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Abstract

Electrocardiogram (ECG) denoising is a biomedical research area of great importance. In

this paper, an integrated empirical mode decomposition adaptive threshold denoising

method (IEMD-ATD) is proposed for processing ECGs. Three methods are included in the

IEMD-ATD. First, an integrated EMD method based on a framework of complete ensemble

empirical mode decomposition with adaptive noise (CEEMDAN) is proposed to improve the

decomposition quality and stability of raw ECGs. Second, a new grouping method for intrin-

sic mode functions (IMFs) is developed based on the energy and eigenperiod of IMFs. The

grouping method is able to determine the boundaries among high-frequency noise predomi-

nant IMFs, useful information predominant IMFs and IMFs with low-frequency noises.

Finally, an adaptive threshold denoising method is derived and used for denoising high-fre-

quency noise predominant IMFs. There are two main contributions: 1) an adaptive threshold

determination method based on the 3σ criterion and 2) a peak filtering denoising method for

retaining useful information contained in the values smaller than the threshold. Synthetic

and real ECG data in the MIT-BIH database are utilised in experiments to illustrate the effec-

tiveness of IEMD-ATD for ECG denoising. The results indicate that IEMD-ATD offers better

performance in improving the signal-to-noise ratio (SNR) and correlation coefficient com-

pared with the existing EMD denoising methods. Our method offers obvious advantages,

especially in retaining detailed information on the QRS complex of the ECG, which is signifi-

cant for the feature extraction of ECG signals and for pathological diagnosis.

1. Introduction

An electrocardiogram (ECG) is a recording of physiological electrical signals produced by

human cardiac activity. It can reflect the health state of the heart and is of great importance for

diagnosing cardiac diseases such as arrhythmia and ventricular premature beat. However, raw

ECG signals are inevitably contaminated by categories of noise such as electromyogram

(EMG) noise, baseline wandering, power line interference, electrode contact noise, motion

artefacts and thermal noise due to the interference of muscle activities, respiratory movements

and ECG acquisition equipment. This noise contaminates the details of ECG morphology,
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such as P and T waves, which may lead to misjudgements. Therefore, noise reduction for

ECGs is very important and necessary.

To eliminate noise from ECG signals effectively, researchers have proposed various algo-

rithms, including classic digital filters based on Fourier analysis, adaptive filters [1–3], neural

networks [4], modern statistical techniques, and wavelet denoising algorithms [5, 6]. Since

Huang et al. first proposed empirical mode decomposition (EMD) [7] in 1998 for analysing

nonlinear and nonstationary signals, numerous noise reduction methods for ECGs based on

EMD have been subsequently proposed [8–14].

In [15, 16], Abdel O. Boudraa et al. applied the wavelet soft and hard thresholding method

directly to EMD denoising research. The denoising of several typical signals, including the ECG

signal, was studied. Compared with median filtering and wavelet denoising, the EMD denoising

method offers better performance. Tang Jing-tian et al. combined EMD with wavelet soft and

hard thresholding methods in [17] to analyse the denoising effect of ECG signals in detail. They

concluded that the EMD denoising results were superior to wavelet denoising in terms of the

reconstructed signals. Md. Ashfanoor Kabir and Celia Shahnaz [8] denoised ECG signals by

combining EMD and wavelet analysis. First, noisy ECG signals were decomposed by EMD.

Then, the first three orders of intrinsic mode functions (IMFs) were superimposed, and win-

dowing was performed to retain the information of the QRS complex. Finally, the EMD-

enhanced ECG signal was further denoised by the wavelet soft thresholding method to improve

the performance of ECG denoising. Wahiba Mohguen et al. [13] proposed an improved univer-

sal threshold and a custom threshold function based on EMD and noise decomposition charac-

teristics. However, the method was reasonable only as an EMD denoising method.

The major problems of the ECG denoising methods based on EMD mentioned above are as

follows: 1) EMD is prone to the mode mixing problem when it decomposes ECG signals.

Mode mixing has a great influence on ECG denoising, which is the main shortcoming of the

EMD denoising method [18]. 2) For the existing IMF grouping methods, the principles are

expounded unclearly, and there is no quantitative expression. 3) Although there are many

threshold determination methods, none are suitable for various situations. 4) Hard, soft and

interval threshold denoising methods will lose local useful information, while other local win-

dowing denoising methods are too complex and ill-suited for application.

To avoid the mode mixing problem, ensemble empirical mode decomposition (EEMD)

was proposed [19], which is based on the concept of auxiliary noise. However, the introduction

of auxiliary noise leads to new problems, such as more residual noise in the IMFs and more

errors in the reconstructed signals. Torres et al. proposed complete ensemble empirical mode

decomposition with adaptive noise (CEEMDAN) in [20]. It is an improved method in the

EMD family. CEEMDAN preserves the advantage of EEMD in that mode mixing is sup-

pressed. Benefiting from a unique framework, the problem of different numbers of IMFs

caused by assisting noises in EEMD is solved, and perfect reconstruction is realised. Neverthe-

less, CEEMDAN is subject to spurious modes [21]. Additionally, due to the extra procedures

required for decomposing white Gaussian noise, the internal calculation times of CEEMDAN

increase to a large extent. In addition, the residual noise in each IMF still exists.

Various threshold determination methods have been proposed, such as Universal [22],

Heuristic, Minimax, SURE, and EMD Custom Threshold [13]. Since there are various noise

types in ECGs, the interaction results of these noises are quite different from those of pure

white noise. Therefore, these existing threshold determination methods are not suitable or

adaptable for every noisy condition. Wahiba et al. [13] applied the wavelet threshold function

directly to EMD denoising methods. The realisation of threshold-based denoising methods is

achieved mainly through the hard threshold function, soft threshold function or interval

threshold function. The hard threshold method does not address discontinuity in denoised
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IMFs. The soft threshold method solves discontinuity, but it lowers the peak, producing a peak

clipping phenomenon. These methods produce signal distortion, which can affect their

denoising performance.

In this paper, an integrated EMD adaptive threshold denoising method (IEMD-ATD) is pro-

posed for the reduction of noise in ECGs. The main contributions are as follows: 1) An inte-

grated EMD (IEMD) for decomposing ECG signals is proposed. The method utilises the

CEEMDAN framework. Positive and negative noise pairs in a Gaussian distribution are utilised

as assisting noises in the first stage. The noises remaining in the residual at each decomposition

stage are used as the improved assisting noises for the corresponding stages. The proposed

IEMD is able to suppress residual noise remaining in intrinsic mode functions (IMFs) and to

reconstruct ECG signals accurately. The improved assisting noises eliminate spurious modes

appearing in CEEMDAN and streamline the noise decomposition process compared with

CEEMDAN. 2) To achieve precise and reasonable denoising, the IMFs decomposed by IEMD

are divided into three groups: high-frequency noise predominant modes, useful information

predominant modes and low-frequency motion artefact and baseline wandering predominant

modes. High-frequency noise in the ECG signal is usually decomposed into lower-order IMFs,

and the noise energy decreases as the IMF order number increases [20]. Therefore, the ratio of

the noise energy in the IMF to the energy of the corresponding IMF is used to divide noisy

IMFs (high-frequency noise predominant) and noise-free IMFs (useful information predomi-

nant). Motion artefacts and baseline wanderings in ECGs are usually distributed in higher-

order IMFs and in the residual term. Based on the cyclostationarity of the ECG signals, the

IMFs can be considered to contain no ECG components and can be discarded if their eigenper-

iod is larger than the RR interval of the ECG signal. 3) For the denoising of high-frequency

noise predominant IMFs, an adaptive threshold determination method and a peak filtering

denoising method are proposed. The adaptive threshold determination method is based on the

principle of removing gross error by the Pauta criterion in the theory of error analysis. The

threshold is calculated by removing the non-noise data in the IMF that are larger than 3σ of the

corresponding IMF. Here, σ is the standard deviation. A new 3σ is calculated, and removing

procedures are repeated until there are no data to be removed. Thus, the 3σ in the final loop is

defined as the threshold that is used further to differentiate the noise and the useful values in the

IMFs. The proposed peak filtering denoising method does not need a specific threshold func-

tion. In this method, the IMF to be denoised is bounded by the adaptive 3σ threshold. Peaks

that are less than the threshold are set to zero. After the zero operation, new smaller peaks are

formed. The process of setting peaks to zero is repeated until there is no peak less than the

threshold. In addition to eliminating noise that is smaller than the threshold, the peak filtering

method can also preserve the useful data that belong to useful peaks but are smaller than the

threshold, which retains the detailed information in the QRS complex.

