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Spatial patterns of marine Synechococcus diversity across ocean domains have been
reported on extensively. However, much less is known of seasonal and multiannual patterns
of change in Synechococcus community composition. Here we report on the genotypic
diversity of Synechococcus populations in the Gulf of Aqaba, Northern Red Sea, over seven
annual cycles of deep mixing and stabile stratification, using ntcA as a phylogenetic marker.
Synechococcus clone libraries were dominated by clade II and XII genotypes and a total
of eight different clades were identified. Inclusion of ntcA sequences from the Global
Ocean Sampling database in our analyses identified members of clade XII from beyond
the Gulf of Aqaba, extending its known distribution. Most of the Synechococcus diversity
was attributed to members of clade II during the spring bloom, while clade III contributed
significantly to diversity during summer stratification. Clade XII diversity was most preva-
lent in fall and winter. Clade abundances were estimated from pyrosequencing of the V6
hypervariable region of 16S rRNA. Members of clade II dominated Synechococcus com-
munities throughout the year, whereas the less frequent genotypes showed a pattern
of seasonal succession. Based on the prevailing nutritional conditions we observed that
clade I members thrive at higher nutrient concentrations during winter mixing. Clades V,
VI and X became apparent during the transition periods between mixing and stratification.
Clade III became prominent during sumeer stratification. We propose that members of
clades V, VI, and X, and clade III are Synechococcus ecotypes that are adapted to inter-
mediate and low nutrient levels respectively. This is the first time that molecular analyses
have correlated population dynamics of Synechococcus genotypes with temporal fluctua-
tions in nutrient regimes. Since these Synechococcus genotypes are routinely observed in
the Gulf of Aqaba we suggest that seasonal fluctuations in nutrient levels create temporal
niches that sustain their coexistence.
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INTRODUCTION
The abundant marine picocyanobacteria Synechococcus and
Prochlorococcus display high genotypic diversity, both among cul-
ture isolates and in natural samples (Ferris and Palenik, 1998;
Moore et al., 1998; Rocap et al., 2002; Fuller et al., 2003; Penno et al.,
2006). Much is known about the spatial and temporal distributions
of Prochlorococcus in its habitat between latitudes 40′N and 40′S
(Moore et al., 1995; Johnson et al., 2006). Although Prochlorococcus
is often more abundant than Synechococcus, its numbers decline
sharply in upwelling systems and basins with deep convective mix-
ing in winter (Lindell and Post,1995; Partensky et al., 1999; Durand
et al., 2001). Prochlorococcus populations span the photic zone and
are found down to 200 m depth (Olson et al., 1990; Veldhuis and
Kraay, 1990; Lindell and Post, 1995; Partensky et al., 1999). The
Prochlorococcus lineage contains six well-defined clades (Moore
et al., 1998; West and Scanlan, 1999; Rocap et al., 2002) with fully

sequenced genomes of representative strains (Kettler et al., 2007)
but novel clades have been reported recently (Martiny et al., 2008;
Kamennaya and Post, in preparation). Genotypes of the high light
(HL) adapted clades I and II and low light (LL) adapted clades I,
II, III, and IV were proposed to represent ecotypes as their distri-
butions often reflect prevalence for certain ocean niches (Johnson
et al., 2006; Zinser et al., 2006; Garczarek et al., 2007).

Synechococcus populations extend into more temperate waters
and they are abundant in the surface mixed layer (approx. 0–50 m)
of stratified water bodies (Lindell and Post, 1995; Partensky et al.,
1999). Synechococcus isolates are surprisingly diverse and their
phylogenies have been studied using 16S rRNA, ITS, rpoC, cpeAB,
narB, and ntcA as molecular markers (Toledo and Palenik, 1997;
Rocap et al., 2002; Fuller et al., 2003; Steglich et al., 2003; Ahlgren
and Rocap, 2006). Synechococcus populations are genetically more
diverse than those of Prochlorococcus and at least 16 clades (I–XVI)
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have been distinguished (Fuller et al., 2003; Ahlgren and Rocap,
2006; Penno et al., 2006). Both 16S and concatenated core genome
phylogenies have identified two main Synechococcus clusters, 5.1a
and 5.1b (Figure 1), representing open ocean and coastal Syne-
chococcus types respectively (Dufresne et al., 2008). These are
rather broad definitions when taking into account that their acces-
sory genomes indicate pronounced differences in their ability to
respond to environmental cues (Scanlan et al., 2009). Quantita-
tive approaches employing clade-specific oligonucleotides have
shown that clade II Synechococcus is the dominant genotype in
the northern Red Sea and the Arabian Sea (Fuller et al., 2005,
2006a) and among culture isolates from both those environments
(Fuller et al., 2003). The first hints that Synechococcus clades cor-
respond to ecotypes were observed in the Arabian Sea with clade II
genotypes dominating in central and northern parts, and clade III
more abundant at more southern sites along the transect (Fuller
et al., 2006a). Genotypes belonging to either clade V, VI, or VII
were found to dominate Synechococcus populations in upwelling
regions (Fuller et al., 2006a), suggesting that their distribution is
a reflection of high nutrient availability at such locations. Subse-
quently, dot blot and FISH analyses along a transect in the Atlantic
Ocean indicated that distributions of Synechococcus clades are
remarkably similar for corresponding regions in the Northern
and Southern hemispheres (Zwirglmaier et al., 2007). A com-
plementary study identified the global distribution patterns for
Synechococcus clades I–VII (Zwirglmaier et al., 2008). Both studies
concluded that Synechococcus communities do not change signif-
icantly with depth – as seen in Prochlorococcus – but rather on a
horizontal scale. The highest abundances of clades I and IV are in
coastal and temperate mesotrophic waters (above 30′N or below
30′S) whereas clade II dominates oligotrophic (sub)tropical off-
shore waters and clade III the oligotrophic open ocean waters.
Clade V, VI, and VII genotypes (studied as single group in dot blot
hybridizations) were detected in low abundance and their func-
tional diversity is still poorly understood (Zwirglmaier et al., 2008).

