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Abstract: The objective of this study is to investigate the contributing effect of the nuclear 
transcription factor-erythroid 2-related factor 2 (Nrf2)-mediated signaling pathway on the 
indirect antioxidant capacity of caffeic acid phenethyl ester (CAPE) against oxidative 
stress in HepG2 cells. The result of an antioxidant response element (ARE)-luciferase 
assay showed that CAPE stimulated ARE promoter activity resulting in increased 
transcriptional and translational activities of heme oxygenase-1 (HO-1). In addition,  
CAPE treatment enhanced Nrf2 accumulation in the nucleus and the post-translational 
phosphorylation level of extracellular signal-regulated kinase (ERK) among several protein 
kinases tested. Treatment with ERK inhibitor U126 completely suppressed CAPE-induced 
ERK phosphorylation and HO-1 expression, but it only partly inhibited CAPE-induced Nrf2 
accumulation and ARE promoter. Using the 2',7'-dichlorofluorescein-diacetate (DCFH-DA) 
method, the cellular antioxidant capacity of CAPE against 2,2'-azobis (2-amidinopropane) 
dihydrochloride (AAPH)- or H2O2-induced oxidative stress also was shown to be partially 

suppressed by the ERK inhibitor. From the overall results it is proposed that the indirect 
antioxidant activity of CAPE against oxidative stress in HepG2 cells is partially attributed 
to induction of HO-1, which is regulated by Kelch-like erythroid-cell-derived protein with 
CNC homology (ECH)-associated protein 1 (Keap1)-independent Nrf2 activation relying on 
post-translational phosphorylation of ERK. 
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1. Introduction 

The cellular protection against oxidative stress can be carried out by antioxidants in direct and 
indirect ways depending upon the type of working mechanism [1]. Direct antioxidants, which are 
always redox active, scavenge reactive oxygen and nitrogen radical species by being consumed or 
chemically modified. They have to be replenished or regenerated. In contrast with direct antioxidants, 
indirect antioxidants may or may not be redox active. Indirect antioxidants exert their antioxidant 
effects through upregulating phase II detoxifying and antioxidant enzymes [1]. Some antioxidants such 
as phenolic Michael reaction acceptors may display their antioxidant effects in both a direct and an 
indirect fashion [2] and are called bifunctional antioxidants.  

The activation of nuclear transcription factor-erythroid 2-related factor 2 (Nrf2), including the 
release of Nrf2 from Kelch-like ECH-associated protein 1 (Keap1)-Nrf2 complex, is involved in the 
induction of gene encoding detoxifying and antioxidant enzymes by indirect antioxidants including 
oxidizable diphenol [3]. Nrf2 may be activated in a Keap1-dependent or -independent manner [4,5]. 
For Keap1-dependent NRf2 activation, a conformational change of Keap1 through interaction with 
different types of inducers is required [6]. In Keap1-independent Nrf2 activation, Nrf2 protein may  
be phosphorylated by several signal transduction pathways including mitogen-activated protein kinase 
(MAPK), phosphatidylinositol 3-kinase (PI3K/Akt), protein kinase C (PKC), extracellular signal-regulated 
kinase (ERK), and c-jun N-terminal kinase (JNK) signaling pathways [7,8].  

Caffeic acid phenethyl ester (CAPE) is a phenolic compound bearing one catechol group and  
is one of the biologically active constituents present in propolis from honeybee hives. CAPE has  
been reported to have biological and pharmacological activities including antioxidant [9–14],  
anti-inflammatory [15,16], antiviral [17], anti-carcinogenic [18], and immunomodulating effects [6]. 
CAPE has demonstrated a potent antioxidant activity in previous studies using an in vitro model [9–12] as 
well as an in vivo animal model [13,14]. The strong free radical-scavenging and ferric reducing activity 
of CAPE has been reported [9,11]. Also the potential cellular antioxidant activity of CAPE against 
oxidative stress induced by menadione has been confirmed in human umbilical vein endothelial  
cells [12], while CAPE has shown a protective effect on lipid peroxidation and antioxidant enzymes in 
diabetic rat organs such as the liver and heart [13,14]. 

