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Image segmentation plays an important role in multimodality imaging, especially in fusion structural images offered by CT, MRI
with functional images collected by optical technologies, or other novel imaging technologies. In addition, image segmentation
also provides detailed structural description for quantitative visualization of treating light distribution in the human body when
incorporated with 3D light transport simulation methods. Here, we first use some preprocessing methods such as wavelet
denoising to extract the accurate contours of different tissues such as skull, cerebrospinal fluid (CSF), grey matter (GM), and white
matter (WM) on 5 MRI head image datasets. We then realize automatic image segmentation with deep learning by using
convolutional neural network. We also introduce parallel computing. Such approaches greatly reduced the processing time
compared to manual and semiautomatic segmentation and are of great importance in improving the speed and accuracy as more
and more samples are being learned. .e segmented data of grey and white matter are counted by computer in volume, which
indicates the potential of this segmentation technology in diagnosing cerebral atrophy quantitatively. We demonstrate the great
potential of such image processing and deep learning-combined automatic tissue image segmentation in neurology medicine.

1. Introduction

Nuclear magnetic resonance imaging gives a clear and high-
resolution image of brain tissues [1]. It is a common method
for clinical examination of brain diseases. .e human brain
structure is very complicated. Important tissues include grey
matter, white matter, and cerebrospinal fluid [2]
(Figure 1(a)). .ese tissues play a key role in memory,
cognition, awareness, and language [3]. Cerebral atrophy/
expansion [4, 5] and leukodystrophy [6] are serious brain
dysfunction diseases that have a high incidence in infants
and elderly people [7]. However, crucial tissues such as
cerebrospinal fluid, grey matter, and white matter are hard
to differentiate due to blurry boundaries, especially in the
cross-sectional images that do not show the center of the
brain, as shown in (Figure 1(b)). As a result, it is hard for
doctors to analyze them separately and find the location of
the disease [8]. With the popularization of image-aided

medical diagnosis, computer-aided doctors can improve
the efficiency of segmenting [9] the grey matter and white
matter of the brain MRI. In MR imaging, different signal
intensities and weighted images (T1 weighted and T2
weighted) canmake the image display at different grey levels.
Since the T1 brain magnetic image shows that the soft tissue
is better [10], the experiment selects the brain magnetic
resonance T1-W image as the experimental sample.

Many approaches have been made to segment the brain
image automatically. Segmentation algorithms based on
regional, texture, and histogram thresholds [11, 12] are
simple but lack accuracy. .reshold is a simple but effective
way to segment images. However, there are some limits
regarding only using this method for segmentation. First, the
grey scale of tissues may not be restricted in one range. .is
means that, if we simply use threshold to locate the tissues, it
may fail to separate all the parts. Secondly, the threshold
usually does not consider the spatial properties of an image.
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For example, the skull is a round structure that covers the
other tissues. .is can help us to determine the location of
tissues and get more accurate segmentation images. As a
result, threshold determination is often considered as an
early stage sequential image process. Later, methods related
to fuzzy c-means (FCM) [13, 14] and machine learning are
introduced. .e atlas-based method is also widely used for
brain image segmentation [15]. It has a relatively complete
system framework. However, explicit information such as
intensity and spatial features is required in order to get
accurate results [16]. Spatial and intensity features could be
avoided by using convolutional neural networks (CNNs)
[16]. Convolution neural network proposed by LeCun et al.
[17] is a deep supervised learning method [18]. It has been
applied in many fields and has made great success in image
recognition [19, 20], speech recognition [21, 22], natural
language processing, and so on. CNNs obtain the convo-
lution weight by means of cyclic convolution and samples
with a supervised training mode. .e final realization is
directly extracted from the original input, which is con-
ducive to the classification features..e features in the image
recognition are texture, shape, and structure.

