakovsky et al. 2006) from each of the three vi-
ral data sets. In this method, three rates are inferred from
each site: αs ,β Is , and β

T
s . Subscript s indicates the explicit

dependence of substitution rates on the site, from which
they are being estimated. αs is the tree-wide synonymous
rate, β Is is the nonsynonymous rate shared by all internal
branches, and βTs is the nonsynonymous rate shared by
all terminal branches. Only internal branches were used to
generate empirical selection profiles because substitutions
along tips in viral phylogenies are frequently deleterious and
transient (Kosakovsky et al. 2006; Pybus et al. 2007). Fur-
thermore, we were primarily interested in the effects of se-
lection on long internal branches, and the IFEL profile (αs
and β Is inferred for each site) was meant to recapitulate
the evolutionary process along an “average” internal branch.
Simulations were initialized using ancestral nucleotide se-
quences inferredwithmarginal maximum likelihood recon-
struction (Yanget al. 1995) inHyPhy, using theMG94×REV
codon substitutionmodel on theMCC phylogeny obtained
from BMCMC general time reversible (GTR) + Γ4 analy-
ses. The marginal ancestral sequence was used to provide
a realistic starting point for our simulations. Ten thousand
replicates were generated for each branch length ranging
from 0.01 to 100 expected substitutions per nucleotide site
and analyzed under the GTR + Γ4 and Dual substitution
models. We chose to simulate branches based on expected
substitutions per nucleotide site, instead of per unit time,
because of the difficulty in standardizing time for variable
rate parameters (i.e., αs , β

I
s , and substitution rate) in a re-

versible model; the expected number of substitutions di-
vided by the substitution rate can be a proxy for time.

Results
Estimating the Age of Viral Lineages
Using BMCMC analysis, we inferred the substitution rate
and root age under a standard nucleotide substitution
model (GTR + Γ4) for each of our three viral data sets:
MeV/RPV/PPRV nucleoprotein, EBOV glycoprotein, and
AIV neuraminidase (table 1). The viral lineages examined
here had tMRCAs ranging from hundreds to several thou-
sand years before present. All three viruses exhibited rapid
substitution rates, on parwithprevious estimates for related
RNA viruses (Duffy et al. 2008).

Our inferred substitution rate for the MeV/RPV/PPRV
nucleoprotein of 9.65 × 10−4 (6.00 × 10−4–1.47 × 10−3)
substitutions/site/year under a GTR + Γ4 model was over
50% faster than the rate recently reported by Furuse et
al. (2010): 6.02 × 10−4 (3.62 × 10−4–8.76 × 10−4) sub-
stitutions/site/year. Therefore, we inferred a substantially
younger tMRCA forMeV andRPV: 1490CE (1130–1810CE),
instead of 1171CE (678–1612CE).We consider our rate esti-
mates more reliable for three reasons. First, our values are in
close agreement with previous substitution rate estimates
in MeV: 8.69 × 10−4 (5.89 × 10−4–1.13 × 10−3) substitu-
tions/site/year (Pomeroy et al. 2008). Second, Furuse et al.
(2010) included both MeV and RPV vaccine strains in their
BMCMC dating analysis (Rota et al. 1994; Baron et al. 1996),
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Table 1.Mean tMRCA and 95% highest posterior density for the root of viral lineages inferred under different evolutionary models.

Evolutionarymodel MeV/RPV/PPRV EBOV AIV

GTR 333 (165–528) 819 (274–1,514) 333 (268–396)
GTR + Γ4 667 (333–1,062) 1,492 (421–2,869) 1,265 (965–1,618)
GTR + Γ4 (third position excluded) 285 (110–515) 498 (67–1,118) 1,493 (938–2,089)
SRD06 646 (288–1,051) 1,358 (378–2,592) 1,103 (855–1,378)
Whelan and Goldman + Γ4 265 (94–477) 1,243 (87–2,948) 942 (619–1,334)
GY94 + Γ4 698 (353–1,088) 2,247 (751–4,170) 1,243 (972–1,528)

despite evidence that the inclusion of vaccine strains can
lead to bias in rate estimation (Bush et al. 2000; Wertheim
2010). Third, Furuse et al. (2010) fitted an exponential
growth coalescent prior to viruses whose effective popu-
lation size has been declining—due to eradication efforts
against both MeV and RPV (Moss 2009; Normile 2010). Re-
markably, our results are in even greater conflict with the
historical documentation of measles (Rāz̄ı 1848), further
confirming our conjecture that traditional nucleotide sub-
stitutionmodels can underestimate the age of ancient viral
divergence events.