Although CAPE has been shown to stimulate heme oxygenase-1 (HO-1) through promoting 
inactivation of the Nrf2-Keap1 complex in renal epithelial cells [19], there has been no study to 
elucidate the induction of phase II detoxifying and antioxidant enzymes through Nrf2 activation in 
hepatic cells. Human hepatoma HepG2 cell, a well-differentiated transformed cell line, is used in this 
study. Because steady-state functioning of the antioxidant defense system in HepG2 cells is relatively 
higher than that in hepatocytes and other non-transformed cells, the variations of cellular responses to 
different treatments can be more conveniently measured [20,21]. The purpose of our present study is to 
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investigate the contribution of Nrf2-mediated HO-1 expression to CAPE protection against oxidative 
stress in hepatic HepG2 cells. We propose that CAPE exerts indirect antioxidant capacity by  
up-regulating the expression of phase II antioxidant and detoxifying enzyme HO-1 via the ERK-Nrf2 
signaling pathway. 

2. Results and Discussion 

2.1. CAPE (Caffeic Acid Phenethyl Ester) Increases ARE (Antioxidant Response Element)-Luciferase 
Activity and HO-1 (Heme Oxygenase-1) Expression 

ARE is a cis-acting DNA regulatory element present in the promoter/enhancer regions of genes 
encoding many antioxidant and detoxifying enzymes; and to test whether or not CAPE, as an indirect 
antioxidant, stimulates the transcription of ARE-related gene in HepG2 cells, a luciferase reporter 
plasmid carrying ARE promoter was introduced to HepG2 cells. The dose-response effects of CAPE 
on ARE prompter activity were examined over 24 h, and the results of an ARE-luciferase assay 
showed that CAPE treatment caused a concentration-dependent induction of ARE promoter activity 
with peak activity seen at 20 μM (Figure 1A); therefore, 20 μM was used as the concentration of 
reference in all subsequent experiments. As a time-course study showed that there was a sufficient 
increase in ARE promoter activity after 12 h with a 6.1 fold change compared with a 7.4 fold change 
after 24 h (Figure 1B), the effects of CAPE on transcriptional and translational activity of phase II 
antioxidant and detoxifying enzymes was examined 12 h after treatment with CAPE. Results for the 
transcription level of phase II antioxidant and detoxifying enzymes in treatment with 20 μM CAPE for 
12 h (Figure 2A,C) and their translation level (Figure 2B,D) show that significant increases in both 
transcription and translation activity were observed only in HO-1 among the phase II antioxidant and 
detoxifying enzymes and were 3.9 and 5.1 fold of vehicle respectively. These data indicate that the 
increase in ARE activity observed with CAPE treatment is likely to be closely related with an increase 
of HO-1 transcriptional activity. This inducing effect of antioxidant-related gene by CAPE has been 
confirmed through studies with human umbilical vein endothelial cells that showed that CAPE 
suppressed menadione-induced oxidative stress by inducing HO-1 gene [22,23] and with porcine renal 
epithelial cells showed that CAPE significantly increased HO-1 protein expression through stimulating 
Nrf2 expression [19]. The inducing effect of CAPE on phase II antioxidant and detoxifying enzymes 
such as HO-1 and superoxide dismutase (SOD) has also been identified in different types of cells such 
as astrocytes [24], hippocampal neurons [25], macrophage cells [26], and 3T3-L1 adipocytes [27]. 
Accordingly, the above results suggest that CAPE can exert potent intracellular antioxidant activity by 
inducing HO-1 expression. 
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Figure 1. CAPE (caffeic acid phenethyl ester) increases ARE (antioxidant response 
element) luciferase activity. (A) After HepG2 cells were subjected to 1–50 μM CAPE for 
12 h, ARE luciferase activity was determined and normalized to vehicle; (B) Time-course 
experiment was carried out for the indicated times using 20 μM CAPE and normalized  
to time zero. Data are expressed as mean ± standard deviation of three individual 
experiments. Different corresponding letters indicate significant differences at p < 0.05 by 
Duncan’s test. 

 

Figure 2. CAPE enhances HO-1 (heme oxygenase-1) mRNA and protein levels. After 
HepG2 cells were subjected to 20 μM CAPE for 12 h, the transcription and translation 
levels of phase II antioxidant and detoxifying enzymes in HepG2 cells were determined 
using reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis 
respectively. (A) mRNA level of phase II antioxidant and detoxifying enzymes; (B) Protein 
level of phase II antioxidant and detoxifying enzymes; (C) CAPE increases HO-1 mRNA 
level; (D) CAPE augments HO-1 protein level. Data are expressed as mean ± standard 
deviation of three individual experiments, *** p <0.001 vs. vehicle. SOD1, superoxide 
dismutase 1; HO-1, heme oxygenase-1; CAT, catalase; NQO1, NAD(P)H:quinone 
oxidoreductase 1; GCS, glutamylsysteine synthase; GST, glutathione S-transferase. 
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Figure 2. Cont. 

