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Abstract

Contemporary genetic studies are revealing the genetic complexity of many traits in humans and model organisms. Two
hallmarks of this complexity are epistasis, meaning gene-gene interaction, and pleiotropy, in which one gene affects
multiple phenotypes. Understanding the genetic architecture of complex traits requires addressing these phenomena, but
interpreting the biological significance of epistasis and pleiotropy is often difficult. While epistasis reveals dependencies
between genetic variants, it is often unclear how the activity of one variant is specifically modifying the other. Epistasis
found in one phenotypic context may disappear in another context, rendering the genetic interaction ambiguous.
Pleiotropy can suggest either redundant phenotype measures or gene variants that affect multiple biological processes.
Here we present an R package, R/cape, which addresses these interpretation ambiguities by implementing a novel method
to generate predictive and interpretable genetic networks that influence quantitative phenotypes. R/cape integrates
information from multiple related phenotypes to constrain models of epistasis, thereby enhancing the detection of
interactions that simultaneously describe all phenotypes. The networks inferred by R/cape are readily interpretable in terms
of directed influences that indicate suppressive and enhancing effects of individual genetic variants on other variants, which
in turn account for the variance in quantitative traits. We demonstrate the utility of R/cape by analyzing a mouse backcross,
thereby discovering novel epistatic interactions influencing phenotypes related to obesity and diabetes. R/cape is an easy-
to-use, platform-independent R package and can be applied to data from both genetic screens and a variety of segregating
populations including backcrosses, intercrosses, and natural populations. The package is freely available under the GPL-3
license at http://cran.r-project.org/web/packages/cape.

Citation: Tyler AL, Lu W, Hendrick JJ, Philip VM, Carter GW (2013) CAPE: An R Package for Combined Analysis of Pleiotropy and Epistasis. PLoS Comput Biol 9(10):
e1003270. doi:10.1371/journal.pcbi.1003270

Editor: Paul P. Gardner, University of Canterbury, New Zealand

Received June 13, 2013; Accepted August 15, 2013; Published October 24, 2013

Copyright: � 2013 Tyler et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by NIGMS grants K25 GM079404 and P50 GM076468, and NCI grant CA034196. JJH was supported by the Howard Hughes
Medical Institute and the Hearst Endowment. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Greg.Carter@jax.org

This is a PLOS Computational Biology Software Article

Introduction

Advances in genomic and phenotypic technologies have vastly

expanded the scope of genetic studies. Multidimensional pheno-

typing and high density genotyping are routinely combined to

produce highly detailed views of biological systems. Translating

these data into predictive models of health and disease will require

new analytical methods to understand how genetic variants

combine to influence multiple phenotypes. Here we present an

R-based software application to use the information in multiple

phenotypes to interpret statistical epistasis. The method derives

models of genetic interactions as quantitative variant-to-variant

and variant-to-phenotype influences. By fitting models to multiple

phenotypes simultaneously, the method constrains possibilities for

how individual variants interact to affect each phenotype. The

result is a directed network of quantitative, variant-to-variant

influences that represent specific levels of suppression or enhance-

ment (Figure 1). The application is suitable to data sets involving

engineered genetic perturbations, genetic intercross populations,

and natural outbred populations containing multiple common

variants. We demonstrate R/cape here using data from a mouse

backcross study [1].

Design and Implementation

R/cape is designed to detect and interpret pleiotropy and

statistical epistasis. The user begins by loading their data in R/qtl

format [2]. Briefly, this format encodes samples in rows and

phenotype and genotype values in columns. R/cape requires a

minimum of two quantitative phenotypes along with any potential

covariates such as sex, lineage, or experimental treatment. The

user identifies the potential covariates that are thereafter coded as

genetic markers. These covariates can subsequently be included in

the interaction analysis, following the same procedure as any

marker. The phenotypes should exhibit limited pleiotropy, with

some shared QTL but incomplete correlation, and be involved in

the same high-level biological process (e.g. metabolism). Complex

traits with moderate Pearson correlation (0.4#|r|#0.8) are ideal.

