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The field of medical genomics involves translating high throughput genetic methods to the clinic, in order to
improve diagnostic efficiency and treatment decisionmaking. Technical questions related to sample enrichment,
sequencing methodologies and variant identification and calling algorithms, still need careful investigation in
order to validate the analytical step of next generation sequencing techniques for clinical applications. However,
the main foreseeable challenge will be interpreting the clinical significance of the variants observed in a given
patient, as well as their significance for family members and for other patients.
Every step in the variant interpretation process has limitations and difficulties, and its quote of contribution to
false positive and false negative results. There is no single piece of evidence enough on its own to make firm
conclusions on the pathogenicity and disease causality of a given variant.
A plethora of automated analysis software tools is being developed that will enhance efficiency and accuracy.
However a risk of misinterpretation could derive from biased biorepository content, facilitated by annotation
of variant functional consequences using previous datasets stored in the same or linked repositories. In order
to improve variant interpretation and avoid an exponential accumulation of confounding noise in the medical
literature, the use of terms in a standard way should be sought and requested when reporting genetic variants
and their consequences. Generally, stepwise and linear interpretation processes are likely to overrate some
pieces of evidence while underscoring others. Algorithms are needed that allow a multidimensional, parallel
analysis of diverse lines of evidence to be carried out by expert teams for specific genes, cellular pathways or
disorders.

© 2014 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
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1. Introduction

Next generation sequencing (NGS) technologies are rapidly becom-
ing a routine tool in the diagnostic workup of patients with diverse
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conditions, including tumor profiling. Medical genomics refers to the
ability to simultaneously query the diagnostically relevant gene set of
a given person for clinical decisions. Sequencing of the complete set of
protein coding exons of an individual — whole exome sequencing
(WES) — has enhanced the identification of genetic defect of rare dis-
eases (Wan et al., 2012; Keller et al., 2013). These technologies can
also be applied to decipher more common syndromes (Cirulli and
Goldstein, 2010; Kiezun et al., 2012). Decision-making in oncology can
now be based on the singular molecular signature of the tumor with
implications in pathology and response to treatment or individual prog-
nosis (Normanno et al., 2013). Another approach to the diagnosis of
genetically heterogeneous disorders is the simultaneous sequence of a
panel of genes associated with a given syndrome. NGS also harbors po-
tential to delineate an individual's pharmacogenetic profile (Patrinos
et al., 2013). The use of high throughput molecular analysis for clinical
decisionmaking is often referred to as personalizedmedicine or person-
al genomics, although warnings have also been raised about myths and
inflated expectations that may come alongwith these somewhat blurry
terms (Salari et al., 2012).

How far arewe still frombeing able to interpret all genetic variations
accurately in a clinical context? Many challenges lie ahead before NGS
can be integrated as part of routine medical care. The process to know
which one among the thousands of genetic variants harbored within
an individual's genome is clinically relevant generally involving a num-
ber of steps summarized in Fig. 1. In the following sections we review
some of the challenges and limitations encountered along this path, as
well as potential sources of errors that must be taken into account for
an adequate clinical interpretation of genetic variants.

2. Need for accurate use of terms on genetic variations and their
consequences

A first source of difficulty comes from the imprecise use of vocabu-
lary referred to genetic variations and their consequences. The terms
polymorphismandmutation do not bear implications on their function-
al consequences, however they are often used with that meaning. A
polymorphism is a genetic variant present in ≥1% of the population,
whereas a mutation is any change in the DNA sequence compared to
the previous state or wild type. Neither concepts imply whether they
are or are not disease-causing. Just because a polymorphism is not so
rare, it does not necessarily mean that it is benign (not associated
with a disorder) or neutral (without functional consequences). Because
of the potential for misinterpretation of polymorphism and mutation,
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Fig. 1. Stepwise evidence pipeline for clinical interpretation genetic variants. After identificatio
iants are prioritized. The weight of different lines of evidence leads to final clinical interpretati
the term genetic variant is currently favored, as defined by the presence
of a particular allele — at a nucleotide position, gene or locus — that is
not the most commonly encountered allele in the general population.
Thus, the term genetic variant does not imply any a priori assumption
on the frequency of the variant allele or its potential effect on the health
of the individual carrying it. Also, terms such as neutral, benign, func-
tional, pathogenic, deleterious, damaging, disease-associated and caus-
al, when referring to a genetic variant, are often used in ill-defined
manner throughout the medical literature. For instance, pathogenic is
often equaled to disease-causing, which is not necessarily always the
case. While functionality, deleteriousness, pathogenicity and disease
causality may be strongly related terms, they are not interchangeable.
As for the term phenotype, it must be specified whether the authors
mean abnormalities detectable at a cellular/organ level, to biochemical
alterations that can be measured, or to abnormal clinical traits that
can be observed in an individual, animal model or cellular construct. A
phenotype can bemadeup of several endophenotypes thatmay provide
useful clinical measures (Mann et al., 2009).