MICCAI is a conference held every year focusing on
medical image computing and computer-assisted in-
tervention [23]. Recently, many methods related to deep
learning were presented in the conference. Zhang et al.
presented a 2D patch-wise convolutional neural networks
(CNNs) approach to segment tissues from multimodal MR
images of infants [24]. An N∗N size picture block was
extracted from a given image, and the model is trained with
these blocks. .en, the label was given to the correct
identification class. In order to improve the performance of
block training framework, multiscale CNNs used a variety of
ways with different patch sizes. .e outputs of these ap-
proaches were combined with the neural network, and the
model was trained to give the correct label. .is method in
this paper did not include a pooling layer or consider the

relation between the patches. Yang et al. [25] used a deep
active learning framework to reduce the annotation effort. It
was combined with fully convolutional network and active
learning. Man et al. [26] proposed combining MRI multi-
modal information to extend CNNs to 3D, which was
composed of multiple modes that formed 3D raw data.

In our paper, we use image enhancement, operators, and
morphometry methods to extract the accurate contours of
different tissues on 5MRI head image datasets. After that, we
utilize convolutional neural network to realize automatic
segmentation of images with deep learning. Such approaches
greatly reduced the processing time compared to the other
methods. We also introduce parallel computing to further
speed up the processing speed. Our work has a great po-
tential in the medical field for diagnosing brain disease.

.e rest of the paper is organized as follows. In Section 2,
we describe our dataset, model, and training method. Our
experiments and comparison with other methods are dis-
cussed in Section 3. Section 4 concludes the paper.

2. Materials and Methods

2.1. Dataset. Our dataset includes 5 patient’s brain MRI T1-
W images. For every patient, we have 160 images, with a total
of 800 images. .e size of the images is 256 × 256 pixels.
Every pixel value in the matrix is an integer between 0 and
255. Figure 2 shows some typical MRI of a human brain..e
MRI data used to support the findings of this study are
available from the corresponding author upon request.

2.2. Preprocessing. Due to the complicity of the brain
structure, there exist many overlapping regions in each MR
image. Image preprocessing can improve both the efficiency
of the algorithm and the reliability of the segmentation
results. Image noise reduction [27] and enhancement can
make the image more conforming for viewing. By removing
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(a)
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Figure 1: MRI images: (a) location of the 3 tissues. WM is the area where the color is light; GM is the gray boundary around theWM; CSF is
the black parts inside the skull. We focus on segmenting the tissues in the red circle. (b) Cross section of a side of the brain; the tissues are
hard to distinguish by eyes.
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the bright skull, we can avoid it from affecting the accuracy
of the segmentation of the brain. Image noise reduction
directly affects the result of segmentation.

Wavelet domain denoising is used to transform noisy
signals from time domain to wavelet domain [10] by using
multiscale transformation. We removed the wavelet co-
efficients of noise from all scales to obtain the wavelet co-
efficients of signals. Finally, the signals are reconstructed by a
wavelet transform..e image after noise reduction preserves
the details of the original image, and the visual effect be-
comes clearer. .e histogram equalization method is used to
enhance the image of the cerebrospinal fluid, grey matter,
and white matter.

We collected the grey level of all 800 MRI images and
generated a histogram that contains all the points, as shown
in Figure 3. .e result shows 4 peaks, each stands for a kind
of tissue [28]. .e background grey value is not shown in the
figure, which is smaller than 35. From the histogram, we can
remove pixels that are not in the grey level range of the GM,
WM, CSF, and skull. We convert them to level 0 to reduce
the noise. .e histogram shows four thresholds, which
stands for the four tissues. It seems that we can segment the
image by only using this result. However, there are some
limits..reshold usually does not consider spatial properties
of an image. For example, the shape of the skull is round and
located around the other tissues. Also, the grey level of a
tissue may not be restricted around one region. .e grey
level of GM may be in the CSF region depending on the
location. .us, the result may not be accurate by only using
the threshold as an analysis measuring method.

