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Abstract: Porous graphitic carbon nitride (g-C3N4) was prepared by dicyandiamide and urea via
the pyrolysis method, which possessed enhanced visible-light-driven photocatalytic performance.
Its surface area was increased from 17.12 to 48.00 m2/g. The porous structure not only enhanced
the light capture capacity, but also accelerated the mass transfer ability. The Di (Dicyandiamide)/Ur
(Urea) composite possessed better photocatalytic activity for Rhodamine B in visible light than that
of g-C3N4. Moreover, the Di/Ur-4:5 composite showed the best photoactivity, which was almost
5.8 times that of g-C3N4. The enhanced photocatalytic activity showed that holes and superoxide
radical played a key role in the process of photodegradation, which was ascribed to the enhanced
separation of photogenerated carriers. The efficient separation of photogenerated electron-hole pairs
may be owing to the higher surface area, O dopant, and pore volumes, which can not only improve
the trapping opportunities of charge carriers but also the retarded charge carrier recombination.
Therefore, it is expected that the composite would be a promising candidate material for organic
pollutant degradation.

Keywords: porous g-C3N4; O doping; visible-light irradiation; photocatalysis

1. Introduction

Nowadays, environmental pollution has become a worldwide problem of high con-
cern, especially in developing countries. Therefore, many technologies have been applied
to deal with this issue, such as chemical oxidation and reduction [1,2], adsorption [3,4],
coagulation [5], extraction [6,7] and biological treatment [8]. However, these technologies
have the disadvantages of secondary pollution and limited application. Therefore, photo-
catalysts have attracted more and more attention because of their utilization of abundant
solar energy, having no need for additional regents, and no production of waste. The g-
C3N4 was turned to be a novel organic semiconductor with excellent visible-light response
because of its suitable band gap (2.7 eV), stable thermal and chemical properties, and low
cost [9]. Generally, both low surface area and separation efficiency of photogenerated
electron-hole pairs can depress the photoactivity of g-C3N4. Hence, various methods have
been carried out to overcome these problems, such as coupling with semiconductors, metal
oxide or polymers [10–15], ion doping [16–19], noble metal deposition [20–23], controlling
morphology [24–26] and loading on carriers [9,27].

Among these methods, porous g-C3N4 has gained increasing attention because of
its large surface area with more active sites, which could facilitate mass transfer ability
and improve its photocatalytic performance. Generally, porous g-C3N4 can be obtained
via soft-templating or silica-templating methods. As for the soft-templating methods, the
carbon left in the products from the template might restrain its photoactivity. The silica-
templating method is another important way to synthesize porous g-C3N4. However, it
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involves the further removal of silica by hydrogen fluoride, which is hazardous and toxic to
the environment. Therefore, it is urgent to synthesize porous g-C3N4 facilely and friendly.

Generally, we use dicyandiamide or urea to synthesize g-C3N4. However, the very
low yield of porous g-C3N4 from urea may limit its practical application. The bulk g-C3N4
with low surface area could be obtained from dicyandiamide, which greatly depresses
its photocatalytic performance. Therefore, we obtain g-C3N4 by dicyandiamide, and use
urea as a nontoxic bubble template, which can produce gas bubbles during the heating
process and then form a porous structure in the target composites. The porous g-C3N4,
synthesized via dicyandiamide and urea as co-precursors, is expected to have enhanced
visible-light-driven photocatalytic performance [28].

In the current work, we gained the porous g-C3N4 by dicyandiamide and urea via the
pyrolysis method. Then, we characterized the structure, morphology and physicochemical
properties of the photocatalysts. Consequently, Rhodamine B was used as the target pollu-
tant to assess its photocatalytic performance. Meanwhile, we studied the photocatalytic
activity under visible light with a different mass ratio of dicyandiamide and urea. Further-
more, we also systematically investigated the improved photocatalytic performance, as
well as the enhancement mechanism according to the above analysis.

