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Dense convolutional network (DenseNet) is a hot topic in deep learning research in recent years, which has good applications in
medical image analysis. In this paper, DenseNet is summarized from the following aspects. First, the basic principle of DenseNet is
introduced; second, the development of DenseNet is summarized and analyzed from five aspects: broaden DenseNet structure,
lightweight DenseNet structure, dense unit, dense connection mode, and attention mechanism; finally, the application research
of DenseNet in the field of medical image analysis is summarized from three aspects: pattern recognition, image segmentation,
and object detection. The network structures of DenseNet are systematically summarized in this paper, which has certain
positive significance for the research and development of DenseNet.

1. Introduction

Deep learning is an end-to-end approach to extracting and
abstracting image features layer by layer and implementing
recognition functions. Krizhevsky et al. [1] used deep learn-
ing to win the champion of computer vision challenges in
ImageNet. Therefore, deep learning methods represented
by convolutional neural networks have become a popular
research topic in the field of pattern recognition. GoogLe-
Net, ResNet, and DenseNet have been proposed one after
another. Among them, DenseNet [2] has achieved better
results among many deep learning models due to the new
architecture of dense connectivity, DenseNet achieves inter-
connection between arbitrary layers and skip connection
mode that transfers information from shallow layers directly
to deep layers, and enhanced feature transfer and feature
reuse between network layers, resulting in a more compact
network representation with less feature redundancy. Under

the condition of same layer depth, the convergence perfor-
mance of network is better, the network degradation and
gradient disappearance problems caused by the deepening
of convolutional network are better alleviated, and the num-
ber of network parameters and computational efficiency are
significantly reduced.

Litjens et al. [3] point out that deep learning algorithms,
especially convolutional networks, have been successful in
medical image analysis. Xie et al. [4] point out that deep
learning is widely used in medicine for disease diagnosis,
lesion and abnormality detection, lesion and organ segmen-
tation, etc. In recent years, deep learning has developed rap-
idly in the medical field, represented by companies such as
Watson, Microsoft Nuance, Google Health in the world
and iFlytek, Tencent Miying, and Ali Health in China. Eagle
Pupil Airdoc [5] fundus image-assisted diagnosis system for
diabetic retinopathy (DR) has high sensitivity and specificity
in detecting, DR. Dr. Wise [6], launched by DeepMed, can
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achieve rapid identification, accurate measurement, diagnos-
tic analysis, and scientific follow-up of pneumonia signs,
providing clinicians with a basis for treatment, thus realizing
precision medicine.

DenseNet has made a breakthrough in medical image
analysis tasks [7]; Li and Liu [8] used DenseNet to learn local
block features of MRI brain image clusters and achieved a
better Alzheimer’s disease classification accuracy of 89.5%;
Jégou et al. [9] extended densely connected structure to fully
convolutional neural network by introducing different depth
paths to produce different scale nonlinear mappings for
semantic segmentation, thus avoiding gradient disappear-
ance and enabling deeper networks to be trained with fewer
parameters; Ke et al. [10] based on 3D DenseNet performed
automatic detection and segmentation of nasopharyngeal
carcinoma in MRI images, which can obtain higher overall
accuracy, sensitivity, and specificity than radiologists. Den-
seNet can provide clinical aid diagnostic solutions for major
diseases such as benign and malignant tumors, cardiovascu-
lar and cerebrovascular diseases, and respiratory diseases.
Liu et al. [11] based on DenseNet extracted spatiotemporal
features of patients’ cardiac magnetic resonance imaging
(MRI) to predict the ray fraction of left ventricle; Kishan
and Janardhan [12] aimed at the problem of small intracere-
bral hemorrhage and high square difference and used a com-
bination of DenseNet and Inception V3 models to accurately
detect and identify early intracranial hemorrhage; Li et al.
[13] used transfer learning and DenseNet to classify benign
and malignant COVID-19 CT images, reaching the state-
of-the-art in terms of accuracy and F1 score.

This paper summarizes DenseNets, and the rest of the
structure is as follows: Section 2 introduces the basic princi-
ples of DenseNet; Section 3 reviews the development of Den-
seNet models and summarizes five aspects of broaden
network structure, lightweight network structure, dense unit,
dense connection mode, and attention mechanism; Section 4
summarizes the application of DenseNet in field of medical
image analysis and explores three aspects of pattern recogni-
tion, image segmentation, and object detection.

2. Basic Principles of DenseNet

In 2017, Huang et al. [2] proposed DenseNet, a convolu-
tional neural network with densely connected structure,
and DenseNet structure is shown in Figure 1.

DenseNet has the characteristics of feature sharing and
arbitrary interlayer interconnection. The advantages of Den-
seNet are feature map reuse through dense connection,
reducing interdependence between layers by reusing feature
maps from different layers, providing compact and differen-
tiated input features by shortcut connections of different
lengths, and effectively reducing the gradient disappearance
problem that is difficult to optimize in deep networks. The
final prediction is to use features from all layer to obtain bet-
ter performance and model robustness on a standard dataset
with smaller model size and computational effort. The disad-
vantage of DenseNet is that the feature maps of each layer
are spliced with the previous layer, and the data is replicated
multiple times. As the number of network layers increases,

the number of model parameters grows linearly, eventually
leading to explosive growth in computation and memory
overhead during training.

3. Development of DenseNet

There are five improvement methods of DenseNet, such as
broaden DenseNet structure, lightweight DenseNet struc-
ture, dense unit, dense connection mode, and attention
mechanism. This section summarizes the development of
DenseNet, as shown in Figure 2.

In 1998, LeCun et al. [14] proposed LeNet model, in
which some new operators such as convolutional operator,
pooling operator, and full connection operator were used,
and LeNet become a pioneer model in deep learning models.

In 2012, Krizhevsky et al. [1] proposed AlexNet, in
which ReLU was used for activation function; network
architecture uses dual GPUs, reduced pooling steps,
enhanced training data, and dropout function to avoid over-
fitting; this network achieved 10.9% better result than sec-
ond place in ILSVRC competition.

In 2015, He et al. [15] proposed ResNet for the problem
of network with more stacked structural layers but fast per-
formance degradation, using residual connections to transfer
shallow features directly to deeper layers, so that the origi-
nally fitted output HðxÞ becomes the residual output HðxÞ
− x. Even when learning structural layer with 0 features,
ResNet only does constant mapping and learns new features
based on input features; ResNet learns new features based on
input features, alleviating the degradation problem that
occurs in deep models and giving network better
performance.

In 2017, Huang et al. [2] further improved feature reuse
capability based on ResNet and proposed DenseNet network
with dense connection operation, but in the case of dense
connection as the number of layers of dense blocks
increases, input feature map dimension at the proximal
end becomes larger and larger, to alleviate this problem
Huang et al. [2] added 1 × 1 convolution (bottleneck unit)
into dense unit to reduce the dimension of input feature
maps, reducing the computational effort while incorporating
different dense unit features. DenseNet-B uses 1 × 1 convo-
lution to reduce input feature map dimension of each layer
to a fixed multiple of growth rate; DenseNet-C adds com-
pression rate in transition layer to reduce output feature
dimension of dense blocks; DenseNet-BC adds both bottle-
neck unit and variable compression rate transition layer.

Broaden DenseNet structure is multibranch improve-
ment of network single layer, network structure block, and
whole network using multibranch extraction function,
including multipath structure, parallel dense block, parallel
transition layer, and parallel network.