2.3. Convolutional Neural Network. Convolutional neural
networks (CNNs) have recently enjoyed a great success in
image recognition and segmentation. .e basic structure of
CNNs consists of two layers. One is the feature extraction
layer (C1, C3). .e input of each neuron is connected to the
local receptive domain of the previous layer, extracting the
local feature. Once the local feature is extracted, its posi-
tional relationship between the others can be determined.
.e other layer is the featuremapping network layer (S2, S4).
Each computing layer is composed of multiple feature maps
[29]. .e feature map is a flat plane; all neuron weights are
equal. .e feature mapping structure uses the sigmoid

function [30] as the activation function of the convolution
network. In addition, the number of free parameters of the
network is reduced because of the weights shared by a
neuron on a mapping surface. Each convolutional layer in
the CNN closely follows a computing layer for local average
and second extraction. .is unique extraction structure
reduces the feature resolution.

.e C1 layer (Figure 4) is a convolutional layer with six
feature maps. Each neuron in the feature map is connected
to the 5∗ 5 input. .e size of the feature map is 28∗ 28. S2 is
a pooling layer with six 14∗14 features. Each unit in the
feature map is connected to the 2∗ 2 neighborhood of the
corresponding feature map in the C1. .e four inputs in
each unit are added in S2 and multiplied by a trainable
parameter, along with a trainable offset. .e 2∗ 2 receptive
field of each unit does not overlap, so the size of each feature
map in S2 is 1/4 of the size as in C1.

.e C3 layer is also a convolutional layer which uses a
kernel of 5 × 5 to convolute the layer S2..e feature map has
only 10 × 10 neurons but with 16 different convolution
kernels. Hence, there are 16 feature maps. Each map in C3
consists of all 6 or several feature maps in S2..e reason why
we do not connect each feature map of the S2 to C3 is that
the incomplete connection mechanisms keep the number of
connections within a reasonable range. Moreover, it destroys
the symmetry of the network. Since different feature maps
have different inputs, it forces them to extract different
features. .e S4 layer is a pooling layer that consists of
sixteen 5∗ 5 size feature maps. Each unit in the feature map
is connected to the 2∗ 2 neighborhood of the corresponding
feature map in the C3, same as the C1 and S2. .e F6 layer
has 84 units and is fully connected to the C5 layer. Finally,
the output layer is composed of a Euclidean radial basis
function unit, each of which has a unit with 84 inputs.

.e output of the convolution layer is the sum of the
convolution kernel and the output of the upper layer:
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where l is the layer number, k is the convolution kernel, b is
the bias, x is the input, and Mj is the chosen feature map.

.e number of input and output in the pooling layer are
the same, while the dimension of the maps is reduced:

Figure 2: Samples of a patient’s brain cross-sectional image.
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.e parameters of the CNN are set as follows (Figure 5).
.e neural network is divided into three layers: the input
layer is many 4∗ 4 pixel units, the second layer is the
convolution layer with 6 kernel functions of 3∗ 3, and the
third layer is the down-sampling layer with six 2∗ 2 pixel
units. Finally, the parameters of the stable network after
training are obtained. In each layer, there are many 2D
planar elements, and each 2D planar element has many
independent neurons. .e output has six pixels, thus
extracting the deep feature data. We used Adam algorithm
for the learning method. We set the initial learning rate to
0.001 and the momentum to 0.5. We used the cross entropy
as the loss function. Our CNN was trained for 50 epochs,
each consisting of 20 subepochs. Our batch size is 5.
Training samples are randomly selected from the total 800
images: 600 images are for training, 100 images are for
validation, and 100 images are for testing.

2.4. Parallel Computing. MPI is at the core of many
supercomputing software frameworks [31]. We used a Caffe
framework that adopts the MPI. .eMPI enables the cluster
version to optimize the data parallel to Caffe. It supports
command line, Python, andMATLAB interfaces and various
programming methods. .e CPU information is Intel(R)
Xeon(R) CPU E5-2670 0 @ 2.60GHz. We convert the 800
matrices into one large matrix, which has the size
800∗ 65536. In addition, we added a row for placing the
image number. Each row is an image. .e first number in
each row is the index of the image. .e image data are put
together in one matrix. .us, the processing involves all the
images at one time. We adopt the master-slave mode [32]. It
includes two sets of processes: the master processor is in
charge of processing the work orders [33]..e slaves execute
the work that the master processor assigns.