Synthetic and real ECG signals are used in experiments to test the performance of the pro-

posed IEMD-ATD compared with the hard and soft threshold denoising methods based on

EMD. The results indicate that the proposed method is more effective in improving the SNR

and offers larger correlation coefficient, especially in effectively retaining the complete infor-

mation of the QRS complex.

The rest of this paper is organised as follows. In Section 2, our proposed methods are

described in detail. Then, the existing threshold denoising methods that are used for contrast

experiments in this paper are described. The evaluation parameters utilised in our experiments

are briefly introduced. In Section 3, the ECG data and noise used in the experiments are

described. In Section 4, the results for both synthetic and real ECG signals and a discussion are

offered to demonstrate the performance of the proposed denoising methods. Finally, conclu-

sions are drawn in Section 5.
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2. Methods

2.1 Integrated EMD adaptive threshold denoising method

In this section, an integrated EMD adaptive threshold denoising method (IEMD-ATD) is pro-

posed, which is suitable for the reduction of noise in ECGs. IEMD-ATD contains four steps.

First, the ECG is decomposed through integrated EMD (IEMD) into a set of IMFs and one

residual term. Second, all of the IMFs are divided into three groups: high-frequency noise pre-

dominant IMFs, noise-free IMFs and IMFs with low frequency artefacts. Third, high-fre-

quency noise predominant IMFs are denoised by the proposed peak filtering denoising

method after the adaptive threshold is calculated. Finally, the denoised ECG signal is recon-

structed by summing the denoised IMFs and the noise-free IMFs and directly discarding the

IMFs with low-frequency artefacts. A flowchart of IEMD-ATD for ECGs is depicted in Fig 1.

The boxes with grey backgrounds are the methods proposed in this paper.

2.1.1 Integrated EMD. The integrated EMD (IEMD) proposed in this section utilises the

framework of CEEMDAN and combines the CEEMD traits. First, IEMD uses complementary

N(0,1) white Gaussian signals as the original assisting noises to suppress the residual noise in

each IMF. The noises remaining in the residual in each decomposition stage are used as the

improved assisting noises for the corresponding stages. Compared with CEEMDAN, IEMD

avoids decomposing procedures of original assisting noises and enhances the computational

efficiency. Additionally, the problem of spurious modes in CEEMDAN is solved. The IEMD

procedure is depicted below:

1) Generate complementary N(0,1) white Gaussian noise, i.e., generate a random noise W
(n) and then calculate its opposite number −W(n) as the other part of the assisting noise:

nðnÞ ¼
1

� 1

" #

wðnÞ ¼
wðnÞ

� wðnÞ

" #

ð1Þ

Fig 1. Flow of IEMD-ATD for ECG denoising.

https://doi.org/10.1371/journal.pone.0235330.g001
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where n(n) is the assisting noise. Because the assisting noises are generated in pairs, their num-

ber is always even. We define the relationship between the index of assisting noises and the

white Gaussian noise as:

n1ðnÞ ¼ w1ðnÞ n2ðnÞ ¼ � w1ðnÞ n3ðnÞ ¼ w2ðnÞ n4ðnÞ ¼ � w2ðnÞ . . . ð2Þ

2) Given the ratio of the assisting noises ε, mix the original signal x(n) with the assisting noises

generated in Step 1 to obtain the complementary ensemble signals:

xiðnÞ ¼ xðnÞ þ εniðnÞ i ¼ 1 . . . I ð3Þ

where I is the total number of ensemble signals.

3) Decompose xi(n) by EMD into IMFi
1
ðnÞ and calculate the average of IMFi

1
ðnÞ to obtain

the 1st IMF of the original signal. E1(�) is an operator that refers to the 1st IMF extracted

through EMD:

IMF1 ð̂nÞ ¼
1

I

XI

i¼1

IMFi
1
ðnÞ ¼

1

I

XI

i¼1

E1

�
xiðnÞ

�
ð4Þ

4) Eliminate IMF1 ð̂nÞ from x(n) to obtain the first residual:

r1ðnÞ ¼ xðnÞ � IMF1 ð̂nÞ ð5Þ

5) Calculate the i ensemble residuals:

ri
1
ðnÞ ¼ xiðnÞ � E1

�
xiðnÞ

�
ð6Þ

6) Average the i ensemble residuals:

r1ðnÞ ¼
1

I

XI

i¼1

ri
1
ðnÞ ð7Þ

7) Subtract the average of the ensemble residuals from the ensemble residuals to obtain the

noise remaining in each ensemble residual:

4ri
1
ðnÞ ¼ ri

1
ðnÞ � r1ðnÞ ð8Þ

8) Generate new ensemble signals using the residual in Step 4 and the noise signals in Step 7.

Calculate the 2nd IMF of x(n):

IMF2 ð̂nÞ ¼
1

I

XI

i¼1

E1

�
r1ðnÞ þ 4ri

1
ðnÞ
�

ð9Þ
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9) The iteration formulas are given below:

rkðnÞ ¼ rk� 1ðnÞ � IMFk ð̂nÞ ð10Þ

ri
kðnÞ ¼

�
rk� 1ðnÞ þ 4ri

k� 1
ðnÞ
�
� E1

�
rk� 1ðnÞ þ 4ri

k� 1
ðnÞ
�

ð11Þ

rkðnÞ ¼
1

I

XI

i¼1

ri
kðnÞ ð12Þ

4ri
kðnÞ ¼ ri

kðnÞ � rkðnÞ ð13Þ

IMFk ð̂nÞ ¼
1

I

XI

i¼1

E1

�
rk� 1ðnÞ þ 4ri

k� 1
ðnÞ
�

ð14Þ

Repeat Step 9 until there is at most one extremum in the residual rk(n) when it is no longer fea-

sible to decompose. The final decomposition is depicted as follows:

xðnÞ ¼
XK

k¼1

IMFk ð̂nÞ þ rðnÞ ð15Þ

When using the noise remaining in the residual, there is no need to consider the ratio of the

assisting noise before adding it into the residual to obtain the ensemble signal of the next step

(see Formulas (9) and (14)).

The proposed integrated EMD is able to suppress the residual noise introduced in all of the

IMFs due to the merit of complementary original assisting noises. By using the CEEMDAN

framework, the integrated EMD retains the advantage of exact reconstruction. Moreover, we

make use of the noise remaining in the residuals of each decomposition stage as subsequent

assisting noises. As a result, a large number of procedures for decomposing subsequent assist-

ing noises are eliminated compared with CEEMDAN, and the phenomenon of spurious

modes due to the extra decomposition of white Gaussian noises is eliminated.

Fig 2 shows the waveforms of the first seven IMFs decomposed from an ECG signal, which

is depicted in a). The decomposition methods are IEMD with 20 pairs of auxiliary noises

(IEMD-20p in b)), EEMD with 500 auxiliary noises (EEMD-500 in c)) and CEEMDAN with

500 auxiliary noises (CEEMDAN-500 in d)). For IEMD, the noise remaining in the first IMF is

the least, although the number of auxiliary noises is only 40. For CEEMDAN, IMF2 and IMF3

have similar characteristics to IMF1, which means that CEEMDAN produces spurious modes.

Fig 3 shows the reconstruction error. The errors are calculated by summing all of the IMFs

from the three decomposition methods. The results show that only EEMD has numerous

reconstruction errors, while IEMD and CEEMDAN have negligible reconstruction errors.