Another issue is the system level at which the consequence of a ge-
netic variant is being described. For example, the variantmay be delete-
rious at a cellular level (causes a loss of function in a given cellular
process), but not necessarily deleterious for the organ or individual.
When discussing the potential effects of a given genetic variant on dis-
ease, there is a tendency to classify the variant in a simple three or
five-tiered scheme (pathogenic, likely pathogenic, unlikely pathogenic,
non pathogenic, unknown). This scheme, however, ignores the com-
plexity of biological processes that can imply other types of relation-
ships between a variant and a clinical manifestation (predisposing,
triggering, modifying, protective, etc.), as well as digenic or polygenic
disorders. We call for using terminology – and requesting its use in
scientific publications – with more precision when describing the
consequences of genetic variants, such as done in the recent paper by
MacArthur et al. (2014).While a consensus is developed by the genetics
community on the definition of these terms and how they should be
used, it would be a good practice that curators of genetic databases de-
fine their intended meaning.

3. Variant identification and annotation

The first step towards genetic variant interpretation is the ability to
correctly determine the presence of, and subsequently annotate, the al-
leles at each position of the target sequence. Obviously, variants that
have not been identified and annotated will not be subject to further
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scrutiny. However, the problem of non called or incorrectly annotated
variants is not limited to the possibility of missing the actual causing
mutation. It also increases the likelihood of overinterpreting the vari-
ants that were identified and annotated. The ability to correctly identify
all the genetic variants through different NGS platforms and informatics
tools still needs to be studied in more depth. The sensitivity and speci-
ficity for variant detection, false positive and false negative rates,
depend on the genomic region, mutation type, sample source and qual-
ity, and clinical problem, amongother factors. Parameters such as cover-
age and quality, that can be influenced by enrichment and sequencing
methods (Mamanova et al., 2010), affect efficiency of variant identifica-
tion, and there is a trade-off between sensitivity and specificity. Variant
calling programs appear to have a low concordance rate (O'Rawe et al.,
2013). There is a longway to go before quality control of the sequencing
platforms is standardized. In order to apply NGS to diagnosis, Coonrod
et al. (2013) suggested that it will be critical to empirically determine
read coverage requirements for a given platform to achieve accurate
variant calling. Variant calling can also be affected by the presence of
structural variations such as indels, repetitive and homopolymorphic
regions that can be differently interpreted by different callers, even if cov-
erage and sequence quality were high (Linderman et al., 2014). Another
technical issue is that highly homologous sequences such as pseudogenes
or gene families can be co-captured with the target gene of interest,
potentially generating both false positive and false negative results. The
GC content can also bias variant identification, since regions with high
or low GC content are captured less efficiently (Clark et al., 2011).

The identified variants are then annotated, i.e., described in a stan-
dardway through comparisonwith a reference sequence. Variant anno-
tation, usually carried out with automatic software tools such as
ANNOVAR (Wang et al., 2010), is performed to indicate its position
and functional classification. One of the challenges for variant annota-
tion is the existence of diverse reference sequences and versions of
genomic regions, genes or transcripts as new knowledge is acquired
(Pruitt et al., 2014). At least theoretically, the functional consequences
of a given variant can differ depending on the reference sequence
used. For instance, a missense variant in a given transcript sequence
may be intronic if annotated on a different transcript where that partic-
ular exonwas not present. Thus, when interpreting NGS variants totally
different conclusionsmay be reached depending onwhat transcript iso-
formwas used for annotation. Since it is often unknownwhich of the al-
ternative transcripts of a gene is relevant for a given organ, symptom,
disorder or disease stage, available informatics tools often annotate
variants according to all known transcripts. Sometimes the largest tran-
script is used, other times, the canonical transcript or the one most rel-
evant by consensus. Other pipelines only show the annotations that
have a priori higher functional impact, e.g. the predictedmissense effect
of certain variant on a given transcriptwould be shown, but the intronic
consequence of the same variant on another transcript would not be
shown in the resulting file. This may lead to a high rate of false positive
predictions, as well as the dismissal of a deleterious variant that might
actually cause disease through the functional consequence of its pres-
ence in an intron (on splicing, on amicro RNA, etc.). The Locus Reference
Genomic (LRG) project was proposed with the aim of establishing a
fixed annotation layer for each gene with clinical implications, contain-
ing essential transcripts and a stable exon numbering system (Dalgleish
et al., 2010). The magnitude of this project makes its widespread adop-
tion difficult to achieve at this time.