2. Results and Discussion
2.1. XRD Analysis

The XRD patterns of Di/Ur composites and g-C3N4 were displayed in Figure 1. All
samples exhibited the typical diffraction peaks at 2θ = 12.8◦ and 27.6◦, which could be
attributed to the interlayer stacking of aromatic systems and the in-plane structure motifs,
respectively. Furthermore, the Di/Ur composites all possessed higher intensities than that
of g-C3N4, and increased as the mass rates of urea and dicyandiamide increased.
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Figure 1. XRD patterns of g-C3N4 and Di/Ur composites.

2.2. SEM Analysis

Figure 2a,b display the morphology and structures of CN and the Di/Ur-4:5 composite,
and it can be seen that the CN possessed bulk structure, which was formed by lamellar struc-
tures stacking with each other. However, the Di/Ur-4:5 composite possessed a loose struc-
ture and pores in its framework, which were beneficial for the photocatalytic performance.
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Figure 2. SEM images of (a,b) g-C3N4 and (c,d) Di/Ur-4:5 composite.

Furthermore, the N2 adsorption–desorption isotherms of g-C3N4 and Di/Ur compos-
ites are shown in Figure 3. The adsorption–desorption isotherms of Di/Ur-4:5 composite
exhibited a type IV curve with a small hysteresis loop, revealing the presence of meso-
porous structure in the Di/Ur-4:5 composite. Then, the pore structure characterization of
g-C3N4 and Di/Ur composites was also conducted, and the parameters were presented
in Table 1. The as-synthesized Di/Ur samples possessed enhanced surface areas and pore
volumes compared with those of CN, improving the adsorption capacity and providing
more active sites for the photodegradation of Rh B [29–31].
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Figure 3. Nitrogen adsorption–desorption isotherms of g-C3N4 and the as-prepared Di/Ur composite.
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Table 1. BET parameters of g-C3N4 and the obtained Di/Ur samples.

Samples BET Surface Area
(m2/g)

Pore Volume
(cm3/g)

Average Pore Diameter
(nm)

CN 17.115 0.038 8.315
Di/Ur-4:2 32.483 0.065 7.490
Di/Ur-4:3 44.694 0.085 7.167
Di/Ur-4:4 46.919 0.096 7.675
Di/Ur-4:5 48.002 0.107 8.220

2.3. XPS Analysis

The chemical bonding between the surface elements was determined. It demonstrated
that the peaks of N 1s, C 1s and O 1s existed in both the Di/Ur-4:5 sample and g-C3N4.
Moreover, the intensity of all spectra in the Di/Ur-4:5 sample was stronger than that of
g-C3N4 (Figure 4a). The high-resolution spectra of O1s spectra (Figure 4b) can be divided
into two peaks. The peaks at 531.6 and 532.8 eV should be attributed to the formation of the
C-O-C species and the surface-adsorbed water, respectively [32]. This result confirmed that
O atoms were bonded with C atoms in the basic structure of the photocatalyst. The C 1s
spectra (Figure 4c) can be separated into four peaks. The peaks at 284.8, 286.3 and 288.2 eV
should arise from the sp2 C-C bonds, C-NH2 species, and the sp2-hybridized carbon in the
N-containing aromatic ring N-C-N, respectively [20]. Moreover, the weak peak at 289.5 eV
also confirmed the creation of a C-O bond [33,34]. The N1s spectra (Figure 4d) exhibited
peaks at 398.7, 400.1 and 404.5 eV, attributing to the pyridinic nitrogen of C=N-C, bridge N
in N-[C]3N3 and π-excitations, respectively [33,35].
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2.4. Photocatalytic Performance

The Rh B was used as the target pollutant to examine the photoactivities under visible-
light irradiation (λ ≥ 420 nm). The results showed that all the Di/Ur composites exhibited
better adsorption performance than g-C3N4 (Figure 5a), and it raised as the mass rate of urea
increased. Generally, the adsorption sites on the surface of the sample increased with higher
specific surface area and larger pore volumes, which enhanced its adsorption performance.
These results corresponded to the BET analysis. Meanwhile, the photocatalytic performance
of the Di/Ur composites were greatly enhanced, compared with g-C3N4, and increased
as the mass rate of urea raised. Moreover, the Di/Ur-4:5 composite possessed the optimal
photoactivities, and the photodegradation rate towards Rh B was almost 100% in 6 h under
visible light. Therefore, we can infer that a porous structure with a greater surface area
could improve mass transfer ability and photocatalytic performance, due to the more
possible photocatalytic reaction sites exposed on its surface [9].
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Figure 5. Photocatalytic degradation (a), and linear transform Ln(C0/C) of the kinetic curves (b), of
RhB under visible light.