The decomposition times are displayed in Table 1, which shows the relative time of decom-

position, which is the ratio of the computation time of the existing methods to the proposed

IEMD-20p computation time. For example, taking the time of IEMD-20p as the standard

time, EEMD-500 is 12.2 times slower than IEMD-20p. Generally, more auxiliary noise will

lead to more time consumption. The computational circumstances are the same for all of the

methods in the experiments. From Figs 2 and 3 and Table 1, it can be seen that IEMD not

only saves decomposition time but also guarantees decomposition quality.

2.1.2 IMF grouping. According to [19], the first several IMFs in an ECG consist of high-

frequency components of the ECG contaminated with the components of high-frequency
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noise, while low-frequency noise, such as baseline wandering, mainly exists in the last few

IMFs and in the residual term. The remaining IMFs have relatively little noise and contain use-

ful information. Therefore, it is necessary to group the IMFs of the ECG into noisy IMFs,

“pure” IMFs and low-frequency IMFs to process each group of IMFs differently. In this sec-

tion, a new IMF grouping method is proposed. Two IMF boundaries will be calculated

through this method.

a) IMF boundaries with high-frequency noise. As previously mentioned, high-frequency

noise in the ECG signal is usually decomposed into lower-order IMFs, and the noise energy

Fig 2. Comparison of the decomposition waveform (IMF1-IMF7).

https://doi.org/10.1371/journal.pone.0235330.g002

Fig 3. Waveforms of reconstruction errors.

https://doi.org/10.1371/journal.pone.0235330.g003
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decreases as the order number of the IMF increases. Therefore, the boundary of high-fre-

quency noise predominant IMFs can be determined by finding the IMF with the least propor-

tion of the noise in the IMF. On the one hand, the proposed method estimates the proportion

of the noise in the IMF by calculating the ratio of the standard deviation of the IMF to that of

the noise. When the ratio reaches the maximum, the noise in the IMF is the least. On the other

hand, the difference between the standard deviation of the IMF and that of the noise reaching

the maximum also reflects the minimum proportion of the noise in the IMF. When the ratio

and the difference reach the maximum, two corresponding order numbers of the IMF (i.e., k)

are obtained. The proposed method determines the boundary of high-frequency noise pre-

dominant IMFs by rounding up the mean of the two order numbers to the nearest integer.

The details of the method are described as follows:

1) Calculate the standard deviation of an IMF

sk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N � 1

XN

n¼1

IMFkðnÞ � IMFkðnÞ
� �2

v
u
u
t ð16Þ

where k represents the order number of IMFs. N is defined as the data length of the IMF.

2) Estimate the standard deviation of noise in the corresponding IMF

ŝk ¼
median IMFkðnÞ � IMFkðnÞ

�
�

�
�

� �

0:6745
ð17Þ

3) Estimate the boundary of noise dominating IMF

KB ¼
argmaxkðsk=ŝkÞ þ argmaxkðsk � ŝkÞ

2

� �

ð18Þ

The IMFs with orders smaller and equal to KB are the high-frequency noise predominant

IMFs.

b) IMF boundaries with low-frequency baseline wandering. An ECG is a quasi-periodic sig-

nal. The characteristics of ECGs, such as PQRST waves, repeat with time. Therefore, IMFs

with components with oscillation frequencies lower than the ECG repeating frequency should

be considered low-frequency noise, such as baseline wandering. In this paper, we identify the

IMFs belonging to low-frequency noises by comparing the average period of R peaks (the aver-

age of RR intervals) in the original ECG with the average period of the IMFs. The definition of

the average period of R peaks in ECG is:

TR¼
N
NR

ð19Þ

where NR is the number of R peaks in the original ECG. N is the data length of the original

ECG.

Table 1. Relative decomposition time compared with IEMD-20p.

Decomposition Method Amount of Auxiliary Noise

40 100 200 300 400 500

EEMD 0.98 2.51 4.95 7.33 9.69 12.20

CEEMDAN 1.41 3.13 6.35 9.35 12.42 15.45

https://doi.org/10.1371/journal.pone.0235330.t001
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Similarly, the average period of the IMF is defined as:

TIMF ¼
N

Nmax
ð20Þ

where Nmax represents the number of local maxima for an IMF.

Hence, the boundary of low-frequency baseline wandering is the first-order number of the

IMF whose average period satisfies TIMF > TR . Baseline wandering is eliminated by discarding

all of the IMFs with TIMF > TR and the residual term.

2.1.3 Adaptive threshold determination based on the 3σ criterion. In EMD threshold

denoising methods, useful information is generally considered to be contained in larger values

of noisy IMFs, while noise is contained in smaller values. Threshold denoising methods need

to determine a threshold between the useful information and the noise in the IMF, which

should be done according to the corresponding categories of noise. In this section, an adaptive

threshold determination method based on the 3σ criterion (Pauta criterion) is proposed. The

method temporarily removes the non-noisy useful values in the IMFs that are larger than 3σ.

The remaining noisy values are used to calculate the new 3σ. By repeating the process until no

value needs to be removed, the final 3σ of the “pure” noise is the threshold calculated adap-

tively for distinguishing noise and useful values. The complete procedure of the adaptive

threshold determination method is as follows:

1) Calculate the standard deviation of the IMF:

σ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

XN

n¼1

IMFðnÞ � IMFðnÞ
� �2

s

ð21Þ

2) Remove the values that are larger than 3σ0 in IMFðnÞ � IMFðnÞ. The remaining values are

regarded as the new noisy signal IMF1(n). The length is represented as N1, which is the number

of remaining values.

3) Calculate the standard deviation of IMF1(n):

σ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N1 � 1

XN1

n¼1

IMF1ðnÞ � IMF1ðnÞ
� �2

v
u
u
t ð22Þ

4) Generally, the values in IMFi� 1ðnÞ � IMFi� 1ðnÞ that are larger than 3σi−1 are removed. The

remaining values are regarded as the new noisy signal IMFi(n) of which the length is Ni, which

is the number of remaining values. The standard deviation of IMFi(n) is:

σi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Ni � 1

XNi

n¼1

IMFiðnÞ � IMFiðnÞ
� �2

v
u
u
t ð23Þ

Repeat Step 4) until there is no value in IMFiðnÞ � IMFiðnÞ larger than 3σi. At this moment,

3σi is the final threshold determined:

l ¼ 3si ð24Þ

By repeating the iteration, the 3σ calculated in each step will gradually decrease. Much “purer

noise” will be screened out by each repeat. Therefore, the last 3σi represents the final threshold.

It should be stressed that Ni in Step 4 gradually decreases as i increases. This is because the

removed values no longer participate in the subsequent calculations of 3σ.
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2.1.4 Peak filtering denoising method. The hard and soft threshold denoising methods

both consider values smaller than the threshold as noise, which should be set to zero. However,

for ECG signals, every value belonging to useful waves should be retained, even if some of

them are smaller than the threshold. Discarding these values leads to the loss of local informa-

tion of the ECG waveform as well as discontinuity. To retain the values containing useful

information but smaller than the threshold, a peak filtering denoising method is proposed.

The proposed method is described as follows:

1. Calculate all of the local maxima and local minima of an IMF;

2. Compare the absolute values of the local maxima and minima with the adaptive threshold λ
determined in the previous section, separately. Set the extrema whose absolute values are

smaller than the threshold to zero and obtain a half-processed IMF;

3. Calculate all of the local maxima and minima of the half-processed IMF obtained in Step 2;

4. Compare the absolute values of the local maxima and minima in Step 3 with the same

threshold λ, set the extrema whose absolute values are smaller than the threshold to zero

and obtain a further half-processed IMF.

Repeat Steps 3) and 4) until there are no more local maxima and minima to be set to zero.

The remaining IMF is the denoised IMF.

By repeatedly filtering the peaks (local maxima and local minima) that are smaller than the

threshold, the proposed method can retain the full QRS information and reduce noise in the

ECG signal.