Lightweight DenseNet structure significantly reduces the
number of network parameters and computation from two
aspects: network model architecture design and network
model compression. Network model architecture design
which includes grouped convolution, depth-separable con-
volution, simplified dense block, one-time aggregation, and
network model compression has automatic sparseness.
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Figure 2: Development of DenseNet.
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Figure 1: DenseNet structure. (a) The basic structure of DenseNet consists of dense block, transition layer, convolutional layer, and fully
connected layer. (b) Denseblock consists of densely connected dense units with nonlinear mapping functions of BN, ReLU, and Conv,
which are designed with preactivation strategy to make network training easier and generalization performance better. Dense unit input
is spliced and merged with all outputs of the previous dense units, and new features generated also need to be passed to subsequent
dense units, so that shallow features of dense block are repeatedly reused and effectively utilized, which can alleviate gradient
disappearance to a certain extent, and a large number of features can be generated with a small number of convolution kernels; final
DenseNet model is relaticely in scale. (c) Transition layer is the structure between adjacent dense blocks, which consists of 1 × 1
convolution and 2 × 2 average pooling layer, compressing dense block input and all extracted feature information, reducing feature map
size and dimensionality, which can effectively reduce the number of dense block parameters and prevent network from overfitting. The
fully connected layer is classification prediction layer, which reduces the influence of feature location on classification by integrating
category feature information in network features, and classifies feature information after weighting.
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Dense unit is composite function improvement of Den-
seNet, optimizing feature extraction module dense unit for
specific applications, summarized in three aspects: convolu-
tion layer placement, introduce residual connection, and
overall structure.

Dense connection mode is a study of the way dense
blocks are composed, dense connection improvement has
four aspects: splicing method, connect dense unit of different
scales, topological structure, and combine with other
structure.

Attention mechanism is to emphasize or select impor-
tant features in DenseNet and suppress some irrelevant
detailed information, which can be divided into attention
mechanism in dense unit and DenseNet.

Chen et al. [16] indicated that densely connected path of
DenseNet increases linearly with increasing network depth,
and the parameters increase dramatically; for this reason,
Yang et al. [17] proposed CliqueNet, a convolutional neural
network with alternating update mechanism, Clique block
performs same dense propagation as DenseNet, and then,
all layers except the top layer are used as the bottom layer
for alternating updates, stitching feature maps of each layer
into the output of Clique block, passing only fixed-
dimensional feature maps, with forward and backward con-
nections between any layer, cycling, and alternating updates
to maximize the flow of information between layers. Final
network uses fewer convolutional kernels to generate a large
number of features, which greatly improves the parameter
efficiency, and parameter propagation process generates
multilevel features by cycling; experiments show that the
second stage of Clique block helps to suppress noise and
improve performance.

3.1. Broaden DenseNet Structure. Depth is not necessarily
good, and width is not necessarily bad. On the one hand,
in 2014, Ba and Caruana [18] pointed out that a well-
trained deep network can usually find a suitable shallow
network instead, and in 2019, Hanin and Rolnick [19]
pointed out that expressiveness of network in practical
applications is independent of network depth and only
grows linearly with the number of neurons; on the other
hand, deep learning models currently are trained by GPUs.
GPU parallel processing makes it easier to train widened
networks. Therefore, depth and width are not completely
opposed to each other, increasing both depth and width
is increasing the number of learnable parameters and
improving network fitting ability, increasing depth can
obtain a larger sensory field and capture more pixel-like
features, and increasing width can obtain more subtle
and richer features.

Broaden DenseNet structure is using multiple branches
to improve network single layer, structure block, and whole,
so that network learns more rich features per layer, such as
texture features with different directions and frequencies.
Although network deepening can extract knowledge layer
by layer abstraction and continuous refinement, too narrow
network can capture limited patterns per layer, and the net-
work is no deeper to extract information. Broaden DenseNet
structure approach is shown in Figure 3; there are multipath

structure, parallel dense block, parallel transition layer, and
parallel network.

First, multipath structure is an improvement of multi-
path feature extraction layer on single-path feature extrac-
tion, using multiple scales to achieve different perceptual
fields, increasing the adaptability of network to features
of different sizes and enriching features. Multipath convo-
lution also uses the computational principle of decompos-
ing sparse matrices into dense matrices to speed up
convergence, aggregating output features with strong rele-
vance, decomposing feature sets into multiple densely dis-
tributed subsets, aggregating features with strong
relevance, and finally outputting less redundant informa-
tion and faster convergence. In 2014, Google’s Szegedy
et al. [20] proposed typical multipath structure inception,
which is parallel to commonly used 1 × 1, 3 × 3, 5 × 5 con-
volutions and 3 × 3 max-pooling to achieve different per-
ceptual fields for extracting rich features and making
classification judgments more accurate. Li et al. [21] pro-
posed DenseNet-II for benign and malignant classification
of mammogram images; the inception structure was used
to improve adaptability of network to different scales and
maintain the sparsity of network structure, while efficiently
expanding network depth and width, resulting in better
classification performance with good generalization and
robustness. Arega and Bricq [22] used cascaded segmenta-
tion network FC-DenseNet for automatic segmentation of
cardiac scars in multisequence cardiac MRI; similar incep-
tion structure captures relevant features such as scars and
edema of different sizes, significantly improving segmenta-
tion results with the same computational overhead.

Second, parallel dense block is original single-branch
dense block multiple times in parallel to increase network
width, combining the benefits of network depth and width
to improve model robustness; although deep networks have
higher performance, they are limited in terms of gradient
disappearance, reduced forward flow, and slower training
time. Lodhi and Kang [23] proposed multipath-DenseNet
with multiple dense blocks parallel learning to find valid
paths from some or all of the blocks, which allows efficient
gradient flow and achieves higher accuracy than other base-
lines using fewer parameters on the classification dataset.
Chen et al. [24] proposed MFR-DenseNet with multipath
feature recalibration, where SE module assembles multipath
dense blocks from different channel feature maps to build
interchannel feature correlation model to achieve strong fea-
ture extraction, which achieves high accuracy in classifica-
tion while maintaining training stability.

Third, parallel transition layer is a branching supplement
based on the single-branch transition layer to realize broad-
ening. Liu et al. [25] proposed dense binary tree DenseBT-
Net for lung nodule classification, which introduces central
cropping operation into transition layer and parallelizes it
to create indirect shortcuts between different dense blocks,
preserving detail features of nodule morphology and filtering
irrelevant background information; binary tree-like singular
network model can generate rich multiscale features, making
the parameter scale lighter and with higher parameter
efficiency.
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Fourth, parallel network is multiple networks in parallel,
and the fusion of multiple network features can ensure more
stable and accurate prediction. Chen et al. [16] argued that
ResNet is essentially DenseNet with shared connections,
and ResNet implicitly has residual path reuse features, and
dense connections that can be mined for new features, based
on this joint perspective dual-channel network (DPN) were
proposed, by sharing same features of network through
dual-path structure; high accuracy is achieved with flexibil-
ity, small models, less computation, and low resources.
Nguyen et al. [26] proposed MSDENSE-DAT to predict
regions in crowd scenes that attract human attention,
designed two-branch homography network based on Dense-
Net201 to extract multiscale features, extracted as many fea-
tures as possible from original size and half-size images, and
cascaded two-branch features along channel axis, and also
designed self-attention blocks to emphasize interfeature cor-
relation; MSDENSE-DAT extracts the best features with low
density in the crowd.