Current concepts of picocyanobacterial distribution are largely
shaped by the spatial dimensions of Synechococcus niches; tem-
poral aspects of their distributions have received little attention.
Succession among Synechococcus genotypes was described for
coastal waters off California where for three consecutive years
members of clades II and III were prominent in the months leading
to the Synechococcus spring bloom while clades I and IV domi-
nated the bloom itself (Tai and Palenik, 2009). The oligotrophic
Gulf of Aqaba, Northern Red Sea is subject to dramatic annual
alternation between deep winter mixing and summer stratifica-
tion (Wolf-Vecht et al., 1992; Genin et al., 1995). Synechococcus
and Prochlorococcus numbers change over 3–4 orders of magni-
tude during the seasonal cycle (Lindell and Post, 1995), but little is
known of how this reflects on the genotypic composition of pic-
ocyanobacterial communities. We have previously employed the
nitrogen regulatory gene ntcA as a molecular marker for phyloge-
netic studies of cyanobacteria (Lindell et al., 2005; Penno et al.,
2006). This approach specifically targets cyanobacteria, distin-
guishes individual clades with a high resolution and led to the
identification of 4 novel Synechococcus clades (Penno et al., 2006),
in addition to the 10 known clades (Rocap et al., 2002; Fuller
et al., 2003). Here we report on a seasonal succession among

Synechococcus genotypes following a deep mixing event in the Gulf
of Aqaba. Based on correlations between hydrographic/nutritional
conditions and genotype abundance we assign trophic ecotypes to
a number of Synechococcus clades.

MATERIALS AND METHODS
SAMPLING PROCEDURES
Seawater was collected monthly at discrete depths along a 730-m
deep water column at station A (29˚28′N, 34˚55′E), a sampling
site in the open waters of the Gulf of Aqaba, northern Red Sea.
Sampling was mostly performed in conjunction with activities for
larger monitoring programs like the “Gulf of Aqaba Peace Park”
Project (1999–2002) and the National Monitoring Program (NMP,
Israel; 2003–2006) for the entire research period from March 2000
to May 2006. A CTD-Rosette sampler equipped with 12 L Teflon-
coated GO-FLO bottles (General Oceanics, Inc., Miami, USA) was
used to obtain water samples while simultaneously recording pro-
files of chlorophyll a, salinity and temperature with depth (Seacat
SBE19, Seabird electronics, Inc.). Light intensity and chlorophyll
a fluorescence profiles were obtained with a LI-COR light sensor
(LI-192SA) and a Seapoint Sensors fluorometer mounted on the
CTD-Rosette. For DNA analyses 5–20 L samples were passed over
a 20-μm mesh and stored at 4˚C in darkness. Samples were filtered
within 24 h onto 0.2 (16S pyrosequencing) or 0.45 μm (ntcA PCR)
phenol-soluble polysulfone filters (Gelman Supor-450, ∅ 47 mm)
under gentle vacuum (<15 mm Hg). The filters were then placed
in 4 mL DNA extraction buffer (750 mM sucrose, 400 mM NaCl,
20 mM EDTA, 50 mM Tris–HCl, pH 9), quickly frozen in LN2 and
stored at −20˚C. For cell counts duplicate 1.5 mL samples were
fixed with 0.2% paraformaldehyde (pH 8.0) for 20 min at room
temperature in the dark, frozen in LN2 and stored at −80˚C.

DETERMINATION OF NUTRIENTS AND BACTERIAL CELL NUMBERS
Concentrations of nitrate, nitrite, and phosphate in seawater sam-
ples were determined using a flow injection autoanalyzer (FIA,
Lachat Instrument Model Quickchem 8000) and are available from
the NMP (www.iui-eilat.ac.il/NMP). Ammonium concentrations
were measured using a fluorometric method using a modified pro-
tocol based on Holmes et al. (1999). Synechococcus cell numbers
were determined with a FACScan flow cytometer (Beckton Dick-
enson) with 15 mW neon-argon laser excitation at 488 nm (Marie
et al., 1999).