 

2.2. CAPE Activates ERK (Extracellular Signal-Regulated Kinase) Leading to Nrf2 (Nuclear 
Transcription Factor-Erythroid 2-Related Factor 2) Accumulation in the Nucleus 

It is known that nuclear factor Nrf2 is the major transcription factor that binds to ARE and it exists 
as Keap1/Nrf2 complex in the cytosol. For the induction of phase II antioxidant and detoxifying 
enzymes, Nrf2 has to be released as an activated form from the Keap1-Nrf2 complex by  
Keap1-dependent or -independent mechanisms and to be translocated from the cytosol into the 
nucleus. To examine Nrf2 induction by CAPE, the protein levels of Nrf2 in the nucleus and the cytosol 
were analyzed, and a time-course study revealed that CAPE caused time-dependent increases of Nrf2 
translation in both the nucleus and the cytosol with a peak level 1 h after treatment with CAPE  
(Figure 3A–C). These elevated levels of Nrf2 protein in both the nucleus and the cytosol by CAPE 
treatment were also observed by fluorescence imaging with confocal microscopic analysis (Figure 3D). 
The enhanced Nrf2 level in the cytosol with CAPE treatment may be due to autoregulation, the ability 
of Nrf2 to regulate its own transcription. As ARE elements recruiting Nrf2 are found in close 
proximity of the promoters of Nrf2-related antioxidant genes as well as Nrf2 itself [4], CAPE may 
induce Nrf2 transcription in cells, resulting in an increase of Nrf2 protein level in the cytosol. The 
increased Nrf2 protein level in the nucleus with CAPE treatment could be explained by two plausible 
mechanisms of Nrf2 activation, Keap1-dependent or Keap1-independent. Keap1-dependent Nrf2 
activation requires strong electrophiles disrupting the Keap1-Nrf2 complex by modifying Keap1 at 
cysteine residues through the Michael reaction [4]. Meanwhile, post-translational phosphorylation 
through multiple kinase signaling pathways is known to be involved in Keap1-independent  
Nrf2 activation.  
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Figure 3. CAPE increases Nrf2 (nuclear transcription factor-erythroid 2-related factor 2) 
level in the nucleus and the cytosol. (A) After HepG2 cells were incubated with 20 μM 
CAPE for 6 h, the time-course induction of Nrf2 protein levels in the nucleus and the 
cytosol was determined using western blot analysis and normalized to time zero;  
(B) Time-course change of Nrf2 protein level in the nucleus; (C) Time-course change of 
Nrf2 protein level in the cytosol; and (D) Immunofluorescence staining of HepG2 cells 
subjected to 20 μM CAPE as indicated with anti-Nrf2 antibodies. Nuclear counterstaining 
was done with Hoechst 33528 (Sigma Aldrich, St. Louis, MO, USA). Fluorescence image 
was taken by confocal fluorescence microscopy. Data are expressed as mean ± standard 
deviation of three individual experiments. Different corresponding letters indicate 
significant differences at p < 0.05 by Duncan’s test. 
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The induction of phase II antioxidant and detoxifying enzymes through Nrf2 activation by CAPE 
was reported in previous studies using different cells such as renal epithelial cells and lung  
fibroblasts [19,28]. From these reports, it is postulated that CAPE phosphorylates Nrf2 causing it to be 
released from the Keap1/Nrf2 complex and to be translocated from the cytosol into the nucleus, which 
suggests that CAPE may activate Nrf2 in a Keap1-independent manner. It has been proposed that there 
may exist several Keap1-independent mechanisms of Nrf2 activation including phosphorylation of 
Nrf2 by various protein kinases, interaction with other proteins, and epigenic factors [4]; and a number 
of protein kinases such as MAPK, ERK, JNK, p38 Akt, and PKC have been implicated as an upstream 
signal in the regulation of Nrf2 activity [7].  