3.2. Lightweight DenseNet Structure. Lightweight of CNN is
to reduce the number of parameters and computation with-
out degrading the performance of existing models and to
achieve storage and computation on mobile platforms with
limited storage space and power consumption. CNN is

widely used in image analysis and has achieved great success,
greatly reducing the number of parameters and computation
through weight sharing and sparse connection; however, two
aspects, model storage and model prediction speed, limit the
application of CNN in mobile. Lightweight of CNN is
important research in deep learning, and two main direc-
tions are studied: lightweight model architecture design
and model compression. This section summarizes four
improvements of lightweight DenseNet structure in model
architecture design: grouped convolution, depth separable
convolution, simplified dense block and one-time aggrega-
tion, and automatic sparseness of model compression, as
shown in Figure 4.

First, grouped convolution is to group feature maps and
then convolve them separately, the number of model param-
eters decreases as the number of groups decrease, and model
structure and training are more efficient. In 2012, AlexNet
[1] proposed grouped convolution and utilized dual GPU
processing. To apply DenseNet to mobile devices with lim-
ited computational resources, Huang et al. [27] proposed
CondenseNet based on grouped convolution, where the net-
work is connected layer by layer, preserving dense connec-
tivity of DenseNet, achieving feature reuse, sharing input
features using self-learning grouped convolution modules,
eliminating layer-to-layer connections, and avoiding
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accuracy branching process that affects too much; Conden-
seNet uses only 1/10th of computation at an accuracy level
comparable to that of DenseNet. Li et al. [28] proposed Den-
se2Net with efficient multilevel group convolution, using
channel mixing to rearrange features, tiling features into
multiple groups and randomly receiving the previous group
of features, while fusing all groups of different scales into
output using 1 × 1 convolution to improve parameter effi-
ciency and information transfer; Dense2Net has higher
accuracy and better information transfer than DenseNet.

Second, depth separable convolution (DWSC) is a
decomposition of the convolution strategy into spatial con-
volution followed by channel convolution, replacing convo-
lution layer to achieve a lightweight network, using a filter
for each input channel in spatial directional convolution
(DWC), and applying 1 × 1 point-by-point convolution
(PWC) on the channel side to linearly combine the depth
directional convolution outputs. MobileNet [29] uses depth
separable convolution to build a lightweight deep network

that greatly reduces the computational effort with a small
reduction in accuracy, achieves a balance between model
efficiency and classification accuracy, and performs well in
task such as target detection, fine classification, and face
attribute. Chen et al. [30] proposed Mobile-DANet, an
attention-embedded lightweight network for corn disease
recognition, using depth-separable convolution instead of
convolutional layers in dense blocks and depth convolution
using input mapping filters to achieve channel-by-channel
convolution and combining channel-by-channel results
through 1 × 1 convolution, while using spatial and channel
attention mechanism to detect and highlight targets in mul-
tifeature map, with the final model featuring small size, high
accuracy, and excellent performance.

Third, simplified dense block is to replace original dense
block with multiple simplified dense blocks in series, fixing
the number of dense units to be smaller and multiple simpli-
fied dense blocks in series to replace original dense blocks,
reducing output feature map dimension while maintaining
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feature reuse. s-DenseNet was proposed by Yu et al. [31] for
pathological grading of breast cancer on large-size mammo-
grams, using fewer dense units to prevent network overfit-
ting, extracting high-level semantic features, and
combining logistic regression to select image histology fea-
ture values, the trained network achieves high accuracy at
lower complexity. Huang et al. [32] designed a lightweight
neural network using simplified dense block consisting of
two dense units, stitching adjacent blocks of mammogram
and osteosarcoma histological images as input; feature vec-
tors were mapped to simplified dense block for kernel learn-
ing; final network was easier to train and better in terms of
classification accuracy, sensitivity, and specificity.

Fourth, one-time aggregation is to aggregate outputs of
all dense units to the end of dense block, rather than two-
by-two interconnection of dense units. Lightweight network
design considers two main factors, model size and FLOPs, to
reduce inference time and energy consumption; memory
access cost (MAC) and GPU computational efficiency are
also considered. Densely connected aggregations of interme-
diate features with different sensory fields can produce pow-
erful features using a small number of parameters and
triggers, but dense connections can lead to a large memory
access overheads, and 1 × 1 convolution using a small num-
ber of operations can also lead to inefficient GPU computa-
tion. To address the slower and inefficient DenseNet
detector, a fast and efficient architecture VoVNet consisting
of one-time aggregation (OSA) was proposed by Lee et al.
[33], which reduces memory access cost and performs effi-
cient computation by using diverse feature representations
with multiple reception rates; dense aggregation is aggregat-
ing all previous features to subsequent layers; while OSA is
aggregating all features at once to final unit, it also removes
bottleneck unit and keeps intermediate layer input constant,
greatly improving MAC and GPU efficiency while maintain-
ing cascade strength; VoVNet applied to target detector
achieves twice detection speed, and energy consumption is
1.6×–4.1× lower than DenseNet.

Fifth, automatic sparsification method for model com-
pression to achieve lightweight is to prune DenseNet by
reinforcement learning. Li et al. [34] proposed automatic
sparsification (ADS) method to prune redundant jump con-
nections in DenseNet and ADS compression based on rein-
forcement learning (RL) method to prune dense connections
representation by the original adjacency matrix; sparse Den-
seNet verification accuracy is used as a reward and punish-
ment for updating RL agents, and high-performance sparse
networks are generated by iterating RL agents with fewer
parameters, less computation, and portability after sparse.

3.3. Dense Unit. DenseNet uses dense cells interconnected
two by two to form dense blocks; this section summarizes
three aspects of convolution layer placement, and introduces
residual connection and overall structure.

3.3.1. Convolution Layer Placement. Dense unit of DenseNet
uses preactivation structure, in which BN and ReLU layers
achieved preactivation before convolution, and also uses
the structure of 1 × 1 convolution followed by 3 × 3 convolu-

tion. Dense unit is improved by placement of convolution
layer, which can be divided into preactivation and nonpreac-
tivation, where ReLU and BN can interchange their posi-
tions, and the specific improved form is shown in Figure 5.

First, convolutional layer is easier to train and has better
generalization performance after BN algorithm and preacti-
vation structure of activation function. Zhu et al. [35]
achieved image superresolution using dense jump-
connected network, where dense unit provides large sensory
fields using 3 × 3 convolution, and then, 1 × 1 convolution
deepens network to learn robust feature representations,
and small filters with a small number of parameters are used
to deepen network, making full use of hierarchical feature
deepening structure, and network outperforms new algo-
rithm with robust fitting capability. Wei and Liu [36] intro-
duced dense blocks in SSD network to detect hazardous
substances in X-ray images. Dense unit connects two 1 × 1
convolutions in series to avoid destruction of learned feature
map region information, and the method has good transfer
learning capability.

Second, convolutional layer does not use preactivated
dense units before BN and activation function. Wei et al.
[37] added dense blocks of first convolution in YoloV3 back-
bone, and transition layer also used dense units in parallel
with maximum pooling layer, and the model was effective
in multiobjective defect detection of railroad routes. Lei
et al. [38] used densely connected dilated convolution for
codec connection, and dense blocks were used for first con-
volution of dilated dense unit, which can enhance effective
feature transfer and retain finer structural information for
accurate segmentation of skin lesions.