DNA EXTRACTION AND PCR AMPLIFICATION
Samples were thawed on ice and DNA was extracted using phenol–
chloroform followed by isopropanol–ammonium acetate precip-
itation according to Penno et al. (2006). Up to 50 ng of genomic
DNA was used in PCR amplification of ntcA as described in Lindell
et al. (1998) using 20 μM of the cyanobacteria-specific, degenerate
primer pairs 1F and 4R or 1AF and 4AR in the ratio of 1:1 or 3:1,
respectively (see Lindell et al., 1998). These primers anneal to con-
served regions of the ntcA gene and amplify a 449-bp fragment.
PCR reactions were performed using a PTC-200 thermal cycler
(MJ Research, Inc.) with an initial denaturation of 4 min at 94˚C
followed by 35–40 cycles of 1 min at 94˚C, 1 min at 50–55˚C, 1 min
at 72˚C, and finally a 5-min extension period at 72˚C.
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ntcA CLONE LIBRARIES AND SEQUENCE ANALYSES
For ntcA clone libraries agarose gel extraction (QIAquick gel
extraction kit, Qiagen) was used to purify the 449-bp PCR
products, which were cloned into a pGEM-T vector (Promega).
Clones were transformed into competent E. coli strain DH5α

cells following standard procedures and plated on ampicillin, X-
Gal/IPTG selective LB plates for blue/white selection. The ntcA
clone libraries were screened for Synechococcus sequences by Pst I
digestion (1 h at 37˚C) of purified plasmids (Miniprep, Qiagen;
Penno et al., 2006). In some instances clones were inspected by
nested PCR using Synechococcus specific primers G15/16F and
SR50 (Lindell and Post, 2001). At least 200 ng purified plasmid
DNA (Miniprep, Qiagen) or 50 ng purified PCR product was used
for sequence reactions using the BigDye Terminator cycle sequenc-
ing chemistry (Applied Biosystems) and analyzed on an ABI 3700
instrument at the Genome Services Center at the Hebrew Uni-
versity Jerusalem. Resulting sequences were compared to NCBI
GenBank using BLASTN or BLASTX. The Synechococcus ntcA
sequences were deposited in NCBI GenBank with accession num-
bers DQ204774–DQ204834, DQ204836, DQ204838, DQ204839,
DQ204841–DQ204868.

PHYLOGENETIC ANALYSES
Sequences were aligned using ClustalW and ClustalW2 (EMBL-
EBI, BioEdit version 5.0.9, Hall, 1999) and MUSCLE (Edgar,
2004); the Bayesian tree was generated with MrBayes 3.1 (Huelsen-
beck and Ronquist, 2001) and the maximum likelihood tree with
RAxML 7.2.8 (Stamatakis, 2006) using the general time reversible
model and rate variation modeled using a gamma distribution
(“nst = 6 rates = gamma for MrBayes”; “-m GTRGAMMA” for
RaxML); model parameters for codon third positions were esti-
mated independently of codon first and second positions (“unlink
revmat statefreq shape” for MrBAyes; “-q” for RAxML). For
MrBayes, two independent runs of 4 chains each were run for
2 million generations and sampled every 100 generations; com-
parison of the parameter estimates from the two runs indicated
convergence (Gelman and Rubin, 1992). The first hundred thou-
sand trees were discarded as burn in before generating the consen-
sus tree. For RAxML, the best tree was chosen from 100 iterations
of both maximum parsimony and random starting trees, using
an empirically determined initial rearrangement setting of 10; the
results of 1000 bootstrap iterations were superimposed on the
best tree.

PYROSEQUENCING
Environmental DNA (30 ng) from monthly samples taken during
the 2006–2007 annual cycle were templates for PCR with eubacter-
ial primers that target the flanking regions of the V6-hypervariable
region of the small subunit 16S rRNA; the resulting amplicons were
sequenced on a Roche GS FLX as previously described (Huber
et al., 2007). After removing low-quality reads (Huse et al., 2007),
each sequence was assigned taxonomy based on comparison to the
SILVA reference database of bacterial 16S sequences (Huse et al.,
2008). Sequences with their abundances and taxonomic identifica-
tion are available for each sample at http://vamps.mbl.edu under
the project “ICM_GOA.”

RESULTS
ntcA PHYLOGENY
We retrieved over 60 full-length ntcA accessions from cyanobac-
terial strains from NCBI GenBank to construct Bayesian and
maximum likelihood gene trees (Figure 1). The two meth-
ods yielded near-identical tree topologies, which served as the
backbone structure for clade assignment of our environmental
sequences (see below). Marine Synechococcus and Prochlorococcus
formed a monophyletic lineage with the Synechococcus euryhaline
strain WH5701 (sub-cluster 5.2) and marine strain RCC307 (sub-
cluster 5.3) basal to other picocyanobacteria. Most Prochlorococ-
cus ntcA sequences formed a lineage distinct from Synechococcus
sub-clusters although LL adapted strains MIT9313 and MIT9303
(Prochlorococcus clade LL IV) were found in Synechococcus sub-
cluster 5.1b, a recurring observation in phylogenies of both ntcA
(Lindell et al., 2005; Penno et al., 2006) and the urea transport gene
urtA (Kamennaya et al., 2008).