To investigate whether any protein kinases such as ERK, JNK, PKC, and Akt may be involved in 
the activation (post-translational phosphorylation) of Nrf2, the phosphorylated level of different 
protein kinases with CAPE treatment was analyzed (Figure 4A,B). It was found that CAPE treatment 
only had a notable inducing effect on ERK phosphorylation. A time-course experiment showed that 
phosphorylated ERK increased with a peak level (3.4 fold change) at 0.5 h after CAPE treatment 
(Figure 4B). This observation supports the proposal that CAPE may activate ERK by inducing its 
phosphorylation and in turn phosphorylate Nrf2, known as a downstream signal, which results in Nrf2 
being activated and translocated to the nucleus. Nrf2 activation in hepatoma HepG2 cells through ERK 
protein kinase was also observed with icariside and butylated hydroxyanisole (BHA) [29,30]. Icariside 
enhanced Nrf2 activation leading to HO-1 and GST expression through the ERK as well as Akt and 
JNK signaling pathways, while BHA also increased Nrf2 activation causing HO-1 expression through 
the ERK as well as JNK signaling pathways. 

Figure 4. CAPE activates ERK (extracellular signal-regulated kinase) protein kinase.  
(A) After HepG2 cells were subjected to 20 μM CAPE for the indicated times, the 
phosphorylated protein kinases in HepG2 cells was determined using western blot analysis; 
(B) Time-course induction of ERK protein kinase normalized to time zero. Data are 
expressed as mean ± standard deviation of three individual experiments. Different 
corresponding letters indicate significant differences at p < 0.05 by Duncan’s test. 
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2.3. CAPE Induces HO-1 Expression through the ERK-Nrf2 Signaling Pathway 

Nrf2-dependent HO-1 expression coupled with the ERK signaling pathway was examined by 
western blot analysis using ERK inhibitor U126. As expected, treatment with U126 potently abolished 
ERK activation (Figure 5A,B). Furthermore, CAPE treatment significantly (p < 0.001) augmented 
nuclear accumulation of Nrf2 by 3.3 fold, and this was clearly ameliorated to 1.9 fold by treatment 
with U126 (Figure 5C), suggesting that ERK phosphorylation by CAPE may activate Nrf2 by  
post-translational phosphorylation and allow translocation of Nrf2 to the nucleus. In addition, U126 
treatment obviously diminished HO-1 expression, which was significantly (p < 0.001) promoted  
5.0 fold by CAPE treatment in comparison with the vehicle level (Figure 5D). Moreover, treatment 
with U126 significantly (p < 0.05) reduced ARE promoter activity which was also significantly  
(p < 0.01) stimulated by CAPE (Figure 5E). In this experiment, sulforaphane (SF) was used as a 
positive control of inducer of ARE promoter activity. Accordingly, CAPE phosphorylates ERK to 
induce the post-translational Nrf2 phosphorylation, which is required for Nrf2 accumulation in the 
nucleus leading to HO-1 expression. Thus, this Nrf2 activation coupled with the ERK signaling 
pathway for inducing HO-1 expression appears to be Keap1-independent. Taken together, overall 
results imply that CAPE may activate Nrf2 through activating ERK to contribute to the induction of 
phase II antioxidant and detoxifying enzymes including HO-1 in hepatic HepG2 cells.  

Figure 5. HO-1 induction requires Nrf2 accumulation in the nucleus via HO-1 activation. 
(A) After HepG2 cells were subjected to 20 μM CAPE for 30 min in the presence or 
absence of U126, ERK inhibitor, Nrf2 in the nucleus, phosphorylated ERK, and HO-1 
were determined using western blot analysis; (B) U126, ERK inhibitor prevents the 
activation of ERK; (C) U126, ERK inhibitor, suppresses Nrf2 accumulation in the nucleus; 
(D) U126, ERK inhibitor, prevents HO-1 expression; and (E) U126, ERK inhibitor, 
suppresses ARE promoter activity normalized to vehicle. Sulforaphane (SF) was used as a 
positive control inducing ARE promoter activity. Data are expressed as mean ± standard 
deviation of three individual experiments, ## p <0.01, ### p <0.001 vs. vehicle,  
* p <0.05, ** p < 0.01 vs. CAPE. 
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Figure 5. Cont. 