Third, convolutional layer distributes BN-normalized
data to the nonsaturated region before activation function
and BN, and ReLU can then control the degree of saturation
of activation; if the order of BN and ReLU is switched, ReLU
will lead to deactivation of some of BN neuron, which causes
BN instability and affects the model performance, practically
different application scenarios have different role in the
order. Hasan et al. [39] proposed an automatic semantic seg-
mentation network (DSnet) for skin lesion segmentation, in
which the encoder uses dense blocks and transition layers to
avoid learning redundant features and uses BN of dense
units after activation function, and DSnet outperforms exist-
ing baseline segmentation networks in several metrics.

Fourth, convolutional layer precedes activation function,
and BN is more suitable for denoising, but it leads to slow
convergence in superresolution and large fluctuation in the
loss function, which also increases the memory and compu-
tational burden. Mustafa et al. [40] proposed multilevel
dense MLDNet for multifocus image fusion (MFIF), which
uses parallel dense blocks to extract multilevel local dense
and global features in the source image; dense units are con-
nected using convolution followed by ReLU to retain as
many dense features as possible, and MLDNet has signifi-
cant performance improvement over the latest methods. Li
et al. [41] proposed multiresolution dense network to con-
nect mutually different structures dense units densely, with
different size convolution for feature extraction of three cen-
tral consistent lung field blocks with different resolutions,
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and fusion to detect lung nodules, which outperformed gen-
eral JSRT database for radiologists by up to 99%.

3.3.2. Introduce Residual Connection. Residual connection
uses skip connection to connect shallow layers of informa-
tion directly to deep layers, and output is expressed as a lin-
ear superposition of input and its nonlinear transformations,
using a new expression to achieve a constant mapping
between layers. Deep learning relies on error chain deriva-
tive back propagation for parameter update; too small deriv-
atives will become smaller and smaller gradients after
multiple series multiplications, leading to gradient disper-
sion; residual connection adds constant terms to derivatives,
so that error signal is propagated directly to the shallow layer
without intermediate weight matrix changes, which allevi-
ates the problem of gradient dispersion to a certain extent,
and information is propagated back and forth more
smoothly. Introduction of residual connection in DenseNet
can solve network degradation problem, thus deepening net-
work model and improving performance. Four structures
are introduced for residual connectivity: residual dense unit,

convolutional residual dense unit, residual dense block, and
multibranch residual dense block, as shown in Figure 6.

First, residual dense unit is residual connection between
inputs and outputs of dense unit, Feng et al. [42] proposed
recurrent network DCRN to cope with single-image superre-
solution (SISR) task, which performs local residual learning
within dense block and dense unit to extract semantic fea-
tures, and experiments on Set5, Set14, BSD100, and
Urban100 datasets to demonstrate DCRN efficiency and
model component effectiveness.

Second, convolutional residual dense unit is a residual
connection using convolutional improvements to prevent
gradient disappearance or explosion problems while speed-
ing up convergence. Yang et al. [43] introduced convolu-
tional residual in DenseNet by parallelizing multiple
multiresolution convolutional residuals in dense block, effec-
tively reducing the number of superresolution network
parameters, and increasing model hierarchy and network
depth, with prediction speed reaches 25ms per image under
certain accuracy loss. Single-branch convolutional residual
block can only extract single-level semantic information;
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Wang et al. [44] designed multiscale residual network
(EMRN) in image superresolution task and densely con-
nected multiscale residual blocks extracted image hierarchi-
cal features to achieve multilevel semantic information in
different perceptual domains.

Third, residual dense block is dense block using residual
connection between inputs and outputs, and residual dense
block inherits advantages of ResNet and DenseNet,
improves information flow of network, and retains more
structural information. Wu et al. [45] proposed dense pyra-
mid residual network (DPRnet) for restoring fog-free
images, residual dense block extracts network features and
quadruple downsampling features, global residual connec-
tion is applied to whole network, allowing the feature maps
to be heavily reused and deepening network at different
scales, and ultimately, DPRnet has better performance.

Fourth, multibranch residual dense block is dense block
that uses both residual connection and convolutional resid-
ual connection, and multibranch residual structure improves
diversity of feature extraction for hierarchical feature extrac-
tion. Long et al. [46] proposed aggregated residual dense
network (RXDNFuse), which fuses residuals and convolu-
tional residuals from infrared and visible images into parallel
dense blocks to extract hierarchical features, and qualitative
evaluation showed that rich texture details and prominent
thermal radiation information were effectively retained.

3.3.3. Overall Structure of Dense Unit. DenseNet is con-
nected with dense units in a dense connection, and overall

structure of dense unit is replaced with whole structure; five
overall structure improvements are as follows.

First, multirate extended convolutional structure MDCS
replaces dense unit, 1 × 1 convolution, and four different
extended rate 3 × 3 convolutions to perform input feature
mapping in parallel, which was used in training DenseNet
by Zhang et al. [47], using original image and marker point
set, adding MDCS to increase network width laterally to
fully utilize multiscale vascular spatial feature information
at lower computational cost, and dense connection alleviates
gradient disappearance and accelerates network, the average
dice score reached 93.20% with good integrity and sensitivity
for cerebral vessel segmentation, especially for slender ves-
sels. Second, Wang et al. [48] proposed dual residual atten-
tion model (DRAM) for SISR task, in which dense units
tandem two 3 × 3 convolutions capture more global infor-
mation, channel attention features and convolutional layer
features share information in tandem, spatial attention fea-
tures and convolutional path features are fused, and dual
feature fusion enables the model to capture important
high-frequency components; the superiority of model in
benchmark dataset was verified. Third, Zeng et al. [49] used
densely connected cascade network DCCN for MRI recon-
struction of K-space undersampled data, using dense unit
tandem residual dense block (RDB) and data consistency
layer (DC), with RDB combining dense connection and
residual learning to fully utilize features of different layers,
and DC used data consistency to improve MRI image recon-
struction under different sampling trajectories and sampling

C C C CDense
unit
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unit
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unit

Figure 7: Dense connection mode.
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rates. Fourth, Zhang et al. [50] used densely connected
inception-Res module for segmentation of medical images,
with branches of different kernel sizes aggregating feature
maps, widening network to learn more features, and residual
connection referencing input feature mapping learning
function to make the module easier to learn; final model
achieved better performance on lung and brain tumor seg-
mentation datasets. Fifth, Qamar et al. [51] proposed
encoder dense block with residual connection for skin lesion
segmentation architecture, using residual connection to
obtain more robust features, dense unit also uses expanded
space pyramid pools (ASPP) to efficiently capture global
multiscale contextual information while maintaining net-
work parameters, ASPP also aggregates image space infor-
mation, and the results of study showed that architecture
achieved the most advanced performance.

3.4. Dense Connection Mode. Dense connection mode is
two-by-two interconnection of all dense units in same dense
block, and the feature maps of same scale are connected
using channel stitching, as shown in Figure 7.