Synechococcus clades V, VI, VII, VIII, and IX, and clades II, III,
and IV were members of sub-clusters 5.1a and 5.1b, respectively,
consistent with trees based on 16S rRNA and on concatenated
alignments of >1000 genes in the Synechococcus core genome
(Dufresne et al., 2008). We included novel Synechococcus clades XI,
XII, XIII, and XIV – identified in ntcA phylogenies of environmen-
tal sequences from the Gulf of Aqaba (Penno et al., 2006) – in our
analysis and representative sequences for each clade are presented
in Figure 1. We found that clades XI, XII, and XIV are members of
sub-cluster 5.1a and thus are likely open ocean ecotypes, whereas
clade XIII is a member of sub-cluster 5.1b and is thus likely a
coastal ecotypes (Dufresne et al., 2008). Lastly, we searched the
Global Ocean Sampling (GOS) database for ntcA sequences using
BLASTN with environmental Gulf of Aqaba sequences from clades
XI, XII, XIII, and XIV as queries. We found 11 (nearly) full-length
ntcA sequences; we could assign eight sequences to clades II, III, or
VIII of sub-clusters 5.1a or b and one clustered to sub-cluster 5.3
(Figure 1). The remaining two GOS sequences were loosely affil-
iated with clade XII and shared 81–83% identity with clade XII
clones from the Gulf of Aqaba.

ENVIRONMENTAL SYNECHOCOCCUS ntcA SEQUENCES
Following the cyanobacterial diversity studies at sampling station
A in the Gulf of Aqaba in 1998–2000 (Fuller et al., 2003, 2005;
Lindell et al., 2005; Penno et al., 2006), we re-sampled this site
over six consecutive years with a focus on succession patterns
in surface waters (0–20 m) following the annual Synechococcus
spring bloom. We obtained a total of 354 unique sequences of
Synechococcus ntcA, primarily from samples collected at 20 m
depth (Table 1). In a previous study we showed that 16S and
ntcA phylogenies yield identical branching patterns and resolved
ntcA genotype clusters (clades) at a threshold of 85% nucleotide
identity (Penno et al., 2006). Using this criterion, all but two
environmental sequences were assigned as members of known
Synechococcus clades (Table 1). We identified eight different Syne-
chococcus clades, four of which (clades I, II, III and sub-cluster
5.3) are represented by culture strains in the databases. Four
additional clades observed in the Gulf of Aqaba (XI, XII, XIII,
and XIV) still lack culture representatives. Sequences 00A100 and
02A47 are most closely related to sub-cluster 5.3 but shared only

www.frontiersin.org June 2011 | Volume 2 | Article 131 | 3

www.frontiersin.org
http://www.frontiersin.org/aquatic_microbiology/archive


Post et al. Seasonal dynamics of Synechococcus genotypes

FIGURE 1 | A gene tree of full-length ntcA sequences retrieved

from GenBank, including representative strains of all known

Synechococcus (red, clades marked with Roman numbers) and

Prochlorococcus clusters (green). All other cyanobacteria ntcA are
indicated in blue. Numbers at nodes denote bootstrap support (RAxML,
italics) and posterior probability (MrBayes, bold). Environmental sequences

from the Gulf of Aqaba (format xxAyy, in which xx is year, A denotes
station A in open waters and yy denotes clone number) were used to
represent clusters for which no culture isolates are available. Sequences
identified by their ACCY prefix were retrieved from the Global Ocean Survey
(GOS) database using Synechococcus NtcA sequences as query in blastn
searches.

78–79% identity with members of that group. The rarefaction
analysis indicated that sampling of Synechococcus diversity was
nearly saturated at the clade level (Figure 2). The bulk of envi-
ronmental sequences (>96%) obtained during this 7 year study
belonged to Synechococcus subgroup 5.1a. Most abundant were
members of clade II (57%) and clade XII (22%). Members of
sub-clusters 5.1b and 5.3 (clade X) were detected but at much
lower frequencies (<4%).

TEMPORAL DISTRIBUTION OF SYNECHOCOCCUS GENOTYPES
Members of the two main Synechococcus sub-clusters, 5.1a and
5.1b, have been distinguished by their numerical dominance in
different habitats, dominating in open ocean (specialist) and
coastal (opportunist) environments, respectively (Dufresne et al.,
2008). In this study we investigated whether members of different
clades may represent different ecotypes adapted to specific light-
nutrient combinations. The Gulf of Aqaba is subject to an annual
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Table 1 | Overview of all unique ntcA sequences and their affiliation with different Synechococcus clades.

Date Depth (m) # Clones Synechococcus clusters/clades

Cluster 5.1a 5.1b 5.3

II III XI XII XIV I XIII X n.c.

Spring season total in % 74.4 3.4 6.4 10.3 0.9 1.7 0.9 0.4 –

30/4/2000 20 29 8 – 15 3 – 3 – – –

22/4/2001 20 43 36 – – 4 2 – 1 – –

13/4/2003 20 28 28 – – – – – – – –

29/4/2003 20 16 16 – – – – – – – –

02/5/2004 20 25 24 – – 1 – – – – –

09/4/2005 20 30 26 – – 3 – – – 1 –

03/4/2006 20 28 21 2 – 5 – – – – –

09/5/2006 20 29 15 6 – 8 – – – – –

30/4/2000 70 2 – – – – – 1 1 – –

Summer season total in % 30 25 2 40 – – – – 1.7

13/8/2000 20 15 4 7 1 3 – – – – –

11/9/2000 20 17 1 – – 16 – – – – –

22/7/2002 20 20 10 5 1 4 – – – – –

16/8/2004 20 4 2 2 – – – – – – –

13/8/2000 60 3 1 1 – – – – – – 1

18/9/2006 100 1 – – – 1 – – – – –

Winter season total in % 17.2 10.9 10.9 48.4 7.8 – 3.1 – 1.6

12/3/2000 20 29 – – 6 23 – – – – –

04/3/2001 20 3 – – – 1 1 – 1 – –

15/11/2002 20 22 3 5 1 7 4 – 1 – 1

19/11/2006 125 10 8 2 – – – – – – –

Sequences are sorted for season, year, and depth. Top rows for each season summarize the percentage contribution of clade members to overall Synechococcus

diversity. Data in bold indicate clades for which there was a distinct seasonal change in their contribution to overall Synechococcus diversity. –, not detected; n.c., not

classified.