Fig 4 displays detailed QRS waveforms in an IMF. The first of these signals is an unpro-

cessed QRS waveform, and the other three are QRS waveforms processed by three denoising

methods. The two horizontal lines in Fig 4 are drawn according to the threshold. The zone

determined by the two vertical dotted lines contains useful information of the QRS complex in

the IMF. Therefore, within the zone, any value smaller than the threshold should still be

retained.

Fig 4. Comparison of QRS detail waveforms denoised by three denoising methods.

https://doi.org/10.1371/journal.pone.0235330.g004
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It can be clearly seen that for the hard threshold denoising method, there are discontinuities;

for the soft threshold denoising method, the phenomenon of reducing the amplitude appears.

For the proposed peak filtering denoising method, the problems caused by hard and soft thresh-

old denoising methods are solved effectively, and the full QRS information is retained.

2.2 Comparison of EMD threshold denoising methods

In this section, we briefly introduce the EMD threshold denoising methods, which are com-

pared with the proposed IEMD-ATD. Universal threshold [23] and EMD customised thresh-

old [13] are used in the EMD threshold denoising methods. The universal threshold is a

general method and is introduced directly from wavelet threshold denoising methods, while

the EMD customised threshold is developed specifically for EMD threshold denoising, which

is only suitable for EMD. Hard and soft threshold methods are utilised as denoising strategies.

Although there are many interval threshold methods, some of the parameters have to be

amended according to the specific circumstances. Only the hard and soft threshold denoising

methods are used widely and practically, so we use hard and soft threshold denoising methods

as the general comparison methods.

The formula of the universal threshold in EMD is:

λi ¼ σ̂ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnðNÞ

p
ð25Þ

where N is defined as the number of signal samples. ŝi is the estimation of the square root of

the noise energy in the i-th IMF, which is estimated by:

ŝ i ¼
median jIMFiðnÞ � IMFiðnÞ

�
�

� �

0:6745
ð26Þ

IMFiðnÞ ¼
1

N

XN

n¼1

IMFiðnÞ ð27Þ

Each ŝ i is estimated from the corresponding IMF.

EMD customised thresholds are proposed in reference [13]. The formula is described as fol-

lows:

λi ¼ C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ei2lnðNÞ

p
ð28Þ

where C is a constant determined according to the real situation. As recommended in [13], C
is normally set to 0.5. N represents the length of the signal. Ei is the estimation of the noise

energy in the i-th order of IMF:

Ei ¼
E1

0:719
2:01� i i ¼ 2; 3; 4 . . .K ð29Þ

where E1 is the noise energy estimation in IMF1 calculated by:

E1 ¼
median IMF1ðnÞ � IMF1ðnÞ

�
�

�
�

� �

0:6745

0

@

1

A

2

ð30Þ

IMF1ðnÞ ¼
1

N

XN

n¼1

IMF1ðnÞ ð31Þ
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The hard threshold denoising method directly sets the values less than the threshold λ to zero

and keeps the other values. The formula is as follows:

x̂ðnÞ ¼
xðnÞ

0

jxðnÞj � l

jxðnÞj < l

ð32Þ

8
>><

>>:

The soft threshold denoising method [24] smoothens the denoised signal. The formula is

described below:

x̂ðnÞ ¼
sign½xðnÞ�ðjxðnÞj � lÞ

0

jxðnÞj � l

jxðnÞj < l

ð33Þ

8
><

>:

where sign denotes the sign function, which is defined as:

signðxÞ ¼
1

� 1

x � 0

x < 0

ð34Þ

8
><

>:

2.3 Evaluation parameters

To evaluate the performance of our methodology quantitatively, three evaluation parameters

are utilised in our paper to assess both the proposed IEMD-ATD and the EMD threshold

denoising methods used for comparison.

The signal-to-noise ratio (SNR) represents the ratio of useful signal energy to noise energy.

The definition of SNR is:

SNR ¼ 10lg

XN

n¼1

s2ðnÞ

XN

n¼1

n2ðnÞ

0

B
B
B
B
@

1

C
C
C
C
A

ð35Þ

where s(n) is the original noise-free signal and n(n) is the noise mixed in the signal. Their rela-

tionships are as follows:

xðnÞ ¼ sðnÞ þ nðnÞ ð36Þ

where x(n) is the noisy signal.

By inspecting the improvement of the SNR, we evaluate the performance of the denoising

algorithms. The SNR improvement is defined as [25]:

SNRipv ¼ SNRdenoised � SNRorignal ð37Þ

SNR improvement is a parameter that evaluates performance from the aspect of energy.

There is also a need to evaluate waveform shape. The correlation coefficient (CR) is chosen as

another indicator in our experiments. A higher CR indicates a higher similarity of delineation.
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The definition of CR is:

CR ¼

XN

n¼1

xdðnÞ � xdðnÞ
� �

sðnÞ � sðnÞ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

n¼1

xdðnÞ � xdðnÞ
� �2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

n¼1

sðnÞ � sðnÞ
� �2

s ð38Þ

where xd(n) denotes the denoised signal and xdðnÞ and sðnÞ represent the average of the corre-

sponding signal.

Relative differences of signal energy (RDE) is a parameter used to evaluate the similarity of

amplitude indirectly. It is an auxiliary parameter because it needs to combine the results of the

correlation coefficient. RDE is defined as:

RDE ¼

XN

n¼1

xd
2ðnÞ �

XN

n¼1

s2ðnÞ

XN

n¼1

s2ðnÞ
ð39Þ

RDE reflects the relationship between the energy of the denoised signal and that of the original

signal. When the correlation coefficient is not very small, a lower RDE implies a higher simi-

larity of amplitude.

3. Materials

3.1 Source of ECG data

a) Synthetic data. FECGSYN is part of the Open Source ECG Toolbox package (OSET).

It is an updated version of ECGSYN and is built upon the work of McSharry et al. [26] and

Sameni et al. [27]. Both adult ECGs and noninvasive foetal ECGs can be generated via FECG-

SYN. In this paper, 6 synthetic ECG signals with different characteristics are generated by

FECGSYN for our subsequent experiments. The different characteristics include heart rate,

shape of the QRS complex and relative amplitude of the T waves. The parameters correspond-

ing to these characteristics are chosen randomly. The sampling rate is set to 360 Hz, and the

sampling time is 10 seconds. The waveforms of the 6 synthetic ECG signals are depicted in Fig

5 with the names Syn00, Syn01, Syn02, Syn03, Syn04 and Syn05 (from top to bottom).

b) Real data. The MIT-BIH Arrhythmia Database (MITDB) [28] collects various repre-

sentative records sampled in clinical practice. In our research, 10 sets of records in MITDB are

selected for our experiments. To the best extent possible, we choose different morphologies of

ECG signals as experimental data, such as heart rate, shape of the QRS complex and relative

amplitude of T waves. Moreover, to calculate SNR more accurately to verify the denoising

effect in the following experiments, signals with as little noise as possible are chosen. The sam-

pling rates of these records are all 360 Hz. We cut off and selected an interval of 10 seconds in

each set of records, which are listed in Table 2. The data can be downloaded through [29].

3.2 Source of noises

Noise introduction is inevitable when an ECG is recorded. The Noise Stress Test Database

(NSTDB) [30, 31] in MIT-BIH contains three sets of noises (the names of the records are

“bw”, “em”, and “ma”), and each of them has two signals recorded simultaneously. Record

‘bw’ contains predominant baseline wandering; record ‘em’ contains the artefacts from
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electrode motion (baseline wandering and muscle noise included as well); record ‘ma’ contains

primarily muscle artefacts (mainly electromyogram noise).

In this paper, the noises under study are baseline wandering (BW), electrode contact noise

(ECN), electromyogram noise (EMG), white noise (WN) and hybrid noise (HN). Among

them, BW, ECN and EMG are chosen from the “bw”, “em”, and “ma” in NSTDB, respectively.

The sampling rates of the three kinds of noises are all 360 Hz. A 10 s interval of noise data

from each of them is selected. WN is generated by the random function in MATLAB 2016.

Finally, we generate HN by adding the four categories of noise. Each individual category of

noise is considered separately in the subsequent denoising experiments, so for hybrid noise,

we perform a simple treatment in which hybrid noise is generated by summing four kinds of

noise directly. The waveforms of the five noises are depicted in Fig 6.