We then explored whether alternative evolutionary
models that, to varying extents, account for codon struc-
ture were able to recover the expected older tMRCAs for
these viruses (table 1). The simplest approach, excluding the
third codon position in a GTR + Γ4 model, has been used
to remove synonymous sites that might have experienced
saturation (Worobey et al. 2010). A more sophisticated
approach, the SRD06 model (Shapiro et al. 2006), allows
first and second codon positions to have a different tran-
sition/transversion ratio and Γ4 shape parameter from the
third position. Amino acid substitution models have also
been successfully implemented to estimate the age of RNA
viruses (Zlateva et al. 2005; Wertheim et al. 2009). Finally,
we evaluated an available codon-based substitutionmodel,
GY94 (Goldman and Yang 1994). Generally, these alternate
models either produced younger tMRCAs (e.g., GTR + Γ4
excluding third positions and Whelan and Goldman + Γ4)
or tMRCAs that were indistinguishable fromGTR +Γ4 (e.g.,
SRD06 and GY94 +Γ4). A possible exceptionwas analysis of
the EBOV data set with GY94 + Γ4, which produced a root
tMRCA that was 50% older than the GTR + Γ4 estimate.
Finally, as a point of comparison, we also investigated
how removing site-to-site rate variation affected dating
inference by using a GTR model (Tavaré 1986); ignoring
rate variation invariably produced younger tMRCAs.

Purifying Selection Leads to Underestimation of Branch
Lengths
We simulated codon sequences along a single branch under
a substitution model with site-to-site nonsynonymous rate
variation and inferred the length of the branch using GTR
+Γ4. An increase in the proportion of sites simulated under
purifying selection (i.e.,βs = 0) resulted in shorter branches
inferred by a GTR + Γ4 model (fig. 1A ). Sufficiently strong
purifying selection could theoretically lead to underesti-
mates of branch lengths by an order of magnitude because
purifying selection slows down the rate of evolution relative

to the synonymous rate. At the extreme (βs = 0, branch
length→ ∞), one obtains perfectly conserved amino acid
sequences and completely saturated synonymous substitu-
tions. For sequences with 10% of sites under strict conserva-
tion, the nucleotide estimator approached the asymptote
of 7.1 substitutions/site, even when the simulated branch
lengthwas increased to 100; the branch lengthestimatewas
accurate for up to 5 substitutions/site. For sequences with
no nonsynonymous substitutions (i.e., 100% conservation),
saturation occurred much sooner, around 0.25 substitu-
tions/site, and the corresponding asymptote was 0.36 sub-
stitutions/site.

The nucleotide substitution model (GTR + Γ4) under-
estimated the length of branches simulated under empir-
ical (IFEL) selection regimes inferred from the three viral
data sets (fig. 1B–1D); branch lengths for sequences simu-
lated under neutral selection (i.e., αs = βs = 1) were
reliably inferred by GTR + Γ4. The proportion of sites un-
der strong negative selection (i.e., βs < αs with an IFEL
P value � 0.05) differed markedly among the three data
sets.MeV/RPV/PPRVnucleoprotein andEBOVglycoprotein
genes experienced moderate levels of purifying selection
along internal branches: 50% and 45% of sites under strong
purifying selection, respectively. The AIV neuraminidase
gene evolved under much stronger selective constraints,
with 89% of sites under strong purifying selection.We note
that the power to detect selection using IFEL increases with
the size of the alignment (Kosakovsky et al. 2006); hence,
we would expect more sites evolving under purifying se-
lection to be correctly detected as such in the larger AIV
data set. The simulated codon saturation curves varied from
virus to virus, indicating that the particular selectiveregime,
amino acid composition, andnucleotide substitutionmodel
of each viral gene have a substantial influence on the ability
to accurately infer branch lengths. Although underestima-
tion is more pronounced along longer branches (e.g., about
half the true length for 1 substitution/site), not account-
ing for selection can lead to underestimation of branch
lengths even for relatively short branches (e.g., 0.2–0.5 sub-
stitutions/site).