In our work, one node acts as the master node, which is
responsible for data partition and allocation. .e other
nodes complete the calculation of local data and return the
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Figure 3:.ere are four peaks in the histogram. From left to right, the peaks stand for the following: cerebrospinal fluid (40–57), greymatter
(61–79.8), white matter (86–110), and skull (110–130).
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result to the master node. As shown in Figure 6, the master
node first reads the data and assigns them to the other nodes
and then selects the center of each cluster. .e slaves cal-
culate the distance from each point to the center of the data
block, then mark the clustering of each point, calculate the
sum of the distances between all the points of each cluster to
the center of the cluster, and finally return these results to the
master. .e cluster centers stand for the tissues in the GM,
WM, CSF, and skull, which are spatial coordinates. We use
the Euclidean distance to find the center of the tissue feature
clusters, respectively, and set the parameter z � 0.5, which
takes out 50% feature points that are nearest to the feature
center points to accurately characterize the quantitative
characteristics of the different types of data..emaster node
will calculate the new center point, send to other processes,
and calculate the other process from the clustering of all
points to the center of the sum of the distance. .e process
will continue until the sum of the distances of all the clusters
is constant.

3. Results

3.1. Tissue Segmentation. Our work shows some satisfying
results (Figure 7(b)). .e images in the left column are the
original images. .ey show a full MRI image of the tissues of
the brain and other parts such as the facial skull, muscle, and
ears. After removing the other parts of the head apart from

the brain that are considered noise, we successfully segment
one brain image into 4 images. In each image, we set the gray
value of the tissue as 255 and the background as 0.

.e result of the skull shows a curved shape located on
the frontier of the brain. .e cerebrospinal fluid is the
segment between the skull and the grey matter/white matter.
.e grey matter and white matter are also accurately
segmented.

To test the efficiency of our method, we also did seg-
mentation without preprocessing. As shown in Figure 7(a),
the results include a large amount of noise including parts
that are not brain such as the nose, eyes, and other facial
structures.

3.2. Comparison with Visible Chinese Human (VCH). Our
result was compared pixel by pixel with the images seg-
mented by an expert operator. To quantize our result, we
calculated the percentage of each tissue in the human brain
and then compared it to the visible Chinese human head
(VCH) model [34]. .e VCH model is a very good pre-
sentation for the anatomical structure. It is mostly used in
modeling light propagation [35]. It can help calculate the
volume of brain tissues because the intensity of light changes
while propagating. .e VCHmodel is developed from high-
resolution cryosectional color photographs of a reference
adult male [36, 37]. It includes various types of tissues from a
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Figure 5: Our CNN structure.

Read the MRI data from the 
file (800 ∗ 65536 matrix)

Divide the dataset into 1/n
and send to the slave nodes

Randomly set a center for
each tissue

Calculate the distance from 
each point to the tissue center 

Mark the clustering of each 
point

For each cluster, calculate the 
sum of the distances between 

each point and the center

Master node

Slave node

Send data to slave node

Mark the clustering of each 
point

Iterate until
sum converges

Figure 6: Parallel computing master-slave method. .e master processor is in charge of processing the work orders. .e slaves execute the
work that the master processor assigns. .e process repeats until the sum of the distances of all the clusters is constant.

Journal of Healthcare Engineering 5



standing frozen man body. .e section precision is hori-
zontally 0.02 cm interval, and the digital color image has a
resolution of 0.01 cm per pixel, which is higher than CT and
MRI [38]. .us, it is one of the most realistic head models
that contains precise cerebral cortex folding geometry [39].