FIGURE 2 | Cluster analysis of all 354 environmental ntcA sequences

from the Gulf of Aqaba using Analytic Rarefaction 1.3 Software

(Holland, 2003, http://www.uga.edu/strata/software/). The dotted lines
show the upper and lower 95% confidence limits. Sequences were
analyzed as a 15% threshold in accordance with the definition of genotype
clusters in Penno et al. (2006).

deep mixing event in winter, accompanied by nutrient injection
into surface layers. Deep mixing starts in October and reaches
maximal depths in late February/March (Figure 3A). Nutrients,
such as nitrate, nitrite, ammonium (Figure 3B), and phosphate
(not shown) at 20 m depth reach maximal concentrations during
the same period, while the increase in chlorophyll a concentra-
tions and Synechococcus cell numbers follow with a 2 to 4-week
delay (Figure 3C). Nitrate and phosphate concentrations at 20 m
depth showed a positive correlation with mixing depth (Figure 4)
with R2 values of 0.650 and 0.576, respectively. Nitrate and phos-
phate were present in the mixed layer at an approximate ratio of
9:1. Substantial nitrite concentrations in the mixed layer at these
times support an inorganic N:P ratio approaching 16:1 (Mackey
et al., Submitted). Deep mixing events were followed by distinct
Synechococcus spring blooms (Lindell and Post, 1995) after which
their abundance steadily dropped in the nutrient-deplete, stratified
summer waters (Figure 3C).

Previously we found that the most abundant Synechococcus
clade in the Gulf of Aqaba was clade II (Fuller et al., 2003). In the
present study, spanning 7 years, we found annual trends of change
in the genotypic composition of Synechococcus populations, in
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FIGURE 3 | Overview of (A) mixing depth, (B) nitrite, nitrate, and ammonium concentrations at 20 m depth and (C) chlorophyll a concentrations and

Synechococcus cell numbers at 20 m depth at sampling station A in open waters of the Gulf of Aqaba between 2000 and 2006.

good correlation with macronutrient availability. Table 1 sum-
marizes the total clone numbers for different seasons and their
assignment to different clades. Members of novel clades XI–XIV
were mostly observed in winter and spring of years with truly deep
mixing (>500 m) and high nutrient levels (Table 2). Synechococ-
cus diversity in spring (immediately following the deep mixing
event) was mostly contributed by members of clade II. In years
when mixing is only moderate (<400 m in 2003 and 2004) this
dominance is encompassing, while additional clades contributed
significantly to the diversity (14–72%) in other years. This suggests
that the extent (depth and duration) of mixing events is a signif-
icant factor in shaping the Synechococcus diversity in the Gulf of
Aqaba. The number of unique clade II sequences averaged 23 ± 8
in spring; this number fell below 10 during summer and winter.

Clade III members were more prominent during late spring and
summer.

We summed the contributions of the individual clades to
arrive at a trend in seasonal change of Synechococcus diver-
sity (Table 1). More than 95% of the diversity was contributed
by clades within sub-cluster 5.1a. Of these, clade II made up
74.4% of the Synechococcus diversity during the spring bloom, but
fewer clade members were identified in other seasons and their
contribution to Synechococcus diversity fell to 17.2% in winter.
Clade III genotypes were observed from April through November,
but they were lacking from winter (December–March) samples
(Table 1). This clade contributed 25% of the diversity in summer.
The last clade that featured dominantly in Synechococcus diver-
sity was clade XII. Although it contributed only 10% during the
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FIGURE 4 | Surface mixed layer concentrations (sampled at 20 m) of

nitrate (A) and phosphate (B) as function of mixing depth at sampling

station A between 2000 and 2006. Line indicates the curve resulting

from linear regression analysis.

spring bloom this number rose to 40–48% in summer and win-
ter. Together these findings indicate that Synechococcus diversity
in the Gulf of Aqaba is subject to a seasonal pattern and possi-
bly that members of clade II, III, and XII occupy temporal niches
that select for the ecotypes contained in these clusters. We stud-
ied quantitative changes in Synechococcus populations as part of
a deep sequencing effort of microbial community structures over
the 2006–2007 annual cycle.

PYROSEQUENCING OF THE V6 HYPERVARIABLE REGION OF 16S rRNA
In order to confirm some of the trends evident in the ntcA data we
quantified the contribution of various Synechococcus clades over
the 2006–2007 annual cycle using massively parallel tag sequencing
analysis of microbial community samples (Sogin et al., 2006). A
total of 516,181 sequences spanning the V6 hypervariable region
of the bacterial 16S gene were obtained from monthly samples
(5–20 m depth). Of these, 45,844 were identified (Huse et al.,
2008) as cyanobacterial with 28,798 tags assigned to Prochlorococ-
cus and 17,046 to Synechococcus. To improve taxonomic resolution
we inspected the V6 region of representative Synechococcus strains
for which genome sequences are available. Genome analysis clas-
sified these strains as representing open ocean or coastal habitats
(Dufresne et al., 2008). An alignment showed nucleotide differ-
ences at multiple positions among the majority of these strains
in the V6 region (Figure 5). Seven Synechococcus groups can be
distinguished based on two or more nucleotide differences from
the other sequences (Figure 6): clade I, clade II, clades III/IV (the
V6 region is identical in cultured isolates of these two clades),

Table 2 | Representation of Synechococcus genotypes in ntcA clone libraries with + low, ++ intermediate, and +++ high frequency occurrence

in their season of prevalence (Sp, spring; Su, summer;Wi, winter).