We then inferred the length of branches simulated un-
der the empirical selective regimes using the Dual codon
model, which accounts for variation in site-to-site selective
pressures (fig. 2). Although the Dual model slightly un-
derestimated lengths for the longest simulated branches,
the bias was an order of magnitude less than under GTR
+ Γ4. Furthermore, similar behavior was observed for the
longest branches simulated under neutrality (αs = βs ) and
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FIG. 1. Lengths of single branches simulated under a codon substitutionmodel with variable selection pressures are underestimated when inferred
under a GTR + Γ4 nucleotide substitution model. All quantities are means from 10, 000 replicates. (A ) Ancestral sequence (1, 000 codons) was
random (i.e., all codons equiprobable) with varied proportion of sites under strong purifying selection (βs = 0) and sites evolving neutrally
(αs = βs ). (B–D ) Branch lengths were inferred using GTR + Γ4 on single branches simulated under neutral selection regimes (αs = βs ) and
empirical site-by-site substitution rate (IFEL) profiles for MeV/RPV/PPRV, EBOV, and AIV. Black crosses represent the degree of bias, defined as the
ratio between the true branch length and the one inferred under GTR + Γ4 on IFEL sequences. Horizontal gray lines show saturation asymptotes
and diagonal dashed line depicts the behavior of an unbiased estimator.

inferred using GTR + Γ4 (fig. 1B–1D ), suggesting that both
models perform equivalently, as expected. Clearly, not ac-
counting for purifying selectioncan lead to dramatic under-
estimation of branch lengths; this effect is exacerbated for
longer branches.

Effect of Evolutionary Models on Branch Lengths
It is well known that standard nucleotide models differ
in their sensitivity to multiple substitutions at the same
site (Sullivan and Joyce 2005). We explored how various
methods of modeling rate variation affected branch length

inference in our three viral data sets, using a fixed MCC
tree from the GTR + Γ4 BMCMC analyses. First, we exam-
ined two extremes among nucleotide substitution models
that do not adjust for rate variation across sites: JC69 (Jukes
and Cantor 1969) and GTR. JC69 assumes a single substitu-
tion rate and equal base frequencies, whereas GTR allows
each class of nucleotide substitution to occur at a unique
rate and estimates base frequencies from the data. As ex-
pected, failure to account for site-to-site rate variation led
to severe underestimation of longer branches in all three vi-
ral data sets (JC69 or GTR vs. GTR + Γ4, fig. 3), reaffirming
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FIG. 2.Branch lengths inferred under a Dual model provide reliable es-
timates of branches simulated under variable selection pressures (i.e.,
empirical IFEL profiles) for MeV/RPV/PPRV, EBOV, and AIV. The diag-
onal dashed lines depict the behavior of an unbiased estimator.

the importance of modeling site-to-site rate variation to ac-
curate inference. Allowing for multiple substitution rates
and empirical base frequencies had a negligible impact
on branch length estimation (fig. 3). Underestimation of
long branches likely explains why the GTR model inferred
younger root tMRCAs for all all three viral data sets (table 1).

We hypothesized that codon substitutionmodels, which
explicitly account for the differences between synonymous
and nonsynonymous substitutions, would permit a more
accurate estimation of sequence divergence well past the
point a standard nucleotide model would reach satura-
tion. Therefore, it may be possible to use RNA virus genes,
which evolve extremely rapidly (e.g., 0.0001–0.001 substitu-
tions/site/year), to estimate ancient viral divergence events
using codon substitution models. A crude approximation
of a codon model, SRD06, produced branch lengths that
were essentially the same as those from theGTR+Γ4 model
(fig. 3), which may explain why BMCMC tMRCA inference
using these two models was so similar. The inference un-
der the GY94 + Γ4 codon model resulted in longer internal
branch lengths only for EBOV (fig. 3), which was in agree-
ment with our BMCMC tMRCA inference using this model.