To maximize linear independence of phenotypes, R/cape by

default performs singular value decomposition (SVD) on two or

more selected phenotypes to derive eigentraits (ETs). R/cape
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includes functions to visualize the percent variance accounted for

by each ET as well as their individual contributions to the

phenotypes, thereby aiding the selection of ETs on which

subsequent analysis should be performed. Figure 2A shows the

ET decomposition of the example data set (Results). By default R/

cape selects the first two ETs, which typically contain the most

relevant phenotypic variation, and in this example we used the

default settings. For very high-dimensional phenotype data it is

possible to analyze up to 12 ETs. It should be noted, however, that

while increasing the number of ETs increases the information

available to the algorithm, the additional information will likely

contain components that may be difficult to consistently fit with

single pair-wise models (Figure 1). The addition of more ETs that

represent either biological signal or experimental noise will

potentially reduce the significance of directed genetic interactions,

as was found in a study of interacting variants that affected

multiple patterns of global gene expression [3].

After ET selection, the user performs a genome-wide single-

variant scan to assess the association of each individual marker.

Since very strong main-effect markers can obscure interactions

between other marker pairs, the user can assign covariates for the

pair-scans that follow. The single-variant scan can also be used to

specify marker pairs to test for interactions. The default setting is

to test all possible pairs that are not in linkage disequilibrium.

However, for data sets with a large number of markers, a subset of

loci can be selected based on single-locus significance. Pair-scans

are performed for each ET by multivariate linear regression, with

an intercept, covariates, main effects, and interaction term for

each pair of markers. Interaction (epistasis) coefficients from each

ET can be plotted as shown in Figure 2B.

The regression coefficients are the basis for the R/cape

reparametrization that determines variant-to-variant influences

(Figure 1). Main effects coefficients from the pair-scans constitute

the variant-to-phenotype influences [3]. For two ETs, the

reparametrization is exact and the fit residuals are unchanged.

For Nw2 ETs, the N interaction coefficients are dimensionally

reduced to two variant-to-variant influences (Figure 1) [3].

Significance is determined by standardized effect size, with

thresholds estimated by permutation tests. Correction of p-values

for multiple testing is implemented by the Holm step-down

procedure [4], false discovery rate (FDR) [5], or local false

discovery rate (lFDR) [6]. Null distributions are constructed by

pooling all standardized effects from each permutation, with

separate distributions for variant-to-variant and variant-to-pheno-

type distributions. This pooling procedure saves substantial

computational effort and produces significance estimates indistin-

guishable from estimates based on distinct null distributions for

every individual parameter. The final result is a directed network

indicating how ‘‘source’’ variants influence ‘‘target’’ variants and

how variants influence phenotypes. This directed network is

represented by an asymmetric adjacency matrix with source

variants in rows and target variants and phenotypes in columns.

This matrix can be visualized to help identify patterns in variant-

variant influences or plotted as a network (Figure 2C) with directed

interactions plotted as arrows and main effects plotted as colored

bars below the chromosomes. In the network, green and red

denote positive and negative values, respectively.

Results

To demonstrate the use and capabilities of R/cape, we analyzed

a mouse study of obesity and type 2 diabetes [1]. This study

backrossed the diabetes-prone New Zealand Obese (NZO) inbred

mouse with the Non-Obese, Non-diabetic (NON) inbred strain.

Body weight, serum glucose, and serum insulin were measured. All

203 male mice were genotyped at 83 autosomal microsatellite

markers, with the presence of a NZO allele coded as the

perturbation at each locus. Maternal obesity, here coded as

‘‘mom,’’ was used as a covariate and assessed for interactions with

genetic variants. The data provided a system in which R/cape

analysis could exploit both the identical and distinct factors

contributing to obesity, glucose levels, and insulin regulation in

deriving a polygenic model [7,8]. After normalization, all

phenotypes exhibited Pearson correlation coefficients around 0.6.

Phenotypes were decomposed into uncorrelated eigentraits

(ETs). Phenotype contributions to each ET are shown in

Figure 2A. The first ET represented the common, correlated

signal for all traits, while the second encodes the divergence

between plasma glucose and body weight. These two ET were

selected for R/cape analysis, and their pair-wise regression results

are shown in Figure 2B. These symmetric, marker pair regression

results were reparametrized (Figure 1) to derive directed influences

from source markers to target markers (Figure 2C).

R/cape analysis was then performed on the selected ETs. Two

markers were excluded due to full redundancy with adjacent

markers and individual pairs with substantial linkage disequilibrium

(LD) were not tested, defined as fewer than six instances of the four

possible pair-wise genotypes at the two loci. These pairs are marked

by gray dots in the pairscan results (Figure 2C). We identified both

influences of markers on phenotypes as well as directed interactions

between markers using a false discovery rate of 0.01. NZO variants

on multiple chromosomes show positive effects on all traits

(Figure 2C), denoting increased body weight and diabetes risk.