 

 

On the other hand, the blocking of ERK activation by U126 did not completely suppress Nrf2 
accumulation in the nucleus, indicating that the Keap1-dependent pathway may be involved in Nrf2 
activation for translocation to the nucleus as well as the Keap1-independent signaling pathway through 
ERK phosphorylation. In a previous study using human colon carcinoma HCT116 cells, oxidized 
CAPE showed greater potency than CAPE in activating the Nrf2 pathway, which was confirmed by 
increased induction of HO-1, ARE promoter activity, and nuclear accumulation of Nrf2 [31]. In 
accordance with the Keap1-dependent Nrf2 activation pathway, CAPE binding to Keap1 by interacting 
with cysteine residues disrupts the Keap1-Nrf2 complex allowing Nrf2 to translocate to the nucleus 
and finally causes the induction of ARE promoter activity and HO-1 expression. It was also reported 
that oxidizable diphenols such as CAPE that carry a catechol moiety up-regulate ARE-related genes by 
inducing the Keap1-dependent Nrf2 activation signaling pathway [3]. In addition, the blocking of ERK 
by U126 treatment did not totally alleviate the induction of ARE promoter activity enhanced by CAPE 
treatment. Therefore, these results suggest that CAPE may induce Nrf2 activation without the ERK 
signaling pathway to result in the expression of genes containing ARE copy. 
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2.4. CAPE Partially Attenuates Cellular Oxidative Stress Induced by AAPH (2,2'-Azobis  
(2-amidinopropane) dihydrochloride) or H2O2 through Inducing HO-1 Expression  

Cellular antioxidant capacity of antioxidants results from direct and indirect antioxidant capacity. 
Direct antioxidant capacity is defined as the capacity of the antioxidant itself to scavenge reactive 
oxygen and nitrogen species by donating hydrogen or electrons. Indirect antioxidant capacity is the 
capacity of an antioxidant to provide defense against oxidative stress through inducing the expression 
of ARE-related phase II detoxifying and antioxidant genes. To determine the contributing effect of 
CAPE through inducing HO-1 expression on its indirect antioxidant capacity, the cellular antioxidant 
capacity of CAPE was investigated using 2',7'-dichlorodihyrofluorescein-diacetate (DCFH-DA) in the 
presence of the oxidative inducers 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) and H2O2 
with U126 treatment. As cell viability over 95% was observed with 60 μM AAPH, 1 mM H2O2, and  
20 μM CAPE (data not shown), HepG2 cells were pre-incubated with 20 μM CAPE for 30 min and 
exposed to 60 μM AAPH or 1 mM H2O2 for 30 min. The cells were then treated with DCFH-DA, 
which is a fluorescent probe that detects ROS (reactive oxygen species), for 30 min to measure 
intracellular oxidative stress induced by AAPH or H2O2. Intracellular oxidative stress in the HepG2 
cells treated with AAPH and H2O2 increased by 158.0% and 162.0% respectively compared with the 
control group (Figure 6A,B); however, CAPE treatment, as expected, ameliorated the AAPH- and 
H2O2-induced oxidative stress to 119.1% and 116.2% respectively. This cellular antioxidant capacity 
of CAPE observed in HepG2 cells may be due to both direct and indirect antioxidant capacity as 
antioxidant activity exerted by CAPE both in vitro and in vivo was reported [11,13]. The cellular 
antioxidant capacity was determined at 1.5 h after treatment with CAPE in the cellular antioxidant 
capacity assay system applied in this study. In a short period, CAPE can scavenge peroxyl radicals 
from AAPH and H2O2 because it may donate hydrogen from the hydroxyl groups in the catechol 
moiety. Meanwhile, CAPE induced Nrf2 accumulation in the nucleus in 1 h (Figure 3A,B) and  
ARE promoter activity in 3 h (Figure 1B), indicating that CAPE can exert indirect antioxidant capacity 
by inducing phase II detoxifying and antioxidant enzymes such as HO-1. The indirect antioxidant 
capacity of CAPE that occurs by Keap1-dependent Nrf2 activation cannot be ignored in case CAPE is 
oxidized to its corresponding quinone.  

To clarify whether the ERK signaling pathway may be involved in the indirect antioxidant capacity 
of CAPE, HepG2 cells were pretreated with 10 μM U126 as an ERK inhibitor for 30 min before CAPE 
treatment. Although treatment with the ERK inhibitor U126 significantly (p < 0.01) ameliorated  
the cellular antioxidant capacity observed in CAPE treatment against oxidative stress significantly  
(p < 0.001) induced by AAPH or H2O2, it did not completely inhibit the cellular antioxidant capacity 
displayed by CAPE (Figure 6A,B). A possible explanation for this observation is that some other 
indirect antioxidant capacity not coupled with the ERK signaling pathway and direct antioxidant 
capacity may account for a certain portion of the cellular antioxidant capacity of CAPE. In line with 
the proposal that there is some other indirect antioxidant capacity excluding the ERK signaling 
pathway, both Nrf2 accumulation in the nucleus and ARE promoter activity induced by CAPE were 
only partly suppressed by ERK inhibitor U126 (Figure 5C,E respectively). Accordingly, the overall 
results provide solid evidence that cellular antioxidant capacity exerted by CAPE in HepG2 cells may 
be partially attributed to induction of HO-1 expression through the ERK-Nrf2 signaling pathway as 
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depicted in Figure 7; however, further investigation is required to elucidate precisely the molecular 
signaling mechanisms involved in the indirect antioxidant capacity of CAPE in HepG2 cells. 