4. Results and discussion

4.1 Results of eliminating baseline wandering by IEMD-ATD

In this section, baseline wandering elimination is inspected. The results of Syn04 mixed with

BW at -5 dB are depicted in Fig 7. From the waveform of the denoised ECG, we can see that

IEMD-ATD eliminates the baseline wandering successfully. The “BW Extracted” are almost

the same as BW, which was originally introduced.

Tables 3 and 4 display the SNR improvement by eliminating BW for synthetic and real

ECG signals, respectively. The original SNR is -5 dB, -2 dB, 2 dB, 5 dB and 10 dB. From

Table 3, it can be seen that the BW elimination results are extremely satisfactory. The lower

the original SNR is, the higher the SNR improvement is. Except for Syn05 at 10 dB, all of the

other experimental results have SNR improvements of more than 14 dB. As seen from

Fig 5. Synthetic ECG signals with a sampling rate of 360 Hz in 10 s (from top to bottom, the names of the signals

are Syn00, Syn01, Syn02, Syn03, Syn04 and Syn05).

https://doi.org/10.1371/journal.pone.0235330.g005

Table 2. Real ECG data chosen from the MIT-BIH Arrhythmia Database.

Record Number 100 101 103 112 113 115 117 119 122 123

Starting Time 0:10 0:10 0:10 0:10 0:10 1:00 0:10 1:40 0:10 0:10

Channel Name MLII MLII MLII MLII MLII MLII MLII MLII MLII MLII

https://doi.org/10.1371/journal.pone.0235330.t002
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Table 4, the SNR improvement results of the real ECG signals are also very good but not as

good as those of the synthetic ECG signals. This is because the original real ECG signals are

from the MITDB and contain some small noise, including baseline wandering, which is also

eliminated effectively in the denoising process. As a result, if the original real ECG signal is

used as the clean signal to calculate the SNR, it will reduce the SNR improvement. However, in

fact, the denoised ECG in our method is closer to a clean ECG compared with the original real

ECG. This is illustrated in Fig 8. The red lines represent the original real ECG. The blue line

represents the ECG with BW, and the black line represents the denoised ECG by IEMD-ATD.

Fig 6. Five categories of noise used in the experiments (from top to bottom, the noise types are BW, ECN, EMG,

WN and HN).

https://doi.org/10.1371/journal.pone.0235330.g006

Fig 7. Effect of eliminating BW for Syn04 with BW at -5 dB.

https://doi.org/10.1371/journal.pone.0235330.g007
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Both the figures and the tables indicate that IEMD-ATD is a powerful method for eliminat-

ing BW in ECG signals. We can conclude that BW elimination by IEMD-ATD is successful

and effective.

Generally, IMFs without ECG components have no QRS complex characteristics. Addition-

ally, P waves do not appear in higher-order IMFs. T waves can be very large in certain circum-

stances; they may exist in higher-order IMFs, but R peaks are predominant in amplitude.

Thus, R peaks provide local maxima (or minima) in higher-order IMFs. Therefore, if the num-

ber of local maxima in an IMF is smaller than that of the R peaks in the ECG, the component

in this IMF is not the relevant ECG information; the component should be some low-fre-

quency noise. The average RR interval is one of the parameters that can reflect the number of

R peaks. In our method, we use the signal data number instead of the signal time because it is

more convenient for data processing.

4.2 Performance evaluation for eliminating high-frequency noise by

IEMD-ATD

In this section, the ECGs in the experiments are both synthetic and real signals according to

Section 3.1. The current existing denoising methods that are utilised to compare with our

IEMD-ATD are as follows:

1. Hard universal thresholding (UT-H);

2. Soft universal thresholding (UT-S);

3. Hard EMD customised thresholding (Cust-H);

Table 3. SNR improvement from eliminating BW for synthetic ECGs.

ECG (Syn) Original SNR

-5 dB -2 dB 2 dB 5 dB 10 dB

00 21.13 20.07 18.42 17.85 15.33

01 21.44 21.90 21.21 18.14 19.32

02 19.97 21.88 19.54 18.60 17.28

03 20.49 20.92 18.57 16.97 14.74

04 19.09 20.12 19.03 18.54 10.03

05 21.03 19.98 20.18 16.15 9.64

https://doi.org/10.1371/journal.pone.0235330.t003

Table 4. SNR improvement from eliminating BW for real ECGs.

ECG (Real) Original SNR

-5 dB -2 dB 2 dB 5 dB 10 dB

100 19.01 17.67 14.92 13.38 9.68

101 14.32 11.83 8.20 6.11 0.32

103 16.53 14.06 10.46 7.56 2.45

112 16.03 13.45 10.20 7.68 3.09

113 19.47 17.54 9.46 11.02 5.93

115 16.58 14.15 10.92 8.84 4.44

117 13.72 9.25 4.22 6.75 0.57

119 20.49 20.05 18.24 16.02 11.33

122 19.50 19.12 15.86 13.71 9.40

123 16.42 12.82 10.24 6.54 4.04

https://doi.org/10.1371/journal.pone.0235330.t004
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4. Soft EMD customised thresholding (Cust-S).

In the experiments, the decomposition procedures of the above methods are all imple-

mented by EMD. Both the grouping of IMFs and the elimination of baseline wandering are

implemented by the method proposed in this paper, which focuses on testing the denoising

effect of IEMD-ATD on high-frequency noise.

The noise types used in the experiments are electrode contact noise (ECN), electromyo-

gram noise (EMG), white noise (WN) and hybrid noise (HN), as identified in Section 3.2.

Fig 8. Effect of eliminating BW for real “101” with BW at -5 dB.

https://doi.org/10.1371/journal.pone.0235330.g008

Fig 9. Waveforms of denoised ECGs for Syn03 with EMG noise at 5 dB in the 5 denoising methods.

https://doi.org/10.1371/journal.pone.0235330.g009
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Three measurements (SNR Improvement, Correlation Coefficient and Relative differences of

signal Energy) described in Section 2.3 are used to evaluate denoising performance.

4.2.1 Results for synthetic data. It should be pointed out that the noises ECN, EMG and

HN include both high-frequency and low-frequency components. This is because ECN and

EMG derive from real databases. Section 4.2 offers the denoising results from eliminating both

high-frequency and low-frequency noise components. Then, to investigate eliminating only

high-frequency noise by our IEMD-ATD, the experiments neglect the existence of low-fre-

quency noises and regard them as a part of the ECG to not eliminate them.

The waveforms of the denoised ECG are displayed from Figs 9 to 12. In Figs 9 and 10,

Syn03 with 5 dB EMG noise is used. The red lines in each figure represent the original noise-

free ECGs, while the blue line represents the noisy ECGs. The black lines represent the

denoised ECGs by IEMD-ATD and the corresponding EMD denoising methods. In Fig 9, it

can be seen that IEMD-ATD removes the most noise and retains the most signal information.

Fig 10 shows the local waveform details between 2.4 and 3.05 seconds. IEMD-ATD provides

the best denoising performance with the cleanest noise filtering and the best coincidence

degree between the QRS complex as well as the R peak in the denoised signal and those in the

original clean signal. UT-S reduces the amplitude of the R and S peaks. UT-H and Cust-S

show little loss of peak information, and considerable noise remains from the R peak to the T

peak. For Cust-H, a large amount of noise still exists within the whole time range.

Fig 11 shows the waveforms of denoised Syn04 with WN at 5 dB. The local waveform

details of the denoised ECG for the five methods between 7.05 and 7.7 seconds are depicted in

Fig 12. We can see that for UT-S and Cust-S, the amplitudes of the R peaks are obviously

reduced. Considerable noise remains in Cust-H. For UT-H, the details around the Q and S

waves are not good. The denoised ECG from the proposed IEMD-ATD has the highest simi-

larity with the original noise-free ECG, which indicates that IEMD-ATD has the best denois-

ing performance.