.e data are shown in Table 1. Overall, our result is quite
satisfying. We manage to locate the boundary and segment
the tissues accurately (Figure 8(a)). We then calculated the
ratio between the grey matter and white matter and com-
pared it to the VCH result, giving an accuracy of 95%

(Figure 8(b)). .is can be used in diagnosing disease such as
cerebral atrophy, which is caused by grey matter or white
matter reduction. .ere are still some deviations between
our result and the ground truth. .is is caused by the
remaining noise and the insufficiency of the algorithm. .e
MRI dataset contains slit images of the brain instead of
crosscut, which shows a full head rather than only the brain.
As a result, more noise will be generated from the other part
of the head. Taking the GM percentage, for example, some
parts that are apart from the brain have the same grey value
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Figure 7: (a) Images generated without preprocessing. .e first column shows the skull results; the second column shows the cerebrospinal
fluid results; the third column shows the grey matter results; the fourth column shows the white matter results. (b) Images generated with
preprocessing.
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as the GM, which adds to the total percentage of the GM. For
further research, we will use the dataset from BrainWeb, an
online interface that provides a 3D MRI-simulated brain
database [40]. It also provides a fuzzy model for users to
estimate the partial volume and is a good way to verify the
accuracy of our method.

For the ratio between the grey matter and white
matter, we compared our result with the VCH model,
along with some studies done by others. Bartlett et al.
introduced an interactive segmentation (IS) method to get
the volume of the GM and WM from MRI images [41]. Ge
et al. investigated the effects of age and sex on the GM and
WM volumes by using volumetric MR imaging in healthy
adults [42]. .e average results are also shown in Table 2.

We also calculated the Jaccard index for each tissue, as
shown in Table 3.

Our ground truth is the visible Chinese human. We
calculated the coefficient between our result and the ground
truth. Our method performs well on segmenting CF, GM,
and WM, outperforming the methods from Hasanzadeh
et al. [44] and Luo et al. [26].

3.3. Comparisonwith FreeSurfer. For further experiment, we
compared our result with FreeSurfer. FreeSurfer is the
software built for analyzing and visualizing the structural
and functional neuroimaging data from cross-sectional or
longitudinal studies [43]. .e results are shown in Figure 9.
Our method has many advantages. FreeSurfer can only
locate the WM and GM from an MRI image. Also, it cannot
show separate results, except theWM..e image of theWM
has many defects: it has many miss-labeling and error-
labeling, such as white spots in the image. Our method
performs better than this software; we can segment every
tissue clearly and also display the results separately.

3.4. Runtime. By introducing parallel computing, we
managed to reduce the runtime. We adopt the master-slave
mode. One node acts as the master node, which is re-
sponsible for data partition and allocation. .e other nodes
complete the calculation of local data and return the result to
the master node. .is is important when facing large data.
Our result is not significant due to the limitation of the data
size. .e larger the dataset, the better the result obtained.
Figure 10 shows a visualized result of the tendency of the
runtime.

4. Discussion and Conclusion

We used image enhancement, operators, and morphometry
methods to extract the accurate contours of four tissues: the
skull, cerebrospinal fluid (CSF), grey matter (GM), and
white matter (WM) on 5 MRI head image datasets. .en, we
realize automatic image segmentation with deep learning by
using the convolutional neural network. Approaches such as
regional, texture, and histogram threshold algorithms and
fuzzy c-means (FCM) have limitations in processing time,
accuracy, and datasets [16]. In our paper, the percentage of
each tissue is calculated, which can be used as a criterion
when diagnosing diseases such as cerebral atrophy, often
caused by the grey matter or white matter reduction [8]. We
also used parallel computing to reduce the runtime.

In our method, the preprocessing step improved the
efficiency of the algorithm and the reliability of the seg-
mentation result. Wavelet domain denoising is used to
transform noisy signal from time domain to wavelet domain

Table 2: .e ratio between the grey matter and white matter.

Type GM/WM
MRI 2.12
VCH 2.22
IS 2.03
Ge 1.5

Table 3: Jaccard index of four tissues.