Based on the simulations along a single branch, we
anticipated that longer branches would be disproportion-
ately affected by site-to-site variation in selection pressures.
Therefore, we investigated how extensions of the MG94
model that incorporate β, α, and lineage-specific rate vari-
ation affected branch length inference (table 2). For MeV
and AIV, the Lineage+Dual (two-rate) model that allowed
longer internalbranches to share their own ratio E [β]/E [α]
provided the best fit to the data. For EBOV, a more compli-
cated (eight-rate)model, inwhicheach intersubtypebranch
and the long terminal branches leading to Côte d’Ivoire and
Bundibugyo had their own rates, was fit because E [β]/E [α]
varied dramatically among the intersubtype branches. The
inclusion of variation inβ andα in theNonsynonymous and

Dual models resulted in notable increases in the cumula-
tive length of deep internal branches (table 2; supplemen-
tary fig. S1, Supplementary Material online). In all three vi-
ral data sets, however, the most substantial differenceswere
seen with the Lineage+Dualmodel, which produced lengths
for long internal branches that were substantially greater
than those inferred underGTR+Γ4 (fig. 3). Importantly, the
lengths of the more recent intraspecies/subtype/serotype
branches were relatively unchanged between these two
models for all three data sets; this observation confirms
that when the phylogeny is comprised of relatively short
branches, it is appropriate to rely on common approxima-
tions, such as the GTR + Γ4 model. This increase in the
length of only deep internal branches was likely due to
the dramatically stronger purifying selection which we in-
ferred along these lineages (table 2). In AIV, for instance,
E [β]/E [α]was two orders of magnitude lower on deep in-
terior branches, compared with the rest of the tree.

One outcome of including variation in selection
pressures across branches into the evolutionary model
was that several branches were inferred to have essentially
infinite lengths in the EBOV and AIV trees. The inference of
an infinite branch length is likely caused by the complete
saturation of synonymous substitutions along the branch
in question; even after accounting for variation in αs
and βs , the true branch length was inestimable. In the
EBOV phylogeny, complete saturation was observed on
the branch leading to EBOV Sudan and on the branch
connecting EBOV Reston/Sudan to EBOV Zaire/Côte
d’Ivoire/Bundibugyo (supplementary fig. S2, Supplemen-
tary Material online). In the AIV phylogeny, each of the
nine neuraminidase serotypes naturally found in avian
hosts was separated by branches that experienced satura-
tion at synonymous sites under the Lineage+Dual model
(supplementary fig. S3, SupplementaryMaterial online).

The Latin hypercube resampling scheme suggested rel-
atively narrow variance in the expansion under the Lin-
eage+Dual model. The total increase in MeV/RPV/PPRV
tree relative to GTR + Γ4 was 1.93 (approximate 95% con-
fidence interval: 1.76–2.16). Due to the inference of branch
lengths that experienced saturation in EBOV and AIV, the
overall increase in tree length was more dramatic under
the Lineage+Dual model, relative to GTR + Γ4: 32.14 (ap-
proximate 95% confidence interval: 12.14–32.22) for EBOV
and 107.34 (approximate 95% confidence interval: 101.06–
117.36) for AIV.

Implications for the Age of Viral Lineages
It is clear that purifying selection can obscure the ancient
evolution of the RNA viruses examined here. A compari-
son of theMeV/RPV/PPRVphylogeny optimized underGTR
+ Γ4 and Lineage+Dual (two-rate) models showed that
the elongation of branches occurred along the deep inter-
nal branches, leaving the relationships among recently di-
vergent lineages within viral species relatively unchanged
(fig. 4). The depth of the split between MeV and RPV un-
der a GTR + Γ4 model was 0.4921 substitutions/site, which,
according to the BMCMC analysis, occurred in the year 1483
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FIG. 3. Long branches are disproportionately affected by evolutionary models that differ in their treatment of rate variation. Each datapoint repre-
sents the length of a single branch of theMeV/RPV/PPRV, EBOV, or AIV phylogeny inferred under GTR + Γ4 and an alternate evolutionary model.
The extreme of the y axis represents infinite branch lengths under the Lineage+Dual model for EBOVandAIV. Dashed lines are an x = y reference.
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Table 2. Goodness of fit for various codon models and the effect of model choice on the estimates of the branch lengths of deep and recent
lineages.