To get a deep understanding of the photocatalytic process, the kinetic experiments
for Rh B photodegradation were conducted, and the results are displayed in Figure 5b.
Generally, the pseudo-first order model can best describe the process of photodegrada-
tion [36]. The photoactivities of the obtained samples are as follows: Di/Ur-4:5 > Di/Ur-4:4
> Di/Ur-4:3 > Di/Ur-4:2 > g-C3N4. Meanwhile, it is apparent that all the Di/Ur composites
possessed higher constants k than that of g-C3N4. The Di/Ur-4:5 sample exhibited the
highest reaction rate constant, which was 5.8 times as much as that of g-C3N4. The high
reaction rate constant may be attributed to the rising surface area, as depicted in Table 1.

We also investigated the stability and reusability of the Di/Ur-4:5 sample (Figure 6). It
can be seen that the Di/Ur-4:5 sample showed excellent reusability during the photocat-
alytic reaction, and there was no significant deactivation even after four reaction runs. The
slight descendant in the fourth run was attributed to intermediate poison on the surface of
photocatalysts, which will lower the electron transfer velocity [37].

2.5. Optical Properties

Generally, the optical adsorption properties of the photocatalyst have a great effect
on the photocatalytic performance. The UV-vis optical absorption spectra of the Di/Ur
composites and g-C3N4 are displayed in Figure 7.
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The results showed that the whole samples displayed excellent optical adsorption from
UV light to visible light. The adsorption edge was at around 450 nm, and then extended
to the region near 600 nm, which can be assigned to its smooth cleavage plane. This
indicated that the porous structure may improve the utilization efficiency of visible light
and then enhance its photoactivities (Figure 7a). Furthermore, the band gaps of the Di/Ur
composites and g-C3N4 are presented in Figure 7b. The band gaps of Di/Ur composites
(2.72 eV) were a little larger than that of g-C3N4 (2.67 eV).

To further make clear the behaviors of the photogenerated electron-hole carriers in the
photocatalyst, the photoluminescence spectra were recorded. Herein, we present the PL
spectrum of the Di/Ur-4:5 composite and g-C3N4. In general, PL intensity determined the
recombination efficiency of the photogenerated charge carriers. The lower the PL intensity,
the lower the recombination rate. The PL intensity of the Di/Ur-4:5 composite extremely
decreased compared with that of g-C3N4 (Figure 8). Moreover, the separation efficiency
of the photogenerated electron-hole carriers in the Di/Ur-4:5 composite was significantly
accelerated under visible-light irradiation, which was probably attributed to its porous
structure and the O dopant. This was consistent with the previous literatures [9,27].
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Moreover, the transient photocurrent responses and Nyquist impedance plots (EIS) of
g-C3N4 and Di/Ur-4:5 composite were also investigated to find out the photogenerated
charge separation and electron transfer performance (Figure 9a,b). Notably, the photocur-
rent sharply declined when the light turned off, and then returned to fixed values when
the light turned on. It implied that most photogenerated electrons transferred to the
ITO substrates to generate photocurrent under visible-light irradiation. Furthermore, the
Di/Ur-4:5 composite showed higher photocurrent intensity than that of g-C3N4, suggesting
the higher separation rate of photogenerated charge carriers in the Di/Ur-4:5 composite.
Additionally, the photocurrent can reproducibly increase and recover in every on–off cycle
of irradiation, demonstrating the high stability in practical applications. Meanwhile, the
arc radius of the Di/Ur-4:5 composite was smaller than that of g-C3N4 on the EIS Nyquist
plot, which implied that the porous structure changed its charge distribution and made
charge transfer easier [28]. The efficient separation of the photogenerated electron-hole
pairs may be ascribed to the increased surface area and the enhanced redox potentials,
which improved the trapping opportunities of the charge carriers by Rh B and retarded the
charge carrier recombination due to the reduced spatial overlap [38]. Meanwhile, the O
dopant may modulate the electronic structure and greatly enhance its separation rate [39].
These results are also consistent with our PL analysis.
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2.6. Possible Mechanism