Cluster Clade Representative strains Occurrence Inorganic N μM SRP μM Chl a μg L−1

5.1a II CC9605 +++ <0.55 <0.05 <0.47

WH8109 Sp

RS9902

III WH8102 ++ <0.20 <0.05 <0.43

RS9905 Su

CC9902

XIII – ++ <1.50 <0.11 <0.73

Wi

5.1b I CC9311 + <0.73 <0.02 <0.73

WH8020 Sp

XI – ++ <1.47 <0.09 <0.47

Wi

XII – +++ <1.87 <0.10 <0.47

Wi

XIV – + <1.03 <0.11 <0.35

Wi

5.3 X RCC307 + <0.54 <0.03 <0.24

Sp

Concentration maxima of inorganic N (NH+
4 + NO−

3 + NO−
2 ), phosphate (SRP) and total Chl a are summarized from all sampling dates a certain clade occurred. –,

culture isolate lacking.
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FIGURE 5 | Alignment of the 60 nucleotide V6 hypervariable region (position 904–963 in strain CC9902) of the small subunit (16S) ribosomal rRNA

gene in 11 marine/estuarine Synechococcus genomes. Nucleotide identities are indicated with “*”.

FIGURE 6 | Identity matrix (bottom half) and nucleotide difference of 60 nucleotideV6 hypervariable region of the small subunit (16S) ribosomal rRNA

gene in 11 marine/estuarine Synechococcus genomes. Strain CC9902 was taken as the basis for nucleotide identity calculations. ID, identical.

clade V/VI (differ by a single nucleotide), clade X and the estuarine
strain WH5701. Comparing the Synechococcus V6 tags against the
NCBI refseq_genomic database using blastn resolved five different
Synechococcus groups by sequence similarity: clades I, II, III/IV,
V/VI, and X (Figure 6). As with the ntcA clone libraries, none
of the V6 sequences could be assigned to clade IX or clade VIII,
although both clades are defined based on isolates from the Gulf
of Aqaba. Total Synechococcus V6 tag abundances closely mimic-
ked actual Synechococcus population dynamics over the seasonal
cycle (Lindell and Post, 1995; Penno et al., 2006). Consistent with
the ntcA results, clade II-like V6 tags dominated the Synechococcus
population throughout the 2006–2007 period. Clade III/IV tags
were more pronounced during the summer months (12 ± 4% of
total as compared to 3 ± 1% in winter), though at abundances an
order of a magnitude lower than clade II-like V6 tags (Figure 7).
Our results indicated that clades with low tag abundances engaged
in a seasonal succession. Clade I-like V6 tags were observed only
during the winter mixing, together with clade V and clade X-like
tags. The latter two groups preceded the rise of clade I-like tags
during the transition phase from nutrient-deplete to nutrient-
rich waters. They also persisted through the transition phase from
nutrient-rich to nutrient-deplete waters in the stably stratified Gulf
of Aqaba that eventually lead to a more prominent presence of
clade III/IV-like tags.

DISCUSSION
In this study we followed the seasonal change among Synechococcus
genotypes over a 7-year period in the Gulf of Aqaba. We observed

a high diversity involving members of eight different clades. We
show that the genotypes contained in the various clades likely
represent ecotypes, each selected for under a different set of envi-
ronmental conditions. Three low abundance ecotypes engage in
a seasonal succession following annual deep mixing events. The
seasonal succession of ecotypes underscores the year-round dom-
inance of Synechococcus at 104–105 cells mL−1 in the surface waters
of the Gulf of Aqaba. This dominance contrasts with the popula-
tion dynamics of Prochlorococcus that fluctuate between 105 cells
mL−1 in summer and 102 cells mL−1 in winter in the same waters
(Lindell and Post, 1995).

SYNECHOCOCCUS DIVERSITY
Synechococcus ntcA sequences from the Gulf of Aqaba were clus-
tered at the 15% difference level, forming eight clusters, each cor-
responding to a previously recognized clade. Rarefaction analysis
suggests that the diversity of 15% clusters was essentially com-
pletely sampled, although additional clades (V, VII, VIII, and IX)
have been reported from the Gulf in previous studies using ntcA
(Fuller et al., 2003; Lindell et al., 2005). These clades were proba-
bly present as low abundance genotypes during 2000 to 2006 and
therefore not detected with our PCR protocols. High throughput
sequencing of 16S V6 tags yielded low abundant sequences similar
to RCC307 (clade X) and WH7803 (clade V) genotypes, but not
clades VII, VIII, and IX. Altogether the Synechococcus diversity in
the Gulf of Aqaba is among the highest reported with members of
12–13 clades (out of a total of 16) identified. In comparison, stud-
ies of the California Current (Tai and Palenik, 2009), Sargasso Sea
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FIGURE 7 |V6 tag abundance of Synechococcus ecotypes in surface layer

samples (20 m) in the Gulf of Aqaba along a seasonal cycle in 2006–2007.