Figure 6. Cellular antioxidant capacity of CAPE against oxidative stress induced by 
AAPH (2,2'-azobis (2-amidinopropane) dihydrochloride) or H2O2 requires HO-1 induction 
through ERK activation (A,B). After HepG2 cells were first cultured in 96-well plates  
(5 × 105/mL) with Dulbecco’s modified Eagle’s medium (DMEM) for 24 h, they were 
sequentially pre-incubated with 10 μM U126 for 30 min and 20 μM CAPE for 30 min and 
exposed to 60 μM AAPH or 1 mM H2O2 for 30 min. After HepG2 cells were then treated 
with 40 µM DCFH-DA (2',7'-dichlorodihyrofluorescein-diacetate) for 30 min in the dark, the 
cells were washed with Hank’s balanced salt solution (HBSS) and 2',7'-dichlorofluorescein 
(DCF), fluorescence intensity was measured at an excitation wavelength of 485 nm and an 
emission wavelength of 535 nm using a Tecan GENios fluorometric plate reader (Salzburg, 
Austria). Data are expressed as percentages of the value of untreated cells (mean ± standard 
deviation, n = 3), ### p <0.001 vs. control, *** p <0.001 vs. AAPH, ** p <0.01 vs. AAPH. 

 

Figure 7. The ERK-Nrf2 signaling pathway of CAPE contributing to indirect cellular 
antioxidant capacity. 
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3. Experimental Section  

3.1. Reagents 

CAPE, AAPH, neocuproine, DMEM (Dulbecco’s modified Eagle’s medium), fetal bovine serum 
(FBS), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Triton X-100, HBSS, 
DCFH-DA, phosphate buffered saline (PBS, pH 7.4), SF, U126, and dimethylsulfoxide (DMSO) were 
purchased from Sigma Aldrich (St. Louis, MO, USA). FuGENE HD reagent (Promega, Madison, WI, 
USA), Dual-Glo luciferase assay kit, pGL4.37 (luc2P/ARE/Hygro) vector, and pGL4.74 (hRluc/TK) 
vector were purchased from Promega (Madison, WI, USA). CAPE was purchased from Cayman 
Chemical Company (Ann Arbor, MI, USA). Maxime PCR PreMix Kit and AccuPowerCycleScript  
RT PreMix were purchased from iNtRON biotechnology and Bioneer (Seoul, Korea). Antibodies 
purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA) included anti-SOD1, anti-HO-1, 
anti-catalase (CAT), anti-NAD(P)H:quinone oxidoreductase 1 (NQO1), anti-glutamyl systeine 
synthase (GCS), anti-Nrf2, anti-phospho-JNK, anti-phospho-PKC, and anti-phospho-Akt (Ser473). 
Anti-p44/42MAPK (ERK1/2), anti-phospho-p44/42MAPK (ERK1/2), and anti-glutathione  
S-transferase (GST) were purchased from Cell Signaling Technology (Beverly, MA, USA). HepG2 
cells were obtained from the Korea Cell Line Bank (KCLB No. 88065, Seoul, Korea).  

3.2. Transient Transfection and Antioxidant Response Element (ARE)-Luciferase Assay 

HepG2 cells were first cultured in 96-well plates (5 × 105/mL) with DMEM for 24 h. This assay 
was performed using FuGENE HD reagent. After the HepG2 cells were transiently transfected with 
different plasmids, the cells were incubated with different concentrations of test samples dissolved in 
10% DMSO for 24 h. ARE-luciferase activities were measured by the Dual-Glo Luciferase Assay 
System in accordance with the manufacturer’s protocol (Promega, Madison, WI, USA). Multiwell 
plate containing HepG2 cells was removed from the incubator. For measuring ARE luciferase activity, 
a volume of Dual-Glo Luciferase reagent equal to the culture medium volume was added to each  
well and mixed. After 10 min, a volume of Dual-Glo Stop & Glo reagent equal to the original  
culture medium volume was added to each well and mixed to determine Renilla luciferase activity. 
Luminescence was measured using a Tecan GENios fluorometric plate reader. The ratio of 
luminescence from ARE luciferase activity to that from Renilla luciferase activity was calculated. 