Fig 10. Details of waveforms between 2.4 and 3.05 seconds from Fig 9.

https://doi.org/10.1371/journal.pone.0235330.g010
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SNR improvements of the 5 denoising methods for 6 synthetic ECGs (Syn00-Syn05) are

displayed in Table 5. The original SNR of the noisy ECG is 5 dB. The noises used here are

EMG and WN. “Avg” in the table represents the average value of SNR improvement calculated

by the 6 synthetic ECG signals. According to Table 5, it can be seen that the denoising perfor-

mance of IEMD-ATD is the best with the highest SNR improvement and average for eliminat-

ing both EMG and WN.

Fig 12. Details of waveforms between 7.05 and 7.7 seconds from Fig 11.

https://doi.org/10.1371/journal.pone.0235330.g012

Fig 11. Waveforms of denoised ECG for Syn04 with WN at 5 dB in the 5 denoising methods.

https://doi.org/10.1371/journal.pone.0235330.g011

PLOS ONE IEMD adaptive threshold denoising method for ECG denoising

PLOS ONE | https://doi.org/10.1371/journal.pone.0235330 July 15, 2020 19 / 30

https://doi.org/10.1371/journal.pone.0235330.g012
https://doi.org/10.1371/journal.pone.0235330.g011
https://doi.org/10.1371/journal.pone.0235330


To verify the results of all the data mentioned in this paper, Table 6 displays the average

SNR improvement of the 6 synthetic ECGs (Syn00-Syn05) with the original SNRs of -5 dB, -2

dB, 2 dB, 5 dB and 10 dB. The numerical results indicate that IEMD-ATD has the best perfor-

mance with the highest average SNR improvement. According to the table, the denoising

effects for EMG and WN using our method are prominently better than those of the other

methods.

Table 5. SNR improvement of 5 denoising methods for synthetic ECGs contaminated with EMG and WN at 5 dB.

Noise Type ECG (Syn) Denoising Method

IEMD -ATD UT-H UT-S Cust-H Cust-S

EMG 00 8.71 4.26 2.22 4.06 5.07

01 7.55 5.64 3.24 4.91 6.05

02 7.17 5.32 3.91 4.85 5.79

03 8.33 1.85 -0.49 4.20 5.27

04 8.10 6.42 4.59 5.06 6.94

05 7.50 4.35 1.94 4.15 5.20

Avg 7.89 4.64 2.57 4.54 5.72

WN 00 10.98 4.26 1.44 6.42 5.55

01 9.43 2.94 0.21 5.12 3.62

02 8.63 4.71 2.03 6.11 5.18

03 8.56 4.16 1.36 5.51 5.06

04 10.24 5.23 3.36 7.34 6.93

05 9.94 5.70 2.59 6.65 5.95

Avg 9.63 4.50 1.83 6.19 5.38

https://doi.org/10.1371/journal.pone.0235330.t005

Table 6. Average SNR improvement of 6 synthetic ECGs (Syn00-Syn05).

Original SNR Noise Type Denoising Method

IEMD -ATD UT-H UT-S Cust-H Cust-S

-5 dB ECN 2.83 2.68 2.66 2.68 2.69

EMG 7.44 5.89 5.94 5.41 6.84

WN 9.95 6.11 5.99 7.47 8.11

HN 7.27 6.61 5.91 6.85 6.90

-2 dB ECN 2.59 2.56 2.52 2.55 2.56

EMG 8.37 5.99 5.84 5.26 6.71

WN 10.18 5.57 5.03 7.24 7.32

HN 6.98 6.28 5.34 6.46 6.45

2 dB ECN 2.84 2.44 2.41 2.44 2.45

EMG 8.41 5.43 4.12 5.07 6.60

WN 10.32 3.78 1.93 6.33 5.70

HN 7.22 5.50 4.22 5.79 5.62

5 dB ECN 2.80 2.09 2.02 2.09 2.10

EMG 7.89 4.64 2.57 4.54 5.72

WN 9.63 4.50 1.83 6.19 5.38

HN 6.75 4.58 2.75 5.10 4.83

10 dB ECN 2.56 1.19 1.09 1.21 1.20

EMG 7.66 3.87 2.05 3.98 4.52

WN 8.73 2.25 -1.47 4.13 2.66

HN 6.45 3.89 2.14 4.44 4.11

https://doi.org/10.1371/journal.pone.0235330.t006
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To verify the similarity degree between noise-free and denoised synthetic ECGs using the 5

denoising methods, the average correlation coefficients of the 6 synthetic ECGs (Syn00-Syn05)

are displayed in Table 7. According to the data in the table, IEMD-ATD provides the highest

average correlation coefficient, which indicates that the denoised ECG from our method has

the highest similarity with the original ECG. For EMG, WN and HN at 2 dB, 5 dB and 10 dB,

IEMD-ATD provides a correlation coefficient higher than 0.95, and at -5 dB and -2 dB, corre-

lation coefficients higher than 0.75 are given. The correlation coefficients for ECN are the low-

est. This is because the frequency range of ECN overlaps with the main frequency of the ECGs.

For Tables 5, 6 and 7, the contribution of SNR improvement is not only from high-fre-

quency noise elimination but also from baseline wandering removal. To further inspect the

performance of eliminating high-frequency noise, Table 8 shows the average SNR improve-

ment of the 6 synthetic ECGs (Syn00-Syn05) when only eliminating high-frequency noise with

no baseline wandering removal. It is shown that IEMD-ATD is a very effective method for

denoising WN and EMG. For HN elimination, IEMD-ATD is still good. For ECN, there is

also an improvement for IEMD-ATD, while the denoising of the other methods negatively

impacts the SNR, which indicates that hard and soft threshold denoising methods lose useful

information when denoising. This provides further proof for the superiority of the proposed

peak filtering denoising method in retaining local useful information. In Table 8, the SNR

improvements for eliminating WN are close to those in Table 6. This is because the WN con-

tains no baseline wandering.

Table 9 displays the average relative differences of signal energy (ARDE) of 6 synthetic

ECGs (Syn00-Syn05). When the correlation coefficient is high, for example, higher than 0.9

(shown in Table 7), lower relative differences in signal energy imply that the denoised ECG is

more similar to the original noise-free ECG in amplitude. From the table, it can be seen that

Table 7. Average correlation coefficient of 6 synthetic ECGs (Syn00-Syn05).

Original SNR Noise Type Denoising Method

IEMD -ATD UT-H UT-S Cust-H Cust-S

-5 dB ECN 0.5708 0.5652 0.5475 0.5660 0.5635

EMG 0.7662 0.6067 0.5795 0.7133 0.7484

WN 0.8317 0.5834 0.5586 0.7733 0.7380

HN 0.7715 0.7169 0.6252 0.7555 0.7293

-2 dB ECN 0.7024 0.7001 0.6878 0.7004 0.6988

EMG 0.8894 0.7978 0.7793 0.8237 0.8564

WN 0.9286 0.7598 0.7136 0.8688 0.8437

HN 0.8600 0.8360 0.7684 0.8484 0.8344

2 dB ECN 0.8571 0.8468 0.8435 0.8466 0.8463

EMG 0.9574 0.9104 0.8656 0.9142 0.9345

WN 0.9712 0.8386 0.7586 0.9278 0.9096

HN 0.9423 0.9073 0.8705 0.9139 0.9075

5 dB ECN 0.9217 0.9038 0.9010 0.9038 0.9036

EMG 0.9750 0.9426 0.9005 0.9481 0.9582

WN 0.9826 0.9423 0.8872 0.9628 0.9518

HN 0.9673 0.9347 0.9042 0.9406 0.9366

10 dB ECN 0.9728 0.9604 0.9594 0.9606 0.9604

EMG 0.9915 0.9791 0.9664 0.9798 0.9816

WN 0.9932 0.9662 0.9250 0.9773 0.9701

HN 0.9888 0.9795 0.9684 0.9819 0.9803

https://doi.org/10.1371/journal.pone.0235330.t007
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Table 8. Average SNR improvement of 6 synthetic ECGs (Syn00-Syn05) for eliminating only high-frequency noise.