The effects between alleles, on the other hand, are uniformly

negative, which may indicate canalization of these traits in the

inbred founder lines. Maternal obesity was found to suppress the

effects of markers on Chromosome 15, and a marker on

Chromosome 2 suppressed the effects of a marker on Chromosome

18. In the latter interaction, neither marker had an individual main

effect, although the Chromosome 18 marker has a marginally

significant effect (q = 0.018) on body weight that is completely

suppressed by the Chromosome 2 marker. NZO variants in a region

on Chromosome 1 increased all three phenotypes individually and

were the hub of a small epistatic network suppressing the effects of

markers on Chromosomes 10 and 12.

The interaction between Chromosomes 1 and 12 is illustrative

of the R/cape strategy (Figure 3). Although both loci have a

positive effects on body weight, their joint effect is less than

Figure 1. Overview of coefficient reparametrization for two
phenotypes. On the left, main effect and interaction parameters for
two variants (var1 and var2) are derived from pairwise regressions (bj

i ).
The interaction coefficients are reparametrized as m12 and m21 on the
right, which describe variant-to-variant influences that fit both
phenotypes via indirect associations. For m21 the source variant is
var1 and the target variant is var2, with the source and target reversed
for m12. The intercept and possible covariate terms are not shown. Note

the main effects (b1
1,b2

1,b1
2,b2

2) are unchanged in the reparametrization.
doi:10.1371/journal.pcbi.1003270.g001
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additive (Figure 3A, center plot). This suggests that one or both of

the loci are suppressing the effect of the other, but is ambiguous

about the direction of suppression. In contrast, only the

Chromosome 1 locus has an effect on insulin and this effect is

independent of the Chromosome 12 locus (Figure 3A, left plot).

This second phenotype provides R/cape the information neces-

sary to infer the directionality of the interaction from Chromo-

some 1 to 12, since a reversed interaction would imply epistasis for

insulin along with body weight. Specifically, if the Chromosome

12 locus suppressed the Chromosome 1 locus effect, we would

expect to see the solid line in the insulin plot to have a reduced

slope, since the presence of heterozygosity at Chromosome 12

would reduce the effect of a heterozygous allele at Chromosome 1.

This was not observed. R/cape thus provides a more stringent

hypothesis for gene candidates in the two loci through the

constraint of directional genetic effects.

The interacting loci we detected were distinct from those

reported in the original analysis [1], in which phenotypes were

separately tested for evidence of interaction. The discrepancy is a

result of R/cape integrating signals across multiple phenotypes.

R/cape interactions may be of low significance for any single

phenotype, and therefore not detected in the previous study.

Figure 2. Overview of R/cape workflow and visualization tools using example data [1]. (A) Phenotypes are first decomposed into
orthogonal eigentraits (ETs). Phenotype composition and global variance fraction are displayed for each ET, facilitating the selection of ETs for
interaction analysis. In this study, the first two ETs were selected, which contained the correlated signal between all phenotypes and a divergence
between phenotypes, respectively. (B) Pair-wise linear regression is next performed on each ET. Symmetric matrices of all marker pair interaction
terms are displayed in matrix form, with gray and white bars along the axes to mark chromosome boundaries. The first two ETs for this study are
shown. (C) Regression parameters are next reparametrized (Figure 1) to derive models of directed interactions between markers and from markers to
phenotypes. In the adjacency matrix view (left), markers are designated as sources or targets of directed interactions, and marker-to-phenotype
influences are in the rightmost columns. Only variants with significant main effect or interaction are shown, and gray dots mark pairs that were not
included in the model due to linkage disequilibrium. In the network view (right), arrows are directed from source to target marker positions across all
chromosomes. Red arrows indicate suppressive (negative) interactions. Main effects are represented below the variants with green indicating an
effect that increases phenotype and gray indicating no significant main effect on phenotype.
doi:10.1371/journal.pcbi.1003270.g002
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Furthermore, the integration strategy requires differential infor-

mation across multiple phenotypes, so the instances of redundant

epistasis reported in [1] were not detected with R/cape. R/cape

also uses permutation testing and conservative correction for

multiple testing to limit the discovery of false positive interactions.

Permutation testing in particular guards against false positives

arising from linkage between markers.