3.3. Reverse Transcription-Polymerase Chain Reaction (RT-PCR) 

Total RNA was extracted from HepG2 cells using a Trizol reagent (Invitrogen, Carlsbad, CA, USA) 
in accordance with the manufacturer’s instructions. From 1 μg of total RNA, cDNA was generated 
using the AccuPower CycleScript RT PreMix (Bioneer, Seoul, Korea). PCR reactions were performed 
with the following couples of primers: 5'-GTGTAAGGACCCATCGGAGA-3' and 5'-GTGTAA 
GGACCCATCGGAGA-3' for HO-1; 5'-GGTGTGGCCGATGTGTCTAT-3' and 5'-GGGCGATCC 
CAATTACACCA-3' for SOD-1; 5'-ATGCAGGACAATCAGGGTGG-3' and 5'-CCGCACAAAG 
GTGTGAATCG-3' for CAT; 5'-CAGCGCCCCGGACTGCACCAGAGCC-3' and 5'-GGGAAGCCT 
GGAAAGATACCCAGA-3' for NQO-1; 5'-GGAAGGTGTGTTTCCTGGACT-3' and 5'-TATTATA 
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CACACGGGCTGAGAGG-3' for GCS; and 5'-TCCATCCGGTGGCTCCTGGC-3' and 5'-GGGCAG 
AAGAAGGATCATTT-3' for GST. Annealing temperatures were programmed at 60 °C except for 
HO-1 and Nrf2 (58 °C). The PCR products were analyzed using 1.5% agarose gel electrophoresis, 
stained with EtBr (ethidium bromide), and visualized by UV detector. 

3.4. Western Blot Analysis 

HepG2 cells were grown in 6-well plates for 24 h and then incubated with CAPE in the presence or 
absence of U126 at 37 °C for different time periods. HepG2 cells were lysed in a radio immuno 
precipitation assay (RIPA) buffer (50 mM Tris-HCl (pH 8.0), 1% NP-40, 0.5% sodium deoxycholate, 
150 mM NaCl, and 1 mM phenylmethanesulfonyl fluoride (PMSF)) that contained a phosphatase 
inhibitor cocktail. For nuclear protein extraction, after the harvested cells were rinsed twice with cold 
PBS, they were scraped and centrifuged at 15,800× g for 2 min. The pellet was then resuspended  
in 400 μL of buffer A (10 mM hydroxyethyl piperazineethanesulfonic acid (HEPES) (pH 7.9),  
10 mM KCl, 2 mM MgCl2, 1 mM dithiothreithol (DTT), 0.5 mM ethylenediamine tetra-acetic acid 
(EDTA) (pH 7.9), 0.1 μM PMSF, and 1× protease inhibitor cocktail). After 15 min on ice, the lysate 
was centrifuged at 15,800× g for 2 min and the supernatant (cytosolic extract) was stored at 4 °C. The 
nuclear pellet was resuspended in buffer B (50 mM HEPES (pH 7.9), 50 mM KCl, 0.3 mM NaCl,  
1 mM DTT, 1 mM EDTA (pH 7.9), 0.1 μM PMSF, and 10% glycerol) for 10 min at 4 °C.  
The resuspended pellet was centrifuged at 18,000× g for 10 min at 4 °C and the supernatant  
(nuclear extract) was stored at −70 °C. The lysed cells and extracted nuclear and cytosol proteins  
were subjected to electrophoresis using sodium dodecylsulfate-polyacrylamide gel electrophoresis  
(SDS-PAGE) and transferred to nitrocellulose membranes. The membranes were reacted with primary 
antibodies for 12 h and then incubated with the appropriate horseradish peroxide-conjugated secondary 
antibodies for 1 h at room temperature. The proteins on the membranes were detected with an  
EZ-western Lumi Pico detection kit (DoGEN, Seoul, Korea) and visualized using an LAS4000 
chemiluminescent image analyzer (Fuji, Tokyo, Japan). 