Taxa Modela Log L AICb Tc E [β]/E [α]d

Deep Recent Deep Recent

MeV/RPV/PPRV Constant −12207.97 24909.95 1.29 0.91 0.10
Proportional −12122.06 24746.11 1.46 0.93 0.10
Nonsynonymous −11928.55 24359.11 1.93 0.92 0.12
Dual −11919.35 24348.70 2.00 0.93 0.12
Lineage+Dual (two rate) −11900.7 24313.40 3.61 0.92 0.04 0.14
Lineage+Dual (four rate) −11900.1 24316.20 3.95 0.92 000.03–0.06 0.14

EBOV Constant −6762.76 13757.52 2.37 0.17 0.05
Proportional −6720.47 13676.94 3.00 0.17 0.04
Nonsynonymous −6682.31 13600.62 2.56 0.17 0.06
Dual −6679.79 13599.57 2.68 0.17 0.06
Lineage+Dual (two rate) −6638.5 13420.99 4.84 0.17 0.03 0.18
Lineage+Dual (eight rate) −6631.24 13418.49 69.4 0.17 0.0005–0.05 0.18

AIV Constant −44860.13 90794.26 11.96 8.8 0.05
Proportional −44483.52 90049.05 12.80 9.04 0.05
Nonsynonymous −43862.45 88806.90 20.92 9.08 0.05
Dual −43730.4 88550.9 20.98 9.2 0.05
Lineage+Dual (two rate) −43711.00 88514.0 2230.9 9.2 0.0004 0.05
Lineage+Dual (16 rate) −43710.97 88541.9 2278.23 9.2 0.0003–0.0004 0.05

NOTE.—ALC, Akaike information criterion.
aThe number of lineages (selected a priori) with their own E [β]/E [α] for the Lineage+Dual models are shown in parentheses.
bThe best fitting model for each data set is highlighted in boldface.
cT shows the cumulative length of branches classified as recent or deep lineages a priori, measured in the expected number of substitutions per nucleotide site.
dE [β]/E [α] reports the ratio of means of the expected nonsynonymous to expected synonymous rates (similar to ω for each model). For Lineage+Dual models, the values are
stratified by branch class and ranges are reported when appropriate.

CE (1162–1777 CE). The depth of this split using a Lin-
eage+Dual (two-rate) model was 1.0036 substitutions/site:
2.04 times deeper. A simple extension of the substitution
rate inferred from a MeV-only data set of 9.06 × 10−4

FIG. 4.MCC phylogeny forMeV, RPV, and PPRV. Branch lengths were
optimizedunder (A )GTR +Γ4 and (B ) Lineage+Dualmodels. TheLin-
eage+Dualmodel branch lengths were estimated assuming two differ-
ent sets of synonymous and nonsynonymous substitution rates: one
for short branches and another for long internal branches. Both trees
are shown on the same scale.

(7.12 × 10−4–1.17 × 10−3) substitutions/site/year (likely
preferable to the inferredMeV/RPV/PPRV substitution rate
which relied on demonstrably biased estimates of internal
branch lengths) would place the tMRCAofMeV and RPV in
the year 899 CE (597–1144 CE). This extrapolation is meant
as a rather crude approximation of the age of this divergence
event; nevertheless, these dates are more likely to be closer
to the true split between MeV and RPV than previous es-
timates and are not inconsistent with recorded history of
measles.

The degree of synonymous saturation observed along the
EBOV and AIV phylogenies indicate an inability to reliably
infer tMRCAs for these viruses. Too many sites have sunk
beyond the evolutionary horizon. Nevertheless, these esti-
mates could provide meaningful minimum bounds for the
tMRCAs. Thus, for bothEBOVandAIV,we applied themean
substitution rate inferred in the BMCMCGTR +Γ4 analyses
to the Lineage+Dual phylogenies. This approach suggested
that the minimum tMRCA estimates for EBOV and AIV are
approximately 70,000 and 200,000 years ago, respectively.
The actual tMRCAs may be much older.