Dense connection mode [9] maximums information
flow and reduces the parameters, while alleviating network
gradient disappearance and overfitting phenomena, dense
connection has following features: first, dense connection
uses output as input to subsequent layers, enhancing feature
transfer and using features more efficiently; second, dense
unit in dense connection is narrower, adding only a small
number of feature maps to network each time without
relearning redundant feature maps, and final classifier makes
predictions based on all features, maintaining network per-
formance while reducing the number of parameters; third,
each layer in dense connection directly uses gradient of loss
function and initial input information, which is equivalent
to invisible depth supervision and helps alleviate gradient
disappearance; fourth, dense connection also has a regulari-
zation effect, which has a suppressive effect on overfitting,

and network also can mitigate overfitting with fewer param-
eters. Dense connection improvement has four aspects:
splicing method, connect dense unit of different scales, topo-
logical structure, and combine with other structure.

3.4.1. Splicing Method. Current unit input in dense connec-
tion is stitched from previous unit feature maps, and stitch-
ing method is to perform channel stitching at same feature
map size. Traditional convolutional neural network unit
module is different from dense connection neural network
unit module, as shown in Figure 8.

Output of the first layer of conventional neural network
can be expressed as

Xl =H Xl−1ð Þ: ð1Þ

DenseNet splices different layer features, output of the
first layer is expressed as:

Xl =H X0, X1,⋯⋯ , Xl−1½ �ð Þ, ð2Þ

where ½X0, X1,⋯⋯ , Xl−1� represents 0 ~ ðl − 1Þ layer fea-
ture map splicing; dense connection mode is shown in
Figure 9.

First is residual dense connection mode for channel
fusion. Zhang et al. [52] proposed improved residual dense
blocks (r-RDB) in image string and handwritten character
recognition tasks, maintaining RDB local feature fusion
and local residual learning capabilities, cascading multiple
r-RDBs to form global dense block using dense connection
of residual summation, and adaptively learning global dense
residual features to ensure interblock information flow, r-
RDB feature fusion, and residual learning refine block struc-
ture and reduce inner computational cost. Adegun and Vir-
iri [53] proposed DenseNet framework for cyclic residual
block classification based on dense block, where dense con-
nection within cyclic residual block is combined using

Figure 9: Dense connection splicing mode.
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summation operations to reduce computational effort, con-
tour refinement, and localization of lesion boundaries for
edge potential; results showed that effective preprocessing
and segmentation of skin lesions can improve classification
performance.

Second, dense-expanded residual block improves dense
connectivity as a method for multiplexed residual fusion,
Hong et al. [54] proposed an end-to-end network MMCL-
Net for simultaneous detection, segmentation, and classifica-
tion of spinal structures, establishing spatial dynamic con-
nectivity for three structures and three tasks, dense
connectivity for multilevel aggregation of expanded residual
unit to extract important radiological features, and dense
connectivity as residual mapping; shared learning among
multiple tasks represents adaptive optimization of model,
and densely expanded residual module outputs are received
in parallel by dilated convolutional layers with different
expansion rates; MMCL has been validated on MR images
of more than 200 clinical patients, and it can accurately
identify structurally relevant lesions in spine and show supe-
riority in grading lumbar spinal neural foraminal stenosis.

3.4.2. Connect Dense Units of Different Scales. Dense connec-
tion in DenseNet is to connect same scale dense unit feature
maps, and connecting dense units of different scale is shown
in Figure 10.

Dense connection is used between different scale struc-
tures of encoders or decoders. Wang et al. [56] used dense
connection within encoder and decoder networks, average
pooling between convolutional layers to eliminate redundant
features, and dense connectivity of units with different fea-
ture sizes to adequately extract biomarkers associated with
recurrence of high-grade plasmacytic ovarian cancer from
CT data; the model provides a new prognostic analysis
approach. Pemasiri et al. [57] used multimodal semantic
segmentation model to segment human body parts in visible
and X-rays, where densely connected features were adjusted
to dense units of same size, and features of different modal-
ities were integrated using channel splicing to achieve single
model for multimodal semantic segmentation. There is only
one set of cascade layers between U-Net codec blocks, and
Jun et al. [58] designed nested codec architecture (T-Net)
with pooling and upsampling inserted in codec blocks, fea-
ture mappings interconnected, encoder low-level and high-
level features connected to whole decoder, and feature map-
pings at different scales to produce complex semantic seg-
mentation, and experiments showed that Dice similarity

coefficient of T-Net reached 83.77%, which is 10.69% higher
than that of U-Net.

3.4.3. Topological Structure. Conventional L-layer convolu-
tional neural network has L connections, while DenseNet
has LðL + 1Þ/2 connections, densely connected Lth layer
has L inputs, which are feature maps of its predecessors,
and its feature maps also need to be passed to all subsequent
layers, as shown in Figure 11. Due to this two-by-two inter-
connected connection, DenseNet has constant mapping,
deep supervision, and deep diversity characteristics, densely
connected approach has a simple internal representation
and can reduce redundant features.

First, dense connection topological structure is to aggre-
gate outputs of all dense unit to the end of dense block. In
superresolution (SR) domain, deeper network helps to
improve image reconstruction quality and introduce residual
connection to avoid gradient disappearance, but deep net-
work is computationally intensive and inefficient, Yang
et al. [59] used a new dense connection approach to extract
low-resolution image features; model topology is to merge
outputs of unit into the end of module and obtain deeper
network and richer feature map by reducing the number of
channels and network parameters; model was experimen-
tally shown to be effective in SR with different magnifica-
tions. Mostefa et al. [60] proposed DenseMultiOCM for
extracting MRI image features in brain tumor segmentation,
improved dense connection by connecting only unit output
to final output of dense block, dense units in series to two
3 × 3 convolutions, and final unit used pooling and upsam-
pling to extract half-scale features; experiments showed
model segmentation results were improved.

Second, residual connection is introduced in dense con-
nection mode, two methods of SR are to learn features in
high-resolution (HR) and low-resolution (LR) image space,
and HR method is to interpolate LR information into HR,
but it increases computational complexity and may introduce
additional noise; LR method is to extract features and then
increase spatial resolution by deconvolution, which is less
computationally intensive, but difficult to learn multiscale
nonlinear LR-HR mapping. Both methods learn mapping
relationships in single-scale image space and cannot provide
SR information across different scale of features, and although
there is a Laplace pyramid structure to progressively upsample
LR information to generate multiscale features, it also uses
only highest-level features and ignore low-level features, Zhou
et al. [61] designed dense convolutional autoencoding

Figure 10: Connect dense units of different scales [55].
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(DCAE) block to extract multispatial scale features with differ-
ent spatial resolution and temporal scales to establish multi-
level feature reuse mechanism, and DCAE units were
stitched with dense concatenation and jump concatenation
to achieve long-term temporal feature reuse, and benchmark
evaluations showed that this method outperforms existing
methods, especially for structured images.

3.4.4. Combine with Other Structures. Dense connectivity
method connects other structures with the following six
densely connected structures.