4. Literature and database search

Another usual step in genetic variant interpretation consists of
scrutinizing two types of variant databases.

1) Collections of genetic variants observed in the general population
(such as the 1000 Genomes Project or the NHLBI Exome Sequencing
Project).
In-house databases of variants observed in the local population are
also available in many laboratories. The rationale is that a sequence
variant present in random individuals above a given frequency
threshold is likely to be benign or, at least, not a high penetrant,
disease-causing variant. While this premise is generally correct, cau-
tion is advisable. For instance, interpreting recessive variants can be
more difficult in inbred populations, where a relatively high carrier
frequency of non neutral variants may be encountered (Azmanov
et al., 2013). Moreover, we should expect to find potentially patho-
genic mutations in the general population just by chance, leading us
to wrongly conclude that they are harmless (false negative). The con-
trary is also true: a neutral variant may not be detected in control in-
dividuals because it is rare, and thismight lead us to over-interpret its
clinical significance (false positive). In fact, most DNA variants in the
human genome occur with a frequency below 1% (Mitchell et al.,
2005). Thus, it is likely that a benign variant is not foundwhen screen-
ing the general population. Furthermore, a harmless and relatively
frequent variant in a given populationmight actually have deleterious
consequences in a different populationwithin other haplotype, epige-
netic or environmental influences. An example of this is the c.35delG
and c.101 T N C variants in GJB2, a gene causing congenital non
syndromic sensorineural hearing impairment. There has been some
controversy on the pathogenicity of these variants that were reported
as either disease-causing low penetrance or non pathogenic alleles in
different ethnicities (Hall et al., 2012). Kenna et al. (2013) questioned
the pathogenicity of 51 variants associated with amyotrophic lateral
sclerosis, based on their population frequency. While this is true in
case of a full-penetrant variant with homogeneous clinical conse-
quences (i.e. all carriers have the same manifestations), their argu-
ment would not hold up under a model of recessive inheritance,
incomplete or late penetrance, di- ormulti-genic disease and/or var-
iable clinical expressivity of that variant.

2) Information on genes and gene variants with reported association to
disease.
In a broad sense, this includes gene-disease or variant-disease rela-
tionships described in any repository of biomedical information:
published scientific papers (PubMed), online genetics resources
(OMIM, GeneReviews, ClinVar) and mutation databases (HGMD®,
public mutation databases). Other sources of information that may
be useful for variant interpretation are repositories with data on cel-
lular pathways and gene expression, protein domain structure and
modeling, animalmodels and others. The ultimate goal of this search
is to weigh the available evidence in favor of a likely role of the ge-
netic variants encountered in a patient (variant present in other pa-
tients or related medical literature, gene expressed in the affected
tissue, protein–protein interactions in relevant biological pathway,
etc.) against lack thereof (patient clinical characteristics not reminis-
cent of what was previously known to be caused by that gene, vari-
ant present in a significant percentage of the general population,
variant located in a functionally little relevant protein domain, etc.).

The importance of promoting a collective and open effort to build
locus specific databases (LSDBs) has been highlighted by the Human
Variome Project (HVP) (Cotton et al., 2009). There are manifold obsta-
cles to developing high quality LSDBs for all human genes, including
the rates at which genetic variants are identified with NGS. Also the
fast accumulation of biological and medical data relevant to any given
gene makes it difficult to carry out comprehensive and high quality
curation of each variant. One downside of the open and non peer-
reviewed information as currently published in LSDBs is the lack of
quality control of the data. Because the accuracy of published research
is critical both for scientists, physicians and patients who rely on these
results, curation of LSDBs should not be a task left to personnel in train-
ing, but a commitment of experts in the particular gene or disorder.
LSDB publishers have ethical obligations with regard to the content of
the LSDB they curate (Povey et al., 2010), especially since non expert
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readers will also be able to access the information. All professionals
involved in the production of both traditional journals and genetic data-
bases should ensure good quality data, since incorrect information
might cause misinterpretation of a genetic finding and lead to wrong
medical decisions with consequences for the patients. The HVP is work-
ing on developing database quality assessment criteria.