Original SNR Noise Type Denoising Method

IEMD -ATD UT-H UT-S Cust-H Cust-S

-5 dB ECN 0.03 0.01 -0.01 0.00 0.01

EMG 0.56 0.25 0.26 0.08 0.44

WN 9.80 6.18 6.06 7.65 8.33

HN 0.36 0.22 0.04 0.29 0.29

-2 dB ECN 0.03 0.01 -0.01 0.00 0.01

EMG 0.73 0.26 0.21 0.08 0.46

WN 10.03 5.58 5.03 7.28 7.34

HN 0.37 0.24 -0.03 0.28 0.27

2 dB ECN 0.03 0.00 -0.01 0.00 0.01

EMG 0.77 0.23 -0.23 0.10 0.54

WN 10.22 4.06 2.12 7.10 6.39

HN 0.35 0.20 -0.20 0.27 0.23

5 dB ECN 0.01 0.00 -0.05 0.00 0.00

EMG 0.78 0.07 -0.78 0.10 0.49

WN 9.61 4.87 2.01 6.73 5.81

HN 0.35 0.11 -0.56 0.26 0.19

10 dB ECN 0.01 -0.01 -0.07 0.00 0.00

EMG 0.73 0.08 -0.80 0.10 0.30

WN 9.09 3.79 -0.71 6.26 4.30

HN 0.30 0.01 -0.78 0.23 0.11

https://doi.org/10.1371/journal.pone.0235330.t008

Table 9. Average relative differences in signal energy of 6 synthetic ECGs (Syn00-Syn05).

Original SNR Noise Type Denoising Method

IEMD -ATD UT-H UT-S Cust-H Cust-S

-5 dB ECN 1.449 1.506 1.431 1.515 1.491

EMG 0.377 0.136 -0.015 0.856 0.500

WN -0.042 -0.357 -0.382 0.395 -0.203

HN 0.463 0.387 0.185 0.523 0.336

-2 dB ECN 0.721 0.724 0.670 0.729 0.713

EMG 0.110 0.109 -0.006 0.467 0.273

WN 0.097 -0.144 -0.230 0.214 -0.123

HN 0.207 0.224 0.019 0.275 0.149

2 dB ECN 0.227 0.266 0.245 0.265 0.260

EMG 0.083 0.033 -0.119 0.193 0.076

WN 0.037 -0.157 -0.352 0.081 -0.187

HN 0.053 0.042 -0.104 0.062 -0.014

5 dB ECN 0.091 0.090 0.067 0.089 0.083

EMG 0.039 0.009 -0.111 0.106 0.032

WN 0.015 -0.017 -0.200 0.054 -0.102

HN 0.017 -0.015 -0.153 0.003 -0.057

10 dB ECN 0.015 0.021 0.009 0.021 0.018

EMG 0.006 0.022 -0.047 0.034 0.011

WN 0.005 -0.034 -0.193 0.001 -0.100

HN -0.004 0.001 -0.075 0.005 -0.025

https://doi.org/10.1371/journal.pone.0235330.t009
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for 10 dB, 5 dB and 2 dB (except for ECN at 2 dB), the ARDE are within 0.1. EMG, WN and

HN are better compared with ECN. When the noise is large, e.g., ARDE of -5 dB and -2 dB,

the ARDE is higher than 0.1, which indicates a large difference in the energy between the

denoised ECG and the original noise-free ECG. It is worth noting that a negative ARDE indi-

cates information loss in the denoised ECG, while a positive ARDE indicates remaining noise.

The whole procedure includes ECG decomposition, IMF grouping, IMF denoising and

ECG reconstruction. The relative computation time of ECG decomposition is displayed in

Table 1. Table 10 shows the computation times of IMF grouping, denoising all the IMFs of

one ECG signal and reconstruction. The computing environment is MATLAB 2016 using

Windows 10 x64. RAM: 4 GB, CPU: Intel Core i5 2.8 GHz.

From the table above, we can conclude that the time cost of grouping, denoising and recon-

struction is acceptable.

4.2.2 Results for real data. Similar experiments to those performed for synthetic data are

carried out for real data in this section. The red lines represent the original noise-free real

ECGs. The blue line represents the noisy ECGs. The black lines represent the denoised ECGs

by IEMD-ATD and the corresponding EMD denoising methods.

In Fig 13, Real “100” with 5 dB EMG noise is used for denoising experiments. It can be

seen that IEMD-ATD provides the “smoothest” waveform of denoised ECGs with the least

noise remaining compared with the other 4 methods. In addition, for the noisy Real “100” (the

first curve in Fig 13), there is an obvious baseline wandering; it is eliminated effectively by the

denoising process. Fig 14 depicts the local QRS waveform details in the denoised ECGs

Table 10. Computation time.

Grouping Denoising (the proposed) Denoising (the others) Reconstructing

0.015 s 0.1 s 0.001 s negligible

https://doi.org/10.1371/journal.pone.0235330.t010

Fig 13. Waveforms of denoised ECGs for real “100” with EMG noise at 5 dB for the 5 denoising methods.

https://doi.org/10.1371/journal.pone.0235330.g013
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between 6.2 and 6.85 seconds. This indicates that the proposed method not only eliminates the

noise effectively but also restores and preserves the QRS waveforms. Compared with our

method, the other methods leave more noise and unclean Q and S waves.

Fig 15 depicts the denoising waveforms of Real “100” with WN at 5 dB. As the figure sug-

gests, IEMD-ATD has the best performance with a “smooth” and clean denoised ECG, which

has the highest coincidence degree. Fig 16 shows the local waveform details of the denoised

Real “100” with WN at 5 dB between 6.2 and 6.85 seconds. It can be seen that UT-S and Cust-S

have a large loss of amplitude of R peaks and a larger waveform distortion of Q and S waves.

For UT-H and Cust-H, considerable noise remains around the Q and S waves. From the

Fig 14. Details of waveforms between 6.2 and 6.85 seconds from Fig 13.

https://doi.org/10.1371/journal.pone.0235330.g014

Fig 15. Waveforms of denoised ECG for real “100” with WN at 5 dB for the 5 denoising methods.

https://doi.org/10.1371/journal.pone.0235330.g015
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figure, IEMD-ATD offers the best denoising performance for cleaner, clearer and more intact

QRS waveforms.

SNR improvements of the 5 denoising methods for 10 real ECGs are displayed in Table 11.

The original SNR of the noisy ECG is 5 dB. The noises used here are EMG and WN. “Avg” in

Fig 16. Details of waveforms between 6.2 and 6.85 seconds from Fig 15.

https://doi.org/10.1371/journal.pone.0235330.g016

Table 11. SNR improvement of 5 denoising methods for real ECGs contaminated with EMG and WN at 5 dB.

Noise Type ECG (Real) Denoising Method

IEMD–ATD UT-H UT-S Cust-H Cust-S

EMG 100 7.76 4.79 4.25 4.27 4.81

101 3.84 1.48 0.80 1.27 1.69

103 5.06 3.47 1.87 3.18 4.04

112 4.81 2.94 3.03 2.38 2.77

113 6.59 1.88 0.57 1.48 2.00

115 5.73 1.41 1.29 1.15 1.42

117 0.12 0.62 0.14 0.15 0.48

119 7.09 4.50 3.36 4.15 4.92

122 6.60 5.50 5.70 4.48 5.35

123 4.25 2.34 -0.27 2.59 3.30

Avg 5.18 2.89 2.07 2.51 3.08

WN 100 8.12 2.84 -0.97 5.76 3.88

101 4.35 0.65 -1.13 2.02 1.67

103 5.70 0.30 -1.66 3.16 2.09

112 5.79 2.32 1.16 4.21 4.12

113 6.46 -3.54 -4.05 2.23 1.86

115 6.49 2.82 -0.04 3.93 3.17

117 -0.06 0.30 -0.98 0.83 0.74

119 9.01 2.30 -0.08 5.05 4.11

122 5.51 2.81 2.23 5.43 5.12

123 6.38 3.28 -0.60 4.52 3.78

Avg 5.78 1.41 -0.61 3.71 3.05

https://doi.org/10.1371/journal.pone.0235330.t011
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the table represents the average SNR improvement of 10 real ECG signals. According to

Table 11, the denoising performance of IEMD-ATD is good, with almost all SNR improve-

ments being higher than 4 dB except for Real “117”. However, the other 4 methods cannot pro-

vide effective denoising results for Real “117”.