First, Signoroni et al. [62] proposed BS-Net for predict-
ing pneumonia in chest X-ray images, segmenting and pre-
dicting disease severity with dense connection to encode
stage feature maps and also using densely connected decon-
volution layers instead of code and decode jump connec-
tions, and model exceeded radiologists’ scoring accuracy
and consistency on the public COVID-19 dataset. Second,
deep learning rarely focuses on both accuracy and speed in
medical image segmentation and extends to mobile environ-
ments, where multiple downsampling loses significant infor-
mation, Tseng et al. [63] densely connected U-nets at
different scales to form dense blocks, dense connection
improves feature reuse and preserves features at each step,
and deconvolution enables upsampling to retain as much
information as possible; DNetUnet achieves better segmen-
tation performance and can be a mobile platform. Third,
Liu et al. [64] designed DRN-DCMB model for reducing
motion artifacts in brain MRI, where dense units of multire-
solution block consist of U-net-like structure; four resolu-
tion features of U-net are convolved and then stitched
together, where inputs and outputs of residual connectivity
model predict image artifacts; learning residual mapping
can significantly reduce motion artifacts and maintain image
contrast, while improving image quality and sharpness.
Fourth, Wang et al. [65] proposed multipath connectivity
network (MCNet) for medical segmentation, where the

encoder extracts different size features using multiscale fea-
ture blocks and densely connects same size feature maps in
codec, and rich contextual information improves segmenta-
tion effect; MCNet has strong robustness and better perfor-
mance for different scale targets. Fifth, for performance
improvement, network structure improves from simple to
complex, but simple stacking of capsule layers does not
improve performance; too much stacking will lead to too
small coupling coefficients and inhibit gradient, capsule net-
work dynamic routing algorithm requires a lot of computa-
tion and storage costs, parameter increase will also lead to
serious overfitting, so reasonable architecture is the key of
deep capsule network, and lightweight of deep capsule net-
work is also important research direction; Sun et al. [66]
designed structure based on multilevel separable convolu-
tion and dense capsule layers, with smaller performance loss
while effectively reducing parameters, dynamic road algo-
rithm is lightweight with separable matrix, densely con-
nected capsule layers increase network depth and
complexity, competitive performance can be obtained with
fewer parameters, and model is quantitatively demonstrated
to have optimal parameter utilization through accuracy and
parameters number ratios. Sixth, variation in image scale
limits performance of target detection and semantic segmen-
tation models to some extent, and crowd counting domain is
prone to significant variation in crowd image size, leading to
more obvious model performance limitations, Wang et al.
[67] proposed single-column scale-invariant network (ScSi-
Net) for crowd counting with densely connected scale-
invariant (SiT) layers forming dense block and SiT using dif-
ferent feature channel groups to encode different receiver
domain images and fusing fine-grained multiscale informa-
tion, using dense connection for multilayer feature interlayer
fusion, and model combines intralayer scale aggregation
with interlayer multiscale to obtain more accurate perfor-
mance and computational precision with good metastability
and scale invariance.
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3.5. Attention Mechanism. Attention mechanism [68] is
introduced into codec framework, which makes it easier to
learn the intermapping relationships between multiple con-
tents and different modal data; thus, allowing better repre-
sentation and overcoming its uninterpretable and hard to
design drawbacks, attention mechanism does not require
supervised signals and appears to be extremely effective for
problems with little a priori cognition. Attention module
reduces computational burden of high-dimensional data by
structurally selecting a subset of input and improves the
quality of output by “eliminate false and retain true,” allow-
ing model to focus more on useful information in input that
is significantly relevant to current output. Introduce atten-
tion mechanism into dense unit, and DenseNet is based on
three main considerations: first, allow model to achieve bet-
ter performance in text image analysis tasks; second, atten-
tion mechanism can calculate weights for each input and
improve the interpretability of network model operates
way [69]; third, it can alleviate some defects in recurrent
neural networks, such as performance degradation due to
increasing sequence input length and computational ineffi-
ciency due to input ordering.

3.5.1. Attention Mechanism in Dense Unit. Dense unit intro-
duces attention mechanisms and mainly squeezes excitation
(SE), residual SE, multilevel SE, channel spatial, 3D multi-
scale, and convolutional attention mechanism, as shown in
Figure 12.

First, SE attention mechanism is to increase skip connec-
tion of attention mechanism in adjacent layers, focuses on
interchannel relationships and learns the importance of dif-
ferent channel features, and improves interchannel informa-
tion interaction, thus improving network performance. Feng
et al. [42] proposed densely connected recurrent network
(DCRN) for single-image superresolution tasks, introducing
SE for dense unit and dense block features, rescaling and
extracting contextual information, and global pooling of SE
attention mechanism to extract global structural informa-
tion, and fully connected layer emphasizes information
channels and suppresses useless channels to improve model
representation and reconstructed image consistency. Huang

e al. [55] proposed a preprocessing method to optimize diag-
nostic performance of meningioma or glioma and narrow
intraclass gap, including multidirectional brain region
extraction (MDBRE) method and bimodal iterative gamma
correction, and combined SE and DenseNet classifier to
extract brain regions; the accuracy of triple classification
normalized luminance images was improved by 9.7%.

Second, residual SE attention mechanism is to add resid-
ual connection to SE branch. Shi et al. [70] combined dense
connection with residual SE to propose myopic eye detection
network (MDNet), which introduced residual SE correction
for dense unit feature mapping channels, reduced the num-
ber of parameters, and improved network performance; net-
work detected spherical equivalent mean absolute error up
to 1.1150 d (Diopter); feasibility and applicability were veri-
fied in fundus images.

Third, multilevel SE attention mechanism is introduced
after feature map grouping; personnel reidentification task
is critical to capture appearance changes in different view-
points; localization and alignment of body part are inaccu-
rate, and it is difficult for CNN to capture distinguished
information to generate robust representation of pedes-
trians, for which Yan et al. [71] based on interdependence
between different channels and horizontal feature maps,
using spatial attention mechanism to learn distinguished
local features and construct multilevel SE attention blocks
for different subnets, adaptively discover body parts and
recalibrate features to solve misalignment problems caused
by inaccurate pedestrian detectors.

Fourth, channel spatial attention mechanism is intro-
duced in dense unit, and tandem channel attention and spa-
tial attention constitute convolutional block attention
module (CBAM), which can be widely used to improve con-
volutional neural network representations. Xue et al. [72]
proposed dual-attention dense ATP-DenseNet for handwrit-
ten font recognition, in which CBAM channel attention
aggregates spatial features of average and maximum pools;
channel attention map is computed using shared multilayer
perceptron; operations along channel axis can effectively
highlight information regions; average and maximum pools
process features to map channel features and generate a

Figure 12: Attention mechanism in dense unit.
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two-dimensional spatial attention map in tandem; CBAM is
introduced into dense unit to facilitate interlayer informa-
tion flow and refine features across layers, while target-
scale features are given more attention.

Fifth, 3D multiscale attention mechanism is introduced
in dense unit. Zhang et al. [73] used 3D densely connected
convolutional neural network (CAM-CNN) to extract brain
MRI multilevel features for classification of Alzheimer’s dis-
ease and mild cognitive impairment, densely connected dif-
ference at different unit levels; 3D dense unit introduces
attention mechanism to generate attention maps and sum
transformed MRI hierarchical data into more compact
high-level; model has high classification prediction accuracy,
and classification performance is at the highest level.

Sixth, convolutional attention mechanism is introduced
in dense unit, considers interlayer relationships, and makes
full use of interlayer information in convolutional and skip
connection. In superresolution tasks, the main difference
between high-resolution and low-resolution images lies in
edges and textures, which are mainly based on high-
frequency feature information to guide image texture recov-
ery, residual superresolution networks have similar convolu-
tion and skip processing, resulting in some high-frequency
information being missed in network. Bai et al. [74] pro-
posed dense convolutional attention networks (DCAN) to
introduce convolutional attention mechanism, which intro-
duces weighted skip connection in convolution, considering
interdependence between layers and adaptively calibrating
convolutional features to learn richer details and sharper
edges by crossing layers; DCAN spends less time to obtain
superior performance in both quantity and quality.