5. Functional predictions

The functional annotation of genetic variants generally refers to
predicting their probable consequences at the protein level (missense,
splicing effect, truncating, etc.). However, a variant's potential pathoge-
nicity cannot be inferred based on its functional classification only. Mis-
sense changes can be benign, whereas some synonymous variants can
be deleterious. Although frameshift and truncating mutations are gen-
erally considered deleterious, truncating variants have been found in
the X chromosome that is apparently inconsequential on the carrier
individual's health (Raymond et al., 2009). Also, a truncating variant
could be deleterious in a recessive disease (loss-of function model)
but irrelevant in a dominant disease caused by a gain of abnormal func-
tion. In fact, truncating loss of function variants can be evolutionary fa-
vorable (Xue et al., 2006; Behe, 2010). Furthermore, the tendency to
acquire beneficial null mutationsmay be variable for different function-
al gene classes (Hottes et al., 2013).This may imply that not only the
functional type ofmutation, but also the function of the encoded protein
has to be considered when evaluating the likelihood of pathogenicity.

Given the complexity of the variant-function relationship, it is not
surprising that in silico predictors of the theoretical consequences of ge-
netic variants are imperfect.Many prediction tools have been developed
to estimate whether a given variant is likely to be deleterious for the
encoded protein, like SIFT, PolyPhen, GERP, SNAP, SNPs&Go, PhyloP,
and MutationTaster(reviewed in Frousios et al., 2013). Some prediction
programs are based on the nucleotide sequence, while others are based
on the protein sequence, andmay include analysis such as conservation
among species, biochemical properties of the encoded amino acids,
splicing predictions and three-dimensional calculations of the effect
on protein structure, among other things. One obvious limitation is
that these estimates are based on a priori assumptions and general
knowledge of biological processes. For instance, it is assumed that a var-
iant that changes the predicted codon nucleotide composition will lead
to an amino acid substitution at the protein level, which may not apply
for a given protein domain, gene, organ, or disease. Also, while the level
of conservation among species is generally high for exons, the “no con-
servation = not functionally important” rule does not necessarily hold
true for splicing regions, UTRs, promoters and other regulatory ele-
ments, since regulation of gene expression can be highly variable be-
tween species and even tissues. Our current ability to interpret the
functional consequences of sequence variations outside coding regions
is highly limited.

Another limitation is that these informatics pathogenicity prediction
tools are tested with different datasets, which may lead to variable inter-
pretations (Vihinen, 2012). It should also be emphasized that in silico pre-
dictions are based on previous knowledge and information already
annotated in databases, which could have a snowball effect on accumula-
tion of errors. The positive and negative prediction values ofmost in silico
functional prediction tools have not been evaluated for specific genes or
disorders. To overcome the limitations of individual prediction tools,
scoring systems have recently been proposed that integrate the output
of diverse prediction tools into a unified classification (González-Pérez
and López-Bigas, 2011; Capriotti et al., 2013; Kircher et al., 2014).

6. Experimental evidence of pathogenicity

When available, patient samples are used to check for evidence of
abnormal gene expression, either at RNA or protein level. The lack of
correlation between in silico predictions and gene expressionmeasured
by real timePCR in colon tissue underlines the need to verify predictions
experimentally (Penney et al., 2013). Since a sample from appropriate
tissue cannot always be obtained, in vitro splicing assays have been de-
veloped, which have shown that in silico calculations of a splicing effect
do not necessarily imply that the predicted abnormal splicing actually
happens in the cell. Antagonistic splicing factors and other elements
could affect the fine balance of exon identity in a disease context. Even
if inferences of in silico and in vitro assays on splicing were always cor-
rect, this does not necessarily imply that such variation in the splicing
process is relevant in a given individual and tissue, let alone that it is
disease-causing. Such thinking ignores the natural functions of alterna-
tive splicing and how little we still know about ethnic, gender, age and
tissue variability of splicing patterns (Shargunov et al., 2014).