Discussion
Our results suggest that the ancient age of RNA viruses
may be partially masked behind a veil of purifying selec-
tion. The same forces of purifying selection that maintain
evidence of protein sequence homology over great evo-
lutionary distances also truncate long ancestral branches
deep within phylogenetic trees. We observed this pattern
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in three different groups of rapidly evolving negative-sense
RNA viruses: MeV/RPV/PPRV, EBOV, and AIV. Estimating
branch lengths under a codon-based substitution model
that accounts for spatial and temporal variation in selec-
tion pressures yielded phylogenetic trees that were more
than twice as long as those obtained under standard nu-
cleotide models. Modeling synonymous, nonsynonymous,
and lineage-specific rate variation indicates that current es-
timates of the age of these, and possibly other, viral lineages
may be dramatically underestimated. Codon models used
in this study do not circumvent the issue of substitutional
saturation but merely extend the horizon further back in
evolutionary time; the application of more complex and bi-
ologically realistic models is likely to extend these branches
even further into the past. Eventually, however, even the
most realistic models are likely to fail and external informa-
tion, such as biogeography and homology to endogenous
viral elements, must be brought into consideration to es-
timate truly ancient events (Katzourakis et al. 2009; Kat-
zourakis and Gifford 2010).

The precise age of measles in the human population re-
mains elusive. The domestication of cattle beginning 10, 000
years ago provided the necessary exposure to RPV, and the
development of agriculture allowed human populations to
reach sizes necessary to sustain an epidemic. However, the
historical record of measles is ambiguous until the ninth
century, when Rhazes (a Persian physician) outlined the cri-
teria for differentiatingbetweenmeasles and smallpox (Rāz̄ı
1848). Rhazes discusses both ailments as immemorial, in-
dicating that both diseases predated him by many genera-
tions. Although there are historical records of earlier plagues
that could be interpreted as measles, notably in eighth cen-
tury France during the battle of Tours (Rolleston 1937), it is
also possible that this plague could have been smallpox or
another disease with similar presentation.Even after Rhazes
description, Western medicine still confounded measles,
smallpox, and scarlet fever until the 17th century (Rolleston
1937). In light of this confusion, the lack of a definitive de-
scription of measles before Rhazes (e.g., Galen, an ancient
Roman physician, described smallpoxbut notmeasles) does
not establish that the virus was absent (McNeill 1976). It is
plausible thatMeVmight have not entered the human pop-
ulation until the firstmillenniumof the Common Era, as our
analysis suggests. Alternatively, MeV could have emerged
thousands of years ago, and the evolutionary models em-
ployed here are too crude to recover the true age of the
virus. Regardless of which scenario is correct, accounting for
variable selective pressures is an important step in revealing
the ancient history of RNA viruses.

The different timescales affecting mutation rates
and substitution rates make it difficult to extrapolate
population-based estimates of rates over a long evolu-
tionary time (Ho et al. 2005); however, it is unlikely that
purifying selection alone can account for this difference be-
tween short- and long-term evolutionary rates (Woodhams
2006). Furthermore, short-term estimates of viral substitu-
tion rates (inferred from population-based rate estimates
at the tips of phylogenies) are often found to be several

orders of magnitude faster than long-term estimates of
substitution rates (inferred from external calibrations
located deeper in the phylogeny). This inconsistency has
been reported for hepatitis B virus (Zhou and Holmes 2007;
Gilbert and Feschotte 2010) and simian immunodeficiency
virus (Wertheim andWorobey 2009a; Worobey et al. 2010),
suggesting that long-term substitution rates can be orders
of magnitude lower than short-term substitution rates. An
alternative, and more parsimonious, explanation is that
a single substitution rate (albeit one possibly slower than
that inferred using short-term population-based data)
predominates throughout the history of these viruses.
And our inability to accurately estimate branch lengths
creates the appearance of dramatically lower substitution
rates deep in the phylogenetic tree. Although the methods
presented here do not correct for branch lengths on the
order needed to reconcile short-term substitution rates
with deep calibrations, they provide a glimpse at the miss-
ing evolution that most current methods of phylogenetic
inference fail to capture.