3.5.2. Attention Mechanism in DenseNet. DenseNet mainly
consists of dense block and transition layer, introducing
attention mechanism to enhance feature propagation and
reduce the number of network parameters, and introducing
attention mechanism in DenseNet is shown in Figure 13.

(1) Attention Mechanism Introduced in Dense Block. Atten-
tion mechanism introduced in dense block has channel, spa-
tial, channel and spatial, and residual attention mechanisms.

First is attention mechanism in dense block for feature
enhancement. Zhou et al. [75] proposed 3D SE-DenseNet
for dynamically enhancing hepatocellular carcinoma grad-
ing in MR images, introducing SE to enhance key features
while suppressing redundant features, feature maps are eas-
ier to fuse, and network obtains better performance and
accuracy. Squeeze excitation simulates interdependencies
between channels but has limited processing of contextual
information, Wang et al. [76] used dilated dense unit to
extract multiscale features for crowd counting, channel
attention mechanism to guide dense block multiscale con-
textual feature fusion, adjustment of feature channel weights
at each fusion stage, recalibrate of fused feature responses,
and its convolution layer to capture channel correlation
and global average pooling aggregated output feature spatial
information; bootstrap channel fusion to adjust feature
method outperforms other methods in population density
map estimation.

Second, spatial attention mechanism is introduced in
dense block. Wei et al. [77] proposed Att-DenseUnet for
skin lesion segmentation; spatial attention module was
added to encoding and decoding skip connection, using
advanced semantic contextual information in encoding stage
to focus on lesion region features and suppressing irrelevant
artifact region features in dense block, and final model out-
put had high shape accuracy, clear boundary, and high recall
segmentation results; Zhang et al. [78] used a multiscale
model to automatically classify traffic patterns and speeds,
and multiscale spatio-temporal granularity grid data features
were extracted in dense block; spatial attention map is
obtained after element-by-element dot product of 1 × 1 con-
volution and sigmoid functions, which reduces the number
of network parameters and enhances interchannel feature

Figure 13: Attention mechanism in DenseNet.
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fusion and further enhances information flow in dense block
using residual connection; final model outperforms existing
models in terms of accuracy, recall, and F1 scores.

Third, channel spatial attention is introduced in dense
block, which adaptively adjusts cross-channel and spatial
region weight to improve network performance using inter-
channel and interfeature relationships. Qin and Gu [79]
introduced channel and spatial attention to residual dense
block and proposed deep multilevel residual attention net-
work (MRAN) with enhanced image high-frequency fea-
tures. Attention module aggregates channel information
with feature statistics and multilayer perceptron compress
channel information and sums it pixel by pixel, emphasizes
information-rich channels, computes feature statistics to
obtain spatial mapping, and multiplies element-by-element,
and spatial attention maps along channel axis improve net-
work perception, focusing more on informative rich features
to recover more accurate details, and extensive evaluations
show that MRAN is quantitative results and visual perfor-
mance state-of-the-art methods.

Fourth, residual attention mechanism is introduced in
dense block to maintain top-down spatial attention without
interrupting bottom-up convolutional feature extraction
process, and the residual connection attention mechanism
fuses two different convolutional features and enhances fea-
ture representation. Bi et al. [80] proposed residual attention
densely connected RADC for aerial image scene classifica-
tion, residual attention mechanism highlights local seman-
tics in output features, and experiments show that RADC
with fewer parameters outperforms some existing methods.

(2) Attention Mechanism Introduced in Transition Layer.
Attention mechanism introduced in transition layer has
multilevel attention mechanism and multidimensional spa-
tial attention mechanism with spatial attention gating.

First, multilevel attention mechanism is introduced in
transition layer to fuse adjacent dense block output features
and generate channel spatial attention map to enhance tran-
sition layer features. In diagnosing gastric cancer in gastric
pathology section images, although DenseNet rich semantic
information can detect larger sensory field data, it is still dif-
ficult to obtain spatial information and identify hidden gas-
tric features in feature maps, Liu et al. [81] proposed
multilevel attention dense network (MSA-DenseNet) to
detect gastric cancer in 20x magnified section images; transi-
tion layer introduced attention providing attention vectors
to enhance gastric features, selecting more semantic infor-
mation about cancer, global average pool, and fully con-
nected layer to provide nonlinearity for channel attention,
using adjacent dense block features to enhance relevant
semantic information, combining lower-order features with
more spatial prediction and higher-order features with more
semantic prediction features; final model obtains better
detection results than existing manual detection methods.

Second, multidimensional attention with spatial atten-
tion gating is introduced between dense block at different
scales to adjust multiscale feature fusion and improve net-
work prediction capability. In noninvasive clinical image

lung cancer diagnosis research, which lacks reliable extrac-
tion of fine-grained features in different imaging modalities,
Qin [82] proposed multidimensional attention-based lung
cancer classification architecture for PET and CT images,
with 3D DenseNet processing different imaging modalities
in parallel, embedding spatial attention gating in dense
block, generating corresponding spatial mappings by high-
level semantic features and SE, implementing multidimen-
sional attention mechanism, enhancing fine-grained feature
extraction, and effectively reducing feature noise; quantita-
tive evaluation metrics and deep learning visualization anal-
ysis shows that architecture obtains 0.72 ROC curve area
and 0.92 accuracy, which can effectively extract fine-
grained features of different imaging modalities.

(3) Attention Mechanism Introduced to Whole Network.
Attention mechanism introduced in whole network has
channel spatial and LSTM adaptive attention mechanism.
First, skin lesion regions vary in color, size, and shape; some
light lesions are highly similar to normal skin, and bound-
aries of deeper lesion regions are complex, to segment model
with sufficiently dense feature resolution, Ren et al. [83] used
serial attention network (SANet) to segment skin lesion
regions and introduced channel first followed by a spatial
attention mechanism to aggregate global, local, and inter-
channel information using interdependencies between chan-
nel mappings to improve representation of semantic features
and using spatial attention to select global contextual infor-
mation and contextual relationships to make semantic fea-
tures more compact and consistent; SANet captures
interpixel and interchannel feature dependencies and
achieves 0.7692 average Jaccard index in ISIC2017 dataset.
Second, it is difficult for image caption generation tasks to
correctly extract image global features and perform image
regions for each word without ignoring partial words, Deng
et al. [84] used DenseNet to extract features required for
LSTM generation of sentences and introduced LSTM adap-
tive attention mechanism to improve correspondence prob-
lem of forced text and image regions, which was
demonstrated on Flickr30k and COCO datasets showed that
flexibility of caption generation was improved, with signifi-
cant improvements in the BLEU and METEOR evaluation
criteria.