The ultimate proof of pathogenicity is often claimed to come from
showing that, when introduced to cultured cells or laboratory animals,
the suspect variant causes alterations reminiscent of the phenotype,
and these abnormalities are rescued by methods that recover the wild
type function. Experimental studies, however, also have limitations
and their results cannot be simply extrapolated to human disease. Dis-
cordant data from in vitro and in vivo assays may lead to question the
role of a gene in a given disorder. For instance, the p.G191V variant in
ZFYVE27, the gene encoding protrudin, was first identified in a small
German family with hereditary spastic paraplegia (HSP), assigned to
the SPG33 locus (Mannan et al., 2006). Using a yeast two-hybrid
assay, ZFYVE27 was proposed to interact with SPAST — the most com-
mon gene causing autosomal dominant HSP. Discordant in vivo results,
together with the high frequency of the p.G191V variant in some popu-
lations (7.2% in African Americans) prompted Martignoni et al. (2008)
to question the pathogenic role of ZFYVE27. The controversy was nur-
tured by more recent functional studies suggesting that protrudin is
functionally related to other endoplasmic reticulum proteins causing
HSP (Pantakani et al., 2011; Chang et al., 2013). However, definitive ev-
idence that the p.G191V variant causes HSP is still lacking, additional
mutations in ZFYVE27 causing HSP have not been reported, and some
authors do not recommend including this gene in the routine genetic di-
agnosis of this group of disorders (Finsterer et al., 2012).

7. Family co-segregation

The importance of clinical history and examination, as well as family
data for variant interpretation cannot be overemphasized. The causal
role of a genetic variant in a given patient is less plausible if the variant
is not present in all affected family members and/or it is carried by un-
affected individuals. However, the weight of clinical and genealogical
evidence on the estimated likelihood of causality must also be taken
cautiously. First, establishing affectation status is not always easy for
late-onset diseases that may showmild or variable symptoms in differ-
ent familymembers. On the other hand, similar symptoms can be due to
a different— genetic or environmental— cause in some familymembers
(phenocopies). In a revision of 160 families with Parkinson's disease,
Klein et al. (2011) found that up to 1.3% of all relatives with PD were
phenocopies. This highlights the complexity of interpreting familial
co-segregation in disorders where the genetic disease can be indistin-
guishable from idiopathic forms.

Another challenge comes from assumptions on inheritance models
and genetics rules. For instance, that there is just one causal variant at
play in a family with a dominant disease, that the disease causing vari-
ant will be homozygous in a consanguineous family or that a given var-
iant or gene always acts as either dominant or recessive. Establishing
the inheritance pattern in most families is far from straightforward. In
the clinical diagnostic setting genetic variants are typically evaluated
one by one, and thus the possibility that other variants present in a
particular patient could influence clinical presentation is generally
overlooked. In a patient with both myopathic and neuropathic signs,
Ardissone et al. (2014) observed two previously known mutations in
CLCN1, a gene causing autosomal recessive congenital myopathy. The



Table 1
Difficulties for interpretation of the clinical significance of genetic variants.

Step/methods Example challenges

Variant identification -Variable performance of sequencing platforms and strategy
-Bioinformatic tools with different mapping and variant calling parameters
-Sensitivity/specificity may depend on genetic region, variant type and clinical question.
-Coverage and quality standards and thresholds not well established
- Failure to identify relevant variants may lead to overrate variants that are observed.

Variant annotation - Not universally adopted nomenclature
- Gene-centric and exon-centric annotation system
- Variable and evolving reference sequences
- Incomplete knowledge of alternative transcripts and regulatory elements

Search scientific literature - Exponential number of gene-disease associations, many are not validated
- Publication bias towards positive results
- Publication bias towards certain ethnic groups/populations

Search general databases - Increasing content of rare, potentially pathogenic variants
- There is no absolute frequency threshold to prove that a variant is likely benign
or likely pathogenic. It depends on disease model, clinical characteristics, etc.
- Many populations are not represented.
- No information on phenotype

Search LSDBs - Not available for most genes
- Contradictory information in different databases
- May not be updated, not peer-reviewed
- Biased with data obtained from patients

Search in house database - Overrepresentation of technical errors
- Regions of repeatedly deficient coverage
- Neutral variants may be rare and non neutral may be frequent in specific populations