Although we are unable to provide a full remedy to the
problemof underestimated branch lengths due to purifying
selection, our results do point to a couple of guidelines
when inferring tMRCAs in RNA viruses. First, the inference
of substantially different selective regimes on longer inter-
nal branches compared with shorter shallower branches
(e.g., using Lineage+Dual, Kosakovsky et al. 2005, or Free Ra-
tio, Yang 1998, codon models) appears to be a sign that
older tMRCAs may be underestimated. Second, if the syn-
onymous substitution rate approaches saturation along a
branch or group of branches, it is likely that the tMRCA can-
not be reliably inferred. If either of these patterns is encoun-
tered, the inferred tMRCA estimates should be interpreted
with caution. Rapid advances in cheap and accessible com-
putational power will undoubtedly move the fields of pale-
ovirology and molecular dating towards increasingly more
realistic evolutionary models that account for variation in
selective regimes (Suchard and Rambaut 2009). Our results
provide compelling evidence that such a movement should
be accelerated.

In this study, we demonstrate the need to include rele-
vant biological and evolutionary forces in substitutionmod-
els. It was not until we permitted different evolutionary
regimes for different branches in the tree that we saw the
most dramatic changes in branch length estimates. Cur-
rent codon models take a very simplistic mechanistic view
of the action of purifying selection, and we expect that in-
corporating processes such as directional selection (Seoighe
et al. 2007), toggling selection (Delport et al. 2008), and
residue-specific (Doron-Faigenboim and Pupko 2007) or
site-specific substitution (Lartillot and Philippe 2004) biases
can further refine tMRCA estimates.

It is still unclear how correcting for the effects of purifying
selection may affect dating and branch length estima-
tion in other types of viruses (e.g., DNA viruses) and cel-
lular organisms. The bias we observed in the estimation
of branch lengths appears to be related to the intensity
of selection and the length of the branches in question.
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The relative importance of these factors in understand-
ing the evolutionary history of other taxa remains to
be seen.

Supplementary Material
Supplementary figs. S1–S3 are available at Molecu-
lar Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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Rāz̄ı ABMiZ. 1848. A treatise on the small-pox and measles. London:
Sydenham Society.

Rolleston J. 1937. The history of the acute exanthemata. London:
William Heinemann (Medical Books) LTD.

Rota J, Wang Z, Rota P, Bellini W. 1994. Comparison of sequences of
the H, F, and N coding genes ofmeasles-virus vaccine strains. Virus
Res. 31:317–330.

Sanchez A, Trappier SG, Mahy BW, Peters CJ, Nichol ST. 1996. The
virion glycoproteins of Ebola viruses are encoded in two read-
ing frames and are expressed through transcriptional editing. Proc
Natl Acad Sci U S A. 93:3602–3607.

Seoighe C, Ketwaroo F, Pillay V, et al. (11 co-authors). 2007. A model
of directional selection applied to the evolution of drug resistance
in HIV-1.Mol Biol Evol. 24:1025–1031.

Shapiro B, Rambaut A, Drummond AJ. 2006. Choosing appropri-
ate substitution models for the phylogenetic analysis of protein-
coding sequences.Mol Biol Evol. 23:7–9.

Skare Ø, Bølviken E, Holden L. 2003. Improved sampling-importance
resampling and reduced bias importance sampling. Scand J Statist.
30:719–737.

Suchard MA, Rambaut A. 2009. Many-core algorithms for statistical
phylogenetics. Bioinformatics 25:1370–1376.

Sullivan J, Joyce P. 2005. Model selection in phylogenetics. Annu Rev
Ecol Evol Syst. 36:445–466.

Suzuki Y, Gojobori T. 1997. The origin and evolution of Ebola andMar-
burg viruses.Mol Biol Evol. 14:800–806.

Taubenberger JK, Reid AH, Lourens RM, Wang R, Jin G, Fanning TG.
2005. Characterization of the 1918 influenza virus polymerase
genes. Nature 437:889–893.
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