3.5. Observation of Fluorescence Imaging for Nrf2 and Nucleus 

Observations were performed by confocal imaging as described by Grindel et al. [32]. Following 
treatment, HepG2 cells were rinsed twice with PBS and incubated for 15 min at room temperature with 
3.7% paraformaldehyde in PBS. The cells were washed again with PBS followed by 10 min incubation 
at room temperature in 0.1% Triton X-100 in PBS. After washing with PBS, the cells were blocked in 
5% skimmed milk in PBS for 45 min at room temperature. The blocking solution was removed and 
replaced with 1:500 Nrf2 primary antibody in 5% skimmed milk, and the cells were left overnight at  
4 °C. After overnight incubation, the cells were washed for 10 min three times in PBS. The washing 
solution was removed and replaced with 1:2500 AlexaFlour 546 conjugated goat anti-rabbit secondary 
antibody (Invitrogen, Carlsbad, CA, USA) in PBS, and the cells were incubated for 45 min at room 
temperature in the dark. Then the cells were washed for 10 min three times in PBS. Images were 
acquired with an LSM5 live configuration Variotwo VRGB microscope (Zeiss, Jena, Germany) 
equipped with an oil immersion lens. Fluorescence imaging was achieved using a laser for 405 nm 
(blue, death-associated protein 1 (DAPI) nuclear staining) and 535 nm (red, anti-Nrf2) excitation. 
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3.6. Cell Viability Assay 

The tetrazolium dye colorimetric test (MTT) was used to determine the viability of HepG2 cells. 
The MTT assay is based on the ability of functional mitochondria to catalyze the reduction of  
3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium bromide to insoluble purple formazan, the concentration 
of which can be measured spectrophotometrically. HepG2 cells were first cultured in 96-well plates  
(5 × 105 cells/well) for 24 h, washed twice using PBS, and pretreated with different concentrations of 
test samples of AAPH, H2O2, and CAPE. After 24 h incubation, MTT reagent was added to each well 
and the plate was incubated at 37 °C for 2 h. The media was removed and the plate was washed twice 
with PBS (pH 7.4). The intracellular insoluble formazan was dissolved in DMSO. The absorbance of 
each cell was then measured at 570 nm using an ELISA reader (Tecan, Salzburg, Austria) and the 
percentage viability was calculated. 

3.7. Cellular Antioxidant Capacity 

Cellular oxidative stress due to reactive oxygen species (ROS) generated by AAPH or H2O2 was 
measured spectrofluorometrically using the DCFH-DA method [33]. DCFH-DA diffuses through  
the cell membrane and is hydrolyzed enzymatically by intracellular esterase to non-fluorescent  
2',7'-dichlorodihydrofluorescein (DCFH), which is rapidly oxidized to highly fluorescent  
2',7'-dichlorofluorescein (DCF) in the presence of ROS. HepG2 cells were first cultured in 96-well 
plates (5 × 105/mL) with DMEM for 24 h. After the cells were pre-incubated with 10 μM U126 for  
30 min, they were incubated in different concentrations of CAPE dissolved in DMSO for 30 min. 
Then, the medium was discarded and the wells were gently washed twice with PBS. HBSS, which is 
fluorescently stable, was then added to each well instead of normal medium, and AAPH or H2O2 was 
used as an oxidative stress inducer. After the cells were treated with 60 μM AAPH or 1 mM H2O2 for 
30 min, DCFH-DA was added to the culture plates at a final concentration of 40 μM and the cells 
incubated for 30 min at 37 °C in the dark. After incubation, the cells were washed with HBSS, and the 
DCF fluorescence intensity was measured at an excitation wavelength of 485 nm and an emission 
wavelength of 535 nm using a Tecan GENios fluorometric plate reader. 

3.8. Statistical Analysis 

All data are presented as mean ± standard deviation. Statistical analysis was carried out using the 
SPSS statistical package (SPSS, Chicago, IL, USA) program, and the significance of each group was 
verified with one-way analysis of variance (ANOVA) followed by Duncan’s test or Student’s t-test.  
A p value <0.05 was considered significant. 

4. Conclusions  

From our results it is proposed that an indirect antioxidant activity of CAPE against oxidative  
stress in hepatic HepG2 cells is in part attributable to induction of HO-1, which is regulated by  
Keap1-independent Nrf2 activation relying on post-translational phosphorylation of ERK. This may 
well have implications in the use of propolis carrying CAPE for the amelioration of oxidative  
stress-related diseases such as atherosclerosis, hypertension, and neurodegeneration. 
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