A priori biological knowledge - Assumption that some variant types are always more likely to cause disease than others.
E.g. truncating/frameshift more than synonymous.
- Assumption of compliance with Mendelian rules
- Equal interpretation of a given genetic variant in different patients, disorders, populations,
disregarding other genetic and/or environmental factors

In silico missense predictions - Based on general biological principles that may not always apply
- May vary with the amount of input sequence, transcript isoform and the information
available in biorepositories
- The complexity of splicing regulation is poorly understood

In vitro splicing analysis and expression studies - Technically demanding and susceptible to be influenced by experimental conditions
- Expensive to set up in a routine pathogenicity assessment pipeline
- Observations may not reflect what happens in the cell, organ and disease state

Animal experiments - Technically demanding, expensive
- Results do not necessarily parallel to what happens in humans, in disease state

Family co-segregation - Inheritance pattern is not always clear
- Family members are not always near, alive, or willing to be studied
- Biological causes of apparent lack of co-segregation. E.g. incomplete penetrance, anticipation,
variable phenotype, phenocopies.
- Ethical and legal implications: need for genetic counseling, follow-up of family members may
appropriate according to results (time consuming, expensive)
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patient also had a duplication in the PMP22 gene causing Charcot–
Marie–Tooth disease, an autosomal dominant hereditary neuropathy,
which he had inherited from his father. In the asymptomatic parents,
neurophysiological studies showed a demyelinating polyneuropathy
in the father, and mild myotonia in the mother. This case exemplifies
several facts that can further complicate clinical interpretation of genetic
findings. First of all, the difficulty to accurately establish family history,
clinical status and inheritance pattern. In many disorders, clinical mani-
festations may be variable, including subclinical signs that go unnoticed.
Secondly, disease-causing variants in two or more genes may be contrib-
uting to the particular combination of clinical features in a given patient.
In HSP families with atlastin mutations,Varga et al. (2013) also warn on
this issue, discussing the challenge of assessing family history correctly
and suggest that some cases with as yet unidentified genetic basis
might be due to misinterpretation of the inheritance pattern.

Upon familial co-segregation analysis for variant pathogenicity as-
sessment, another issue that deserves more attention is the interpreta-
tion of de novo mutations. Genetic variants that arose de novo in a
patient — not present in any of the parents — are generally considered
more likely deleterious. Although de novo mutations might underlie
many rare developmental disorders, most of an individual's de novo
variants are expected to be clinically irrelevant (Veltman and Brunner,
2012). The type of mutations and polymorphisms, mutation rate in
different genetic regions, as well as other factors that may influence
de novo mutation rates in different individuals or populations should
be taken into account before drawing conclusions on the pathogenic
role of a de novo variant. Around 74 de novo single-nucleotide muta-
tions per genome is expected, a frequency that is influenced by paternal
age (Kong et al., 2012). It must also be kept in mind that the possibility
of sequencing artifacts is higher among apparently de novo mutations.

8. Weighing the evidence: likelihood of pathogenicity scoring and
clinical interpretation

Eventually, all the lines of evidence described above, aswell as other
sources and types of related knowledge need to be evaluated in order to
achieve themost accurate insight on the potential role of a given variant
in a given disease or symptom, in a given patient. For this purpose, path-
ogenicity scoring systemshave beendeveloped by researchers or expert
consortia, such as those proposed to classify breast cancer or mismatch
repair gene variants (Plon et al., 2008; Thompson et al, 2014). Classifica-
tion schemes generally involve multifactorial likelihood analysis of
quantitative and qualitative data (Goldgar et al., 2008). A 5-tiered sys-
tem is commonly used, which recognizes variants as benign, probably
benign, of uncertain significance, probably pathogenic, and pathogenic.
However, this scoring system is clearly over-simplistic and for the most
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part applicable toMendeliandisorders only. If all genetic and non genet-
ic factors are considered, such as in complex human diseases, other cat-
egories also exist to define the relationship between a genetic variant
and the disease (susceptibility variant, prognostic factor, and modifier
of drug-response, among others).

Some LSDBs and other databases summarize useful information
about evidence of pathogenicity for each variant. ClinVar is a public re-
pository providing access to clinically relevant variants with supporting
evidence (Landrum et al., 2014). Assessment of significance is provided
by the submitter, and conflicts in interpretation by different submis-
sions are tagged in the aggregate records. A distinction is also made
between variants classified by single or multiple submitters or not clas-
sified by any submitter. A collective, wiki-like open system to sum up
the evidence of pathogenicity from different sources could also be
envisioned, with potential advantages and disadvantages.