By simultaneously anlayzing multiple phenotypes, R/cape can

reveal complex interactions between genotype and phenotype not

seen when examining phenotypes in isolation. While the original

study was based on detecting loci involved in the composite

phenotype ‘‘diabesity,’’ R/cape parses how genetic loci both

jointly and distinctly affect diabetes and obesity. This is of interest

to geneticists because, although these traits are correlated, not all

obese individuals are diabetic and not all diabetic individuals are

obese [7,8]. The effects of one locus can be direct or indirectly

mediated by the genotype at a second locus, as mapped by our

algorithm. Parsing how genetic factors directly and indirectly affect

these phenotypes provides a clearer model of how certain loci are

more relevant to the diabetic state. As genetic studies gain power

through larger sample sizes, improved population design, and

increased phenotype precision, the R/cape algorithm is designed

to parse multiple genetic loci into interacting subnetworks of

variants that differentially affect a number of related traits [9].

Together these findings illustrate how R/cape is designed to

find interactions that simultaneously model all phenotypes under

the assumption that interactions between variants across multiple

contexts represent a single underlying interaction network. We

note that in a large-scale, highly-powered study based on genetic

interaction screens R/cape analysis yielded significant interactions

for 55% of the interactions identified as significant using standard

epistasis analysis [9]. Thus we recommend users assess single-

phenotype epistasis using functions in R/cape or in parallel

analyses using tools such as R/qtl and R/qtlbim [10] as the results

are expected to be somewhat complementary.

Availability and Future Directions

The R/cape package is freely available under the GPL-3 license

at the Comprehensive R Archive Network (CRAN), http://cran.r-

project.org/web/packages/cape. The R platform and all R

dependencies are similarly available from CRAN.

The time required to perform an R/cape analysis depends on

multiple parameters including the number of markers, the

number of phenotypes, and the amount of linkage between

markers since linked marker pairs are not tested. Overall

processor time is proportional to N2
mNp, where Nm is the number

of markers tested and Np is the number of permutations

performed. The analysis reported here used 83 markers and one

covariate, generating 3463 pairs (after exclusion of markers in

LD). Each pair was tested with 100 permutations. On an iMac

with a 2.7 GHz Intel processor and 8 GB of memory the full

analysis took 5.5 hours. Since permutation results are pooled to

generate null distributions, preliminary analyses can be per-

formed with fewer permutations in order to save substantial

processing time. Optional limits are implemented for the

number of pairs and permutations passed to the main analysis

functions.

Future additions to R/cape will include advanced graphics

capabilities and additional features to manage populations. We

intend to augment the current graphic with scalable graphs.

Application of the software to genome-wide association studies is

currently possible but requires quantitative data and care in

managing population structure. Corrections for sample relatedness

are under development. Finally, we will expand allele encoding to

address more than two alleles at each locus, based on precision

genotyping or inferred haplotype probabilities. This will enable

application of R/cape to data from the Collaborative Cross [11],

Diversity Outbred [12], Heterogeneous Stock [13], and similar

resources.

In conclusion, R/cape is an efficient tool to represent genetic

complexity in terms of models of variant action. The program will

aid in the interpretation of epistasis without prior knowledge by

providing a fast overview and hypothesis generation tool.

Supporting Information

Software S1 R/cape software package. Source code,

documentation, test data, and an instructive vignette for R/cape.

(GZ)

Figure 3. R/cape-derived interaction between Chromosome 1 and Chromosome 12. (A) R/cape effect plots showing normalized
phenotype values for each combination of the Chromosome 1 (D1Mit123) and Chromosome 12 (D12Mit150) genotypes. NON denotes a homozygous
locus and Het denotes an NON/NZO heterozygote. Positive slopes correspond to Chromosome 1 effects, while differences between solid and dashed
lines represent the Chromosome 12 effects. Positive and significant weight effects were detected for both loci, whereas effects on insulin were only
significant for the Chromosome 1 marker. Neither locus had a significant effect on serum glucose. Significant epistasis was detected for weight, and
appears as the convergence of solid and dashed lines for heterozygosity at the Chromosome 1 locus. Note that plotted data are not conditioned on
maternal obesity, which was a covariate in the analysis. (B) Interaction network for variants on Chromosomes 1 and 12, extracted from Figure 2C,
showing the significant suppressive interaction (red arrow) from the Chromosome 1 variant to the Chromosome 12 variant (gray circular nodes).
Significant main effects (green arrows) link the source variants with the target phenotypes weight and insulin (square nodes labeled ‘‘I’’ and ‘‘W’’
respectively).
doi:10.1371/journal.pcbi.1003270.g003
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