Data labels indicate the actual V6 tag abundance of each clade for individual

samples and the total V6 tag abundance (purple) is the sum of these numbers.
Color codes for the various clades are identical to those of their “type” strains
for which V6 sequence identities were inspected (see Figure 6).

(Ahlgren and Rocap, 2006) and Arabian Sea (Fuller et al., 2006b)
identified 6–8 Synechococcus clades. The diversity in the Gulf of
Aqaba is in part contributed by novel clades XI through XIV. Mem-
bers of these clades are frequently observed in the Gulf, but have
not been reported from other locations (with the exception of
clade XII, for which we identified sequences entries in the GOS
database). Clades XI, XIII, and XIV have to date been reported
only from the Gulf of Aqaba. Massively parallel V6 tag sequenc-
ing resolved fewer clades than the ntcA amplicons libraries. It was
previously shown that clade IV strains BL107 and CC9902 have
identical 16S sequences (Dufresne et al., 2008; Scanlan et al., 2009).
Here we show that clades III and IV cannot be distinguished by
their V6 sequences, nor can clades V and VI. Our ntcA phylogeny
(Figure 1) indicates that novel clade XIII is closely related to clades
V and VI, while clades XII and XIV are closely related to clade II.
Therefore, tags identified in our V6 database as clade II and clades
V +VI may actually include members of these novel clades. Since
we showed here that, e.g., clade XII contributes to seasonal dynam-
ics, it is clear that seasonal patterns cannot be fully resolved from
V6 tag analyses.

SYNECHOCOCCUS DISTRIBUTIONS
Previous publications have correlated Synechococcus abundance
and diversity to its occurrence in different habitats. Highest abun-
dances are found in upwelling and deep mixing regimes as well
as over continental shelves (Olson et al., 1990; Lindell and Post,
1995; Moore et al., 1995; Durand et al., 2001; Zwirglmaier et al.,
2007), which are nutrient-rich environments in comparison to the
oligotrophic ocean gyres dominated by Prochlorococcus (Parten-
sky et al., 1999; Johnson et al., 2006). Comparative genome studies
divided marine Synechococcus into specialist or open ocean types
versus an opportunist or coastal types (Dufresne et al., 2008; Scan-
lan et al., 2009). In contrast, field studies defined geographical

domains for different Synechococcus genotypes, correlating their
relative abundance to temperature. Members of clades II and III
are more dominant in warm (sub)tropical waters while clades
I and IV dominate in polar and temperate waters, respectively
(Zwirglmaier et al., 2007). At a global scale genotypes V and
VII are widely distributed albeit at moderate to low abundance
(Zwirglmaier et al., 2007, 2008). However, it is not clear how well
these habitats are defined. For example, clade I Synechococcus has
been observed in the warm open waters of the Arabian Sea (Fuller
et al., 2006b) and Red Sea (Penno et al., 2006); it dominates Syne-
chococcus communities in temperate waters of Monterey Bay (Post
and Zehr, unpublished results) and the New England Shelf (Post
and Hunter-Cevera, unpublished results). Clade I Synechococcus
was a feature in deeply mixed winter waters of the Gulf of Aqaba
(Table 1; Figure 7). In our analyses, members of clades II, III,
XI, and XIII dominated the community with lesser contribu-
tions of clades I and XIV. Typical coastal Synechococcus clades
V–IX were either absent or a minor component of our exten-
sive datasets for ntcA and V6. Despite its proximity to land, the
Gulf of Aqaba thus has the characteristics of open ocean waters.
Although this characterization has been made previously based on
hydrographic arguments (Lindell and Post, 1995) this is the first
time these water masses are classified through diversity analyses.
We note that the distinction of open ocean and coastal ecotypes
refers to their geographical distribution and not to their ecological
physiology. Changes in diversity and abundance of the various
clades in the Gulf of Aqaba (Penno et al., 2006) correlated with
changes in the N status of the Synechococcus community in dif-
ferent seasons (Lindell and Post, 2001; Lindell et al., 2005). We
suggest that clades contained in sub-clusters 5.1a and 5.1b rep-
resent ecotypes that differ in their nutrient requirements; clades
contained in sub-cluster 5.1a are more typical of nutrient poor
waters, while those of sub-cluster 5.1b are found in waters with
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higher nutrient availability. Seasonal fluctuations in nutrient avail-
ability in the Gulf of Aqaba create temporal niches that sustain
the coexistence of clade representatives of both sub-clusters in
the same water body. Temporal variation of Synechococcus clades
has also been reported for a Pacific coastal site (Tai and Palenik,
2009). The variation at this location involved clade I and IV geno-
types mostly, with minor contributions of clades II and III (Tai
and Palenik, 2009). Although clade II-like V6 tags were dominant
in the Gulf of Aqaba throughout the year, a number of Syne-
chococcus clades participated in a seasonal succession, following
the annual deep mixing event. Analysis of our V6 data indicated
that this succession involves three major groups: clade I-like Syne-
chococcus during deep winter mixing, clade III-like during summer
stratification and clade V + X-like during the transition periods.
Naturally, longer, smaller ntcA amplicon libraries yield a higher
phylogenetic (Penno et al., 2006) but lower quantitative resolu-
tion than shorter, larger 16S rRNA libraries. Notwithstanding the
fact that seasonal patterns of ntcA clades were more complex, a
pattern consistent with that of the V6 tags emerged (Figure 5):
a dominance of clade II and a presence of clade I during the
spring bloom, while during summer clade III becomes more dom-
inant. Interestingly, novel clade XII is also a major contributor to
this seasonal succession and it becomes prominent in summer
along with its close relative clade III (see Figure 1; Table 1). Since
the Gulf of Aqaba has relatively small variations in light (1700–
2000 μmol quanta m−2 s−1) and temperature (21–26˚C) over the
annual cycle, successions among Synechococcus groups may thus
be more closely correlated with nutrient availability (Lindell and
Post, 1995; Post et al., 2002). We propose that the low abundance
Synechococcus clades represent ecotypes that track seasonal trophic
gradients in the Gulf of Aqaba and engage in a seasonal succession.