Table 12 displays the average SNR improvement of 10 real ECGs with the original SNRs of

-5 dB, -2 dB, 2 dB, 5 dB and 10 dB. The results indicate that our proposed method has the best

performance for ECG denoising. According to the data, the effects of eliminating EMG, WN

and HN by our method are prominently better than those of the other methods.

The average correlation coefficient between noise-free and denoised real ECGs (10 signals)

by the 5 denoising methods is displayed in Table 13. According to the data in the table, IEM-

D-ATD provides the highest average correlation coefficient compared with the other 4 meth-

ods, which indicates that IEMD-ATD provides a denoised ECG with a high similarity to the

original ECG.

Similar to the synthetic ECG experiments, to inspect the performance of further eliminating

high-frequency noise, the average SNR improvement of 10 real ECGs for eliminating only

high-frequency noise without baseline wandering removal is displayed in Table 14. For WN

denoising, since there are no baseline wandering components in WN that are generated

through MATLAB, there are increased SNR improvements. The proposed IEMD-ATD has an

obviously better performance for eliminating WN with increased SNR improvements com-

pared with the other methods. This implies that the peak filtering denoising method is better

than the hard and soft denoising methods when eliminating high-frequency noise. For EMG,

our method is also the best denoising strategy compared with the other methods. It is worth

noting that when the original SNR is high, many negative SNR improvements appear, espe-

cially in ECN elimination. This is because ECN has a fluctuation frequency more similar to

Table 12. Average SNR improvement of 10 real ECGs.

Original SNR Noise Type Denoising Method

IEMD -ATD UT-H UT-S Cust-H Cust-S

-5 dB ECN 2.79 2.65 2.61 2.63 2.65

EMG 7.13 5.65 5.86 5.12 6.13

WN 9.61 6.63 6.54 7.36 8.21

HN 7.09 6.13 5.63 6.53 6.69

-2 dB ECN 2.58 2.32 2.25 2.32 2.34

EMG 7.58 5.17 5.32 4.79 5.59

WN 8.77 4.70 4.35 6.64 6.80

HN 6.75 5.74 4.89 6.06 6.09

2 dB ECN 2.27 1.82 1.65 1.84 1.85

EMG 6.66 4.40 4.16 3.70 4.46

WN 7.26 2.60 1.44 5.07 4.56

HN 5.82 4.79 3.53 5.14 5.03

5 dB ECN 1.69 1.49 1.17 1.57 1.57

EMG 5.18 2.89 2.07 2.51 3.08

WN 5.78 1.41 -0.61 3.71 3.05

HN 4.77 3.15 2.02 3.45 3.34

10 dB ECN 0.40 -0.78 -1.25 -0.68 -0.71

EMG 2.83 0.42 -1.21 0.48 0.82

WN 3.19 -0.09 -2.41 0.89 0.24

HN 2.48 0.76 -1.06 1.47 1.23

https://doi.org/10.1371/journal.pone.0235330.t012
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Table 13. Average correlation coefficient of 10 real ECGs.

Original SNR Noise Type Denoising Method

IEMD -ATD UT-H UT-S Cust-H Cust-S

-5 dB ECN 0.5891 0.5843 0.5634 0.5882 0.5848

EMG 0.7024 0.6357 0.6391 0.6778 0.7071

WN 0.8237 0.5856 0.5705 0.7542 0.7460

HN 0.7675 0.6722 0.6010 0.7392 0.7190

-2 dB ECN 0.7109 0.6887 0.6681 0.6905 0.6878

EMG 0.8639 0.7520 0.7466 0.7879 0.8098

WN 0.8942 0.6892 0.6532 0.8328 0.8155

HN 0.8528 0.8087 0.7460 0.8315 0.8193

2 dB ECN 0.8383 0.8265 0.8108 0.8281 0.8266

EMG 0.9265 0.8771 0.8672 0.8656 0.8807

WN 0.9325 0.7939 0.7290 0.8982 0.8818

HN 0.9161 0.8950 0.8487 0.9051 0.8986

5 dB ECN 0.8944 0.8933 0.8809 0.8954 0.8944

EMG 0.9433 0.9116 0.8871 0.9066 0.9154

WN 0.9481 0.8545 0.7730 0.9268 0.9153

HN 0.9397 0.9140 0.8851 0.9197 0.9165

10 dB ECN 0.9525 0.9362 0.9281 0.9376 0.9369

EMG 0.9703 0.9443 0.9187 0.9452 0.9481

WN 0.9710 0.9431 0.9045 0.9537 0.9475

HN 0.9685 0.9487 0.9268 0.9554 0.9533

https://doi.org/10.1371/journal.pone.0235330.t013

Table 14. Average SNR improvement of 10 real ECGs for eliminating only high-frequency noise.

Original SNR Noise Type Denoising Method

IEMD -ATD UT-H UT-S Cust-H Cust-S

-5 dB ECN 0.03 0.01 -0.01 0.00 0.01

EMG 0.67 0.21 0.27 0.06 0.33

WN 10.15 6.91 6.83 7.66 8.59

HN 0.38 0.18 0.04 0.29 0.32

-2 dB ECN 0.03 0.00 -0.04 0.00 0.01

EMG 0.76 0.14 0.17 0.04 0.29

WN 9.79 5.36 4.95 7.56 7.77

HN 0.37 0.18 -0.08 0.28 0.28

2 dB ECN 0.03 -0.01 -0.12 0.00 0.01

EMG 0.81 0.33 0.23 0.03 0.33

WN 9.61 3.94 2.45 7.06 6.39

HN 0.35 0.16 -0.33 0.27 0.24

5 dB ECN 0.02 -0.05 -0.27 0.00 0.00

EMG 0.79 0.25 -0.26 0.02 0.33

WN 9.29 3.11 0.37 6.82 5.66

HN 0.32 0.11 -0.51 0.24 0.20

10 dB ECN -0.05 -0.14 -0.65 -0.02 -0.05

EMG 0.68 -0.01 -1.48 0.01 0.30

WN 8.62 3.60 -0.53 5.99 4.37

HN 0.23 -0.31 -1.63 0.19 0.05

https://doi.org/10.1371/journal.pone.0235330.t014
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that of ECG signals. This may lead to errors when eliminating noise using the threshold meth-

ods. When the original SNR is higher, which means less noise, it is prone to removing ECG

values rather than noise values. As a whole, the proposed method is superior to the other 4

methods in improving SNR.

Table 15 displays the average relative differences of signal energy (ARDE) of 10 real ECGs.

From the table, similar to the results in synthetic ECG, for 10 dB, 5 dB and 2 dB (except for ECN

at 2 dB), the ARDE are within 0.1. EMG, and WN and HN are better compared with ECN.

5. Conclusion

In this paper, an integrated EMD adaptive threshold denoising method (IEMD-ATD) is pro-

posed for processing ECG signals. IEMD-ATD consists of a new method for grouping the

IMFs of ECG signals, an adaptive threshold determination method based on the 3σ criterion

and a peak filtering denoising method. The experimental results of both synthetic and real

ECGs in MIT-BIT show that the IEMD-ATD proposed in this paper offers good performance

on IMF grouping and baseline wandering elimination for ECG signals. The adaptive threshold

determined is more reasonable, and the effect of filtering high-frequency noise is better than

the existing EMD hard and soft threshold denoising methods. The SNR is improved signifi-

cantly, and the waveform of the QRS complex remains more intact. IEMD-ATD solves the

problems of local distortion and discontinuity caused by hard and soft threshold denoising

methods. IEMD-ATD is simple in calculation, strong in adaptability and wide in application.

It offers great advantages in denoising ECG signals.
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