Type Jaccard index
CSF 0.9431
GM 0.9020
WM 0.9142
Skull 0.8799

Table 1: A comparison of the percentage of each tissue in the brain.

Type VCH (%) MRI (%)
CSF 37.65 38.54 ± 2.21
GM 27.08 27.33 ± 1.47
WM 12.35 12.95 ± 0.94
Skull 12.81 11.32 ± 1.33
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Figure 8: (a) A comparison of the percentage of each tissue in the
brain between our result and the VCH result. (b) Ratio of grey
matter and white matter.
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[10] by using multiscale transformation. We removed the
wavelet coefficients of noise from all scales to obtain the
wavelet coefficients of signals. .is way, the efficiency of the
algorithm and the reliability of the segmentation result were
improved.

We introduced convolutional neural networks to our
work..e CNN consists of two types of layers, a convolution
layer and a pooling layer. Multiple feature maps are gen-
erated from the convolution layer after convolution. After
that, the pixels of each group in the feature map are modified
by adding weighted values and offset, along with a sigmoid
function to get the feature map in the pooling layer. With
multiple convolution and pooling layers, we were able to get
more accurate results in less amount of time compared to
manual and semiautomatic segmentation. We also used
parallel computing to further reduce the runtime of the
process. We adopted the master-slave mode by setting one
node as the master node, which is responsible for data
partition and allocation, along with other nodes to complete
the calculation of local data and return the result to the
master node.

We compared our results with the data from the visible
Chinese human (VCH) head model [34]. .e VCH model
gives a very good presentation of the anatomical structure
and is mainly used in modeling light propagation [35]. .e
data are collected from high-resolution cryosectional color
photographs of a reference adult male. It includes various
types of tissues from a standing frozen man body, which
includes precise cerebral cortex folding geometry [37]. It
gave us an average percentage of each tissue (skull, cere-
brospinal fluid, grey matter, and white matter) in the brain.
.e deviation of our result was less than 2.21%. Another
important index is the ratio of GM to WM, which helps in
evaluating certain pathological changes of brain. Our result
is also very satisfying, with an accuracy rate up to 95%. Our
dataset includes 5 human brains with 160 images each.
.erefore, the results are convincing. Our work concentrates
on the total percentage between the tissues; we did not
compare the accuracy of our boundary with other studies.
For further research, we will focus more on the comparison
between the boundary and use dataset from BrainWeb,
which is an online interface that provides 3DMRI-simulated
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Figure 9: Comparison between our method and FreeSurfer.
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brain database. It provides a fuzzy model for users to es-
timate the partial volume and is a good way to verify the
accuracy of our method.

Our research has some limitations. First of all, due to
limited time, our dataset is not very large. We will increase
the quantity and also the variety of the samples, including
different races such as black, white, and yellow people in the
future. We also need to collect samples from different ages,
ranging from the infant, the juvenile, to the elderly. Cur-
rently, our dataset includes only adults. With a bigger
dataset, we can classify the samples into age, gender, race,
and more. We hope to set up a criterion of judgment for
medical diagnosing. Researchers and doctors can compare
the brain data of a patient with our data and confirm the
abnormal proportion of tissues in the brain and further
diagnose what disease the patient has.

To conclude, we presented a method to successfully
segment the brain tissues from MRI using the convolutional
neural network. .e percentage results are very close to the
average human brain data generated by the VCH model.
.is is a breakthrough since artificial intelligence and ma-
chine learning have become more and more widely used in
research. By introducing deep learning into the therapeutic
field, the speed and accuracy can be improved. .is is be-
cause machines can automatically analyze the data, which
can be much faster and accurate than the manual and
semiautomatic analysis. For future work, we can visualize
the contours of the borders of different tissues in 3D so that
it can be integrated with optical simulation software such as
MCVM for low-level light therapy. Our work has a great
potential in the medical field, and we hope that our tech-
nique can be a criterion of judgment for diagnosing.
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