Increasingly, informatics packages and online portals are being
developed that exploit data from multiple sources, taking into account
different levels of evidence in a combined way (Hermida et al., 2013).
Suchmachine learning systems are becomingmore powerful to compile
and mine biomedical information. They can carry out iterative opera-
tions to contrast hypothesis, identify relationship patterns (variant-
disorder, gene-symptom, protein-organ, variant-treatment), and gener-
ate meta-data to facilitate biomedical interpretation. However, these in
silico knowledge building processes are still in early development
stages for clinical applications. Machine-learning installations can use
semantic similarity searches and phenotype ontologies to extract infor-
mation from the millions of articles in the medical literature (Köhler
et al., 2009). To name just one challenge, there is good and bad scientific
literature, and also an immense amount of biomedical information
uploaded in the internet thatwould not passminimumquality standard
to even be called scientific literature (i.e., conclusions not drawn with
scientific methods). Thus, automatic data integrators would have to
give different weights to reliable and non reliable sources of data.
With the increasing amount of non peer-reviewed publications, there
is a risk that mere information is treated as if it was knowledge. What
will happen if machine knowledge acquisition is based on thousands
of data retrieved from non peer reviewed biomedical literature, full of
errors? Even peer-reviewed literature of course contains mistakes, and
the chance that this happens is likely to grow exponentially, as the
capacity to acquire and analyze biomedical data speeds up. This is
reflected in the fact that NGS technologies are uncovering a growing
number of published genes and genetic variants whose supposed to
be associated to a given disease is now being questioned (Kenna et al.,
2013). If genetic variants whose link to certain diseasewas not well val-
idated are later identified in patients with different symptoms, this may
lead to an “expansion of the phenotype spectrum” caused by that gene.
The new genotype–phenotype relationship will in turn populate gener-
al repositories such as PubMed, OMIM, and OrphaNet, potentially con-
tributing to bias our interpretation of genetic findings.

In summary, interpreting the clinical significance of genetic variants
is a complex process that goes beyond functional studies and does not
even end with pathogenicity assessment. Demonstrating that the vari-
ant has a deleterious consequence on the function of the encoded pro-
tein does not automatically translate into clinical relevance. Even
if assessment of pathogenicity — defined as a negative impact on cell
processes — could be robustly determined for a given variant, its rela-
tionship with the patient's symptoms, or lack thereof, and its implica-
tions in medical decision making need to be unequivocally established
for it to be useful in clinical practice. Table 1 summarizes someof the dif-
ficulties in this process that starts with variant identification and entails
scoring genetic and non genetic evidence. There is no single piece of ev-
idence enough on its own for clinical variant interpretation. Rather than
stepwise criteria that apply generally for any variant in any gene, specif-
ic pathogenicity scoring algorithms should be developed by experts on
each gene, gene family, biological pathway or disorder. They should in-
volve multidimensional analyses, where information in one domain
contributes to set the significance threshold and weigh the evidence
from other domains (Fig. 2). For instance, the minor allele frequency
threshold to filter out likely benign variants depends on the inheritance
pattern, as well as on the clinical features (a not very rare variant may
cause a phenotype that is mild and/or late onset, however it would un-
likely be the cause of an early-onset, severe phenotype). The presence of
characteristic clinical or biochemical signatures would modify the a
priori likelihood of causality of variants in a given gene. Also, the quality
criteria set in the variant evaluation pipeline to filter out likely sequenc-
ing artifacts can be less strict to minimize false negative results in a
priori candidate genes.

Finally, the ethical implications of premature delivery of incorrect/
incomplete variant interpretation include patient misdiagnosis, and its
impact on the patient as well as potentially on family members, invest-
ment of resources in the study of a gene that may be irrelevant, and
challenges interpretation of further variants. While seeking ways to
make clinically useful genetic data openly and promptly available
worldwide,we should not ignore the basic rules to produce high quality
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scientific knowledge. As it starts to show, the literature is abundant in
reports of misclassified genetic variants. The immediate clinical use of
new information on genes and genetic variants from research studies,
without further validation, may lead to premature conclusions andmis-
interpretation, and might cause irreparable harm.
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