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Biomarkers for Interstitial Lung Abnormalities: A Stepping-stone
Toward Idiopathic Pulmonary Fibrosis Prevention?

Interstitial lung abnormality (ILA), defined broadly as the presence of
nondependent radiographic abnormalities on computed
tomography (CT) scan occurring in an individual in whom interstitial
lung disease is not suspected, appears to be a precursor to idiopathic
pulmonary fibrosis (IPF) and other forms of progressive pulmonary

fibrosis (PPF) (1). ILAs are frequently found in asymptomatic
individuals with a strong family history of pulmonary fibrosis (2, 3).
In the nonfamilial setting, ILAs are more common with advancing
age, in those with the rs35705950MUC5B polymorphism, and occur
in 4–9% of smokers and 2–7% of nonsmokers over the age of 60 (4).
Almost half of ILAs progress over the subsequent 5 years, and risk
of mortality for those with ILAs is considerably higher than for
age-matched populations (5).

Given the significant morbidity andmortality associated with
IPF and PFF (6), the identification of individuals prior to the
development of irreversible fibrosis and onset of symptoms affords a
window of opportunity for genuinely disease-modifying therapeutic
intervention. Understanding of the natural history of ILAs has come a
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long way in the last 5 years; however, there are still barriers to
overcome before it is possible to consider running clinical trials in
this area. First, it is not yet clear how best to target screening for ILAs.
To date, populations in whom ILAs have been studied have been
opportunistic; that is to say CT scans were performed as part of
studies designed to screen individuals at high risk for diseases other
than ILD, for example, lung cancer, chronic obstructive pulmonary
disease (COPD), or cardiovascular disease. Second, not all ILAs
appear to confer equal risk for development of ILD. Certain imaging
features such as honeycombing seem to be more often associated with
progressive disease; however, accurate prediction of which individuals
will develop IPF or PFF remains limited (1, 7). Third, an important
prerequisite to running clinical trials in individuals with ILA is the
development of appropriate endpoints. Physiological endpoints that
are used in IPF trials (such as FVC) are unlikely to be usable in
studies of ILA. To avoid the need for large and lengthy studies it
will be important to identify surrogate measures which, based on
short-term change, will predict the long-term likelihood that ILA
will transform in to IPF.

Blood biomarkers have the potential to be a simple, minimally
invasive way of identifying individuals at risk of developing ILA and
for assessing likelihood of ILA progression. A wide range of
circulating proteins have been shown to identify risk of progression of
IPF and PFF (8, 9). Several studies of specific biomarkers have been
performed in individuals with ILA. Serum levels of galectin-3,
sICAM-1, bloodmonocytes, and a number of aging-related proteins
(including GDF15, TNFR, CRP, and IL-6) have been associated
with an increased likelihood of ILA (10–13). Increased levels of
matrix metalloprotease-7 have been shown to predict progression
of ILA (14).

In the current issue of the JournalAxelsson and colleagues
(pp. 337–346) present data from an unbiased proteomic analysis,
utilizing an aptamer-based platform, performed in two independent
prospective cohorts; the AGES (Age, Gene/Environment
Susceptibility)-Reykjavik study and the Genetic Epidemiology of
COPD (COPDgene) study (15). In total, the authors measured
.4000 proteins in baseline blood samples from.10,000 individuals.
To make sense of such big numbers, the authors employed a
technique called LASSO (least absolute shrinkage and selection
operator). This approach, which is commonly used in machine
learning algorithms, is helpful in interpreting large datasets but does
so at the cost of potentially important measures being overlooked.
In the AGES-Reykjavik cohort (n=5259), 287 proteins were
associated with risk of ILA; the three with the greatest odds ratios
were SFTB (surfactant protein B), SCGB3A1 (secretoglobin-3A
member-1), andWFDC2 (WAP four-disulfide core domain
protein-2). These markers also formed part of an 8-protein LASSO
model with a c-statistic on receiver operator curve analysis of 0.880
(which compared with 0.670 for a model consisting of demographic
factors alone). In replication, in the COPDgene cohort (n=4899)
the same proteins were associated with an increased odds ratio of ILA
and the LASSOmodel generated a c-statistic of 0.826. Furthermore,
the identified proteins tended to associate with ILA imaging patterns,
which correlate most strongly with unfavorable long-term outcomes.

In the AGES-Reykjavik cohort, 223 participants had progression
of ILA at follow-up. Of the measured proteins, 121 associated with
ILA progression. SFTB andWFDC2 together with growth
differentiation factor-15 (GDF15) and cathepsin H (CTSH) were the
proteins that identified the greatest odds for ILA progression. An

adaptive LASSOmodel generated a c-statistic of 0.824. Unfortunately,
progression data is not available for the COPDgene cohort and these
observations could not be validated.

Axelsson and colleagues are to be congratulated for
undertaking such a large-scale proteomic study in two well-defined
patient populations. Their findings suggest that blood protein
signatures can be used to identify individuals at risk for ILA (thus
opening the door to targeted use of CT screening in high-risk
individuals) and for determining which individuals with ILA are
most likely to have progressive disease (information which could be
used to enrich future clinical trials). Aptamer-based proteomic
assays only generate semiquantitative data. If the findings from the
current study are to be translated into clinical practice, it will be
necessary to develop quantitative assays for the proteins identified
and for these to be tested prospectively to validate specific
thresholds that define individual risk more precisely. Nonetheless,
Axelsson and colleagues have taken the critical step of
demonstrating a role for blood-based biomarkers in the
identification and assessment of ILAs.

ILAs appear to be an important precursor to IPF and PFF. Thus,
successful implementation of secondary prevention strategies should
be a highly effective approach for averting the development of deadly
fibrotic lung disease (in much the same way that treatment of
hypercholesterolaemia and the use of antiplatelet drugs have
dramatically improved cardiac outcomes in the 21st century).
The demonstration that blood biomarkers can be used both to
identify individuals at risk for ILA and to predict subsequent risk of
progression once an ILA has been confirmed represents an
important stepping-stone toward the goal of making IPF and PFF
preventable conditions.�
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