SYNECHOCOCCUS ECOTYPE SUCCESSION
In accordance with the nutrient regimes at diverse locations, clade I
is typical of eutrophic waters in more temperate climate zones
and clades III–IV are typical of oligotrophic ocean waters (Fuller
et al., 2006b; Zwirglmaier et al., 2007, 2008; Tai and Palenik,
2009). Clades V–VII are commonly found over continental shelves,
environments with dynamic changes in nutrient and light sup-
ply (Fuller et al., 2006b; Zwirglmaier et al., 2007, 2008; Tai and
Palenik, 2009), often mesotrophic conditions. Clade II is found in
most (sub)tropical marine waters across a broad range of nutri-
ent concentrations (Fuller et al., 2003, 2005, 2006b; Lindell et al.,
2005; Penno et al., 2006; Zwirglmaier et al., 2007, 2008; Tai and
Palenik, 2009). Nevertheless these ecotypes are all present in open
waters of the Gulf of Aqaba. With inorganic N and P concen-
trations of <3 and <0.2 μM, chlorophyll a at <1 μg L−1 and
1% light depth at 80–90 m (Lindell and Post, 1995; Lindell et al.,
2005; Penno et al., 2006) the Gulf is oligotrophic by any standard.
Still, hydrographic conditions cause distinct nutrient regimes that
form a threshold for the occurrence of some of these ecotypes.
During the spring bloom in the Gulf of Aqaba Synechococcus
abundances often exceed 105 cells mL−1 (Lindell and Post, 1995;
Penno et al., 2006) and members of clade II contribute the bulk of
the population (Fuller et al., 2003; Penno et al., 2006), indicating
they outcompete the ecotypes that are prevalent during either
winter mixing or summer stratification. Of these ecotypes clade I

is observed when nutrient concentrations are highest, clades V,
VI, and X during transition periods with intermediate nutri-
ent levels and clade III becomes more prevalent during periods
of nutrient depletion. These detailed observations over a mul-
tiannual period are consistent with earlier studies that spanned
a single seasonal cycle (Fuller et al., 2003; Lindell et al., 2005;
Penno et al., 2006). Little can be said about the other presumed
ecotypes since there are no cultured isolates available and the nutri-
ent physiology of clade X strain RCC307 has been little studied.
Clades XI, XIII, and XIV were observed in deeply mixed water
masses with higher nutrient concentrations than those observed
during times when clade I was present. Clade XII was found in
relatively high numbers throughout the seasons. Although more
study is required here, its abundance pattern mirrored that of
clade II. Clade XII genotypes are closely related to clades II and III
(Figure 1) and they seem to form an intermediate ecotype between
the two.

Ecotype characterizations have been made from genome com-
parisons (Palenik et al., 2003; Dufresne et al., 2008; Scanlan et al.,
2009). For example, clade III Synechococcus are specialists that
occupy oligotrophic niches enabled by their pigment comple-
ment (Palenik, 2001), their phosphate scavenging potential and the
broad array of N sources they can assimilate (Scanlan et al., 2009).
In contrast, the true chromatic adapter CC9311 (clade I) lacks P
regulatory and P adaptive genes and contains extra gene copies for
ammonium assimilation (Scanlan et al., 2009), consistent with the
fluctuating light regimes and nutrient sufficiency in its niche. Gene
studies have established a coexistence of nitrate utilizing Syne-
chococcus clades – including novel ecotypes – in different marine
waters (Ahlgren and Rocap, 2006; Jenkins et al., 2006). However,
Synechococcus WH7803 grows equally fast on nitrate and ammo-
nium (Post, 2005), but strain WH8102 has slower growth rates
when utilizing nitrate (Moore et al., 2002). The closely related
strains WH7803 (clade IV) and WH7805 (clade V) differ in their
urea utilization (Collier et al., 1999). However, strains WH8102
and MIT S9220 with the full set of urea assimilatory genes have
different growth efficiencies on this substrate (Moore et al., 2002).
It thus seems that ecotypes cannot simply be defined by the pres-
ence/absence of genes, but that other factors play into defining
the range of ecotype success. In addition to cell external factors
like mortality due to phage infection and grazing pressure, cellu-
lar processes like transcriptional regulation, turnover of transport
and enzyme proteins etc., likely play an important role.
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