Generally, active species, such as •O2
−, holes and·OH radicals, are generated by

visible-light irradiation and suspected to be involved in the photocatalytic degradation
reaction. To clarify the possible mechanism of the enhanced photoactivity of the Di/Ur-4:5
composite, we used BQ, TBA and EDTA-2Na as scavengers to identify their roles during
its photocatalytic process. The photocatalytic degradation rate of Rh B was almost 100%
without the addition of the scavengers (Figure 10a). When we added BQ and EDTA-2Na,
the photocatalytic performance of Di/Ur-4:5 over Rh B notably declined, which indicated
that •O2

− and holes play a significant role in the photoactivities. However, when we added
TBA, the photocatalytic performance of Rh B slightly depressed, which revealed that •OH
were a minor active species. It was concluded that both •O2

− and holes were major active
species in the photodegradation of Rh B.
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We also used the ESR technique to determine the active species during the photocat-
alytic process. It can be seen that there were no ESR signals of •O2

− and •OH species
with DMPO in the dark (Figure 10b). Then, a significant evolution of ESR signal in DMSO
was observed under visible light, demonstrating the important role of •O2

−. However,
no obvious ESR signal in H2O were observed, indicating the minor contribution of •OH.
There results also corresponded to the radical trapping experiments. Therefore, combined
with the above analysis, it was confirmed that both holes and •O2

− play a significant role
in the photocatalytic process.

Based on the above analysis, the potential electron transfer route and possible mech-
anism of Di/Ur composites (Figure 11) on the photodegradation of Rh B was proposed.
First, the obtained Di/Ur composite can easily absorb visible light because of the porous
structure. Second, electrons (e−) will be transferred from the valence band (VB) to the
conduction band (CB), and then create holes (h+) in the VB. Meanwhile, O dopant, with a
higher surface area and larger pore volumes made the photogenerated electron-hole pairs
more efficient to migrate, which could retard charge carrier recombination rate due to the
reduced spatial overlap, and improve the trapping opportunities of charge carriers by reac-
tants. Then, the adsorbed O2 could react with e− to produce enough •O2

−. Furthermore,
the active sites needed for the adsorption and photocatalytic reaction can also be offered by
the porous structure. In conclusion, the main active radicals •O2

− and the holes generated
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in the photocatalyst can effectively decompose the target pollutant (RhB) into ultimate
products (CO2 and H2O) and other intermediates under visible-light irradiation.
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3. Materials and Methods
3.1. Materials

Dicyandiamide(C2H4N4, AR,98.5%/wt%), rhodamine B (C28H31ClN2O3, AR, 98.5%/wt%),
urea (CH4N2O, AR, 99.0%/wt%), edetate disodium (EDTA-2Na, AR, 99.0%/wt%), benzo-
quinone (BQ, AR, 98.0%/vol%) and tert-butanol (TBA, GR, 99.5%/wt%). Distilled water
was used in all the experiments.

3.2. Preparation of Di/Ur Composites

Firstly, we finely grounded the mixture of dicyandiamide and urea via mortar. Sec-
ondly, the obtained mixture was annealed for 4 h at 550 ◦C. After cooling down to the room
temperature, the yellow powder was finely grounded and then heated at 500 ◦C for 2 h.
Then, we collected the final resulting yellow products for further characterization and pho-
tocatalytic measurements. Finally, according to the different mass rates of dicyandiamide
and urea, we defined the obtained Di/Ur composites as Di/Ur-4:2, Di/Ur-4:3, Di/Ur-4:4
and Di/Ur-4:5, respectively.

Similarly, we gained the g-C3N4 (CN) by dicyandiamide via the pyrolysis method at
the same thermal conditions.

3.3. Characterization

X-ray diffraction (XRD) was recorded on a D8 advance X-ray diffractometer (Bruker,
Billerica, MA, USA) equipped with Cu-Kα radiation (λ = 0.154056 nm) to identify the
crystalline phase of the obtained photocatalysts. The samples were scanned in the range
of 2θ from 10◦ to 80◦ with 0.02◦ step, at a scanning speed of 4◦/min. An S-4800 scanning
electron microscopy (Hitachi, Japan) was applied to investigate the surface morphology of
the samples. The surface area of samples was performed by N2 adsorption at 77 K on a
constant volume adsorption apparatus (JW-BK, JWGB Sci. and Tech., Beijing, China) and
calculated by the Brunaer–Emmett–Teller (BET) method. The photoluminescence spectra
were measured on a Hitachi F-7000 fluorescence spectrophotometer with an excitation
wavelength of 400 nm for all the samples. The optical properties of the as-prepared samples
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were investigated by UV-vis diffuse reflectance spectroscopy (DRS) using a UV-vis spec-
trophotometer (U-3010, Hitachi, Toyko, Japan), where BaSO4 was used as the reference. The
band gap values were calculated by extrapolating the linear part of the plot of (F(R)hν)1/2

versus hν: F(R)hν = A(hν − Eg)2, where F(R) = (1 − R)2/2R stands for the Kubelka–Munk
function calculated from the reflectance spectrum, and hν is the photon energy expressed
in eV. The electron spin resonance (ESR) signals of radical spin trapped by DMPO was at
an ambient temperature on a JEOL (FA-200) spectrometer under visible-light irradiation of
the suspension (0.05 mg/mL photocatalyst, 100 mM DMPO). The settings for ESR measure-
ments were as follows: center field 324.019 mT, microwave frequency 9053.727 MHz, and
power 0.99800 mW. Finally, the photocurrent and electrochemical impedance spectroscopy
(EIS) of g-C3N4 and Di/Ur-4:5 composite were measured in a 0.1 M Na2SO4 aqueous solu-
tion with an electrochemical analyzer (CHI-660B, Shanghai, China). X-ray photoelectron
spectroscopy (XPS) analysis was performed on the photoelectron spectrometer (Thermo
Scientific Escalab 250Xi, Waltham, MA, USA) using monochromatic Al Kα radiation energy
(λ = 1486.6 eV). Binding energies for the high-resolution spectra were calibrated by setting
C 1 s at 284.8 eV.

3.4. Photoactivity Measurements

We used Rh B as a target pollutant to assess the photocatalytic performance of the
as-synthesized samples under a 600 W Xenon lamp with a cut-off filter of 420 nm. First of
all, 0.2 g of the photocatalysts was put into 100 mL of Rh B (10 ppm) aqueous solution and
then magnetically stirred in the dark for 1 h to reach the adsorption–desorption equilibrium.
Sequentially, 3 mL of suspension was collected at a certain time interval and centrifuged to
remove photocatalyst particles for further analysis. Finally, the photodegradation effect
was identified via a UV-vis spectrophotometer. We also used g-C3N4, Di/Ur-4:2, Di/Ur-4:3,
Di/Ur-4:4 and Di/Ur-4:5 as references, and conducted comparative experiments under the
same conditions. In addition, all the experiments were carried out in triplicates.

4. Conclusions

In summary, the porous g-C3N4 was successfully obtained via the pyrolysis method.
The SEM, BET and XPS analyses revealed that the prepared samples possessed porous
structures and O dopants, which not only enhanced light capture capacity but also ac-
celerated mass transfer ability. The visible-light photoactivities of the obtained Di/Ur
composites were greatly enhanced. Moreover, the Di/Ur-4:5 composite possessed the opti-
mal photocatalytic performance towards RhB, which was almost 5.8 times that of g-C3N4.
Meanwhile, it also exhibited exceptional stability and reusability. It was indicated that
•O2

− and holes were the major active species, and the excellent photocatalytic performance
in visible light was attributed to the enhanced separation of photogenerated carriers. The
efficient separation rates may be ascribed to the O dopant and the improved pore struc-
ture, which improved the trapping opportunities of charge carriers by RhB and retarded
the charge carrier recombination. Therefore, this study not only shed light on the facile
construction of porous g-C3N4, but also showed great potential in the fields of the organic
pollutant degradation.
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