4. Application of DenseNet in Medical
Image Analysis

Reviewing the past 10 years, deep learning has seen a prolif-
eration of improvements in models and algorithms, and
availability and computational power of large-scale image
data has continued to improve, solving many challenges in
computer vision. In 2022, Li et al. [85] provided a compre-
hensive summary of deep learning research in medical image
classification, detection and segmentation, alignment, and
retrieval; applications of DenseNet for medical images
mainly include image classification, segmentation, detection,
alignment, reconstruction, retrieval, generation, enhance-
ment, and fusion, but research and improvement of its tech-
nology mainly focus on classification and recognition,
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segmentation, and localization detection; medical image
classification commonly used application scenarios are dis-
ease diagnosis; medical image segmentation projects are
mostly applied to segmentation of lesions and organs, such
as brain segmentation, lung segmentation, heart segmenta-
tion, and liver segmentation. Therefore, this section summa-
rizes applications of DenseNet in field of medical image
analysis from these three aspects.

4.1. Application of DenseNet in Medical Pattern Recognition.
Image pattern recognition is a popular research area in com-
puter vision, which usually includes two steps: feature
extraction and classifier. Medical image classification is fur-
ther divided into image screening and lesion classification.
Image screening uses detection images as model input to
predict whether the disease is suffered or graded in severity.
Lesion classification assists clinicians in diagnosing human
lesions and grading the severity quantitatively, and it is
important to identify tumors and nodules in human tissues
and organs. This section summarizes applications of medical
image pattern recognition from perspective of combining
DenseNet with other methods; 12 improved methods are
shown in Figure 14.

4.2. Combine Dense Block with Other Methods. First, Guo
and Yuan [86] combined dense block and adaptive aggrega-
tion attention (AAA) module to classify wireless capsule
endoscopy images (WCE); AAA captured global correlation
to estimate abnormal regions and obtained 93.17% accuracy
in quadruple crossover on CAD-CAP WCE dataset. Second,
in pediatric radiology and forensic medicine, bone age
assessment is one of clinical diagnostic techniques to evalu-
ate skeletal development in children, Guo et al. [87] tandem
six dense blocks to perform comprehensive evaluation of
high- and low-quality X-ray images to achieve state-of-the-
art performance under MAE metric.

4.3. DenseNet Variants. Rajpurkar et al. [88] proposed 121-
layer convolutional neural network CheXNet based on Den-
seNet, applied to the largest publicly available chest X-ray
dataset ChestX-ray14, which contains over 100,000 X-ray
images of 14 diseases, and CheXNet exceeded average radi-
ologist F1 metrics on a test set annotated by four practicing
radiologists performance.

4.4. Combine DenseNet with Others. DenseNet integrates
with other networks: first, chest X-ray images, as the most
common screening technique for diagnosing chest diseases
(atelectasis, cardiomegaly, pneumonia, etc.) suffer from
complex background, many potential abnormalities, diverse
interactions between abnormal patterns, etc. Traditional
techniques focus on low-level features such as appearance,
texture, and contrast, although deep networks can extract
higher-level features, single network in intermediate layers
also loses some unique details, and homogeneous networks
learning complementary features from each other may over-
lap, Chen et al. [89] used DualCheXNet, a dual asymmetric
network, to improve performance of multilabel chest disease
classification, with parallel asymmetric subnetworks Dense-
Net and ResNet both using jump connections to create short
paths, and enhanced gradient propagation from previous to
following layers, residual connection to reuse early features,
and dense connection to mine new features; advantages of
different unique feature extraction methods complemented
each other and were validated on ChestX-ray14 dataset,
obtaining average AUC score of 0.823. Second, Srivastva
et al. [90] proposed PlexNet integrated with pretrained Den-
seNet and ResNet for ECG biometrics, feature level fusion
approach for tandem features, and fully connected layer
based on similarity classification, using both migration
learning and integrated learning to take advantage of model
effectiveness and robustness demonstrated on PTB and
CYBHI datasets. Third, Kedia et al. [91] combined Dense-
Net121 and VGG19 into CoVNet-19 two-level stacking
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Figure 14: Application of DenseNet in medical classification and recognition.
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model, both models extracted chest X-ray features and min-
imized noise, SVM achieved three-level classification of
COVID-19, pneumonia, and normal, obtaining 98.28%
overall accuracy and 97.15% Mathews correlation coefficient
and F1 scores of 99% in both binary classifications.

DenseNet combined with other network structures;
fourth, Li et al. [92] combined DenseNet and bidirectional
recurrent neural network (Bi-LSTM) to predict vivo RNA
transcripts from in vitro data; Bi-LSTM learns RNA
sequences, secondary structure information and pairwise
probability features, which were reshaped into matrices
and fed into DenseNet with prediction accuracy and scal-
ability in with better performance. Fifth, Man et al. [93]
screened mislabeled plaques in breast histopathology images
based on generative adversarial network (GAN) unsuper-
vised abnormality detection; DenseNet extracted multilevel
features of plaques for benign and malignant classification,
achieving excellent results on coarse-grained high-
resolution images especially 40x and 100x images.

DenseNet is combined with other methods; sixth, Dev-
nath et al. [94] used CheXNet to extract multilevel features
of chest X-ray images, mixed SVM and CNN aggregation
methods, transition layer low-level features, and deep-level
features mapped to high-dimensional space after merging
dichotomous classification. Seventh, Turkoglu [95] proposed
a multicore extreme learning machine (ELM) method to
extract deep-level features of chest CT with pretrained Den-
seNet201, and ELM classifier classified features with differ-
ent activation methods to predict final presence of neo-
coronary pneumonia by majority voting. Eighth, Yuan
et al. [96] addressed the problem of imbalance and discrep-
ancy between small and large categories in wireless capsule
endoscopy images and proposed DenseNet-UDCS polyp
recognition model by calculating suitable features, unbal-
ance discriminant loss (UD) function to improve model sen-
sitivity to minority groups and category-sensitive loss (CS)
constraint to learn features in hierarchically between differ-
ent categories, so that intraclass differences minimized and
interclass distance within batches maintained, with more
advantages in model recognition accuracy, computational
speed, and stability. Ninth, Ellis et al. [97] mixed weakly
supervised, extrasupervised, and annotated classification of
two-view chest radiographs; DenseNet-121 extracted fea-
tures to generate 1D global feature vector and estimated
scores; fully connected layer gradients were convolved with
feature sets to estimate gradient class activation maps (Grad-
CAM); attention mining branch learned GradCAM thresh-
old operations using DenseNet-121, which masked
important classification regions in input, increasing accuracy
and sensitivity to negative prediction values, despite a
decrease in false positives and decreases in overall accuracy.

4.5. Application of DenseNet in Medical Image Segmentation.
Medical image segmentation is to identify contour of target
region or internal voxel collections, which is a key task for
clinical surgical images to guide tumor radiotherapy, medi-
cal image organ and lesion segmentation allows quantitative
analysis of volume and shape-related clinical parameters.
Effective automatic organ segmentation is very challenging,

medical images have high complexity, lack of simple linear
features, insignificant brightness differences between organs,
connected to surrounding organs, and blurred boundaries,
as well as interference factors such as image artifacts and
noise, and segmentation results accuracy is also affected by
partial volume effects, gray scale inhomogeneity, artifacts
and gray scale proximity between different soft tissues. Tra-
ditional segmentation algorithms are difficult to process
images accurately, and application of DenseNet makes med-
ical image segmentation effect improved, summarizing the
seven models shown in Figure 15.

4.5.1. Dense Block in Medical Image Segmentation
Application Research. First, dense block replaces convolu-
tional layer. Ding et al. [98] used dense block instead of
codec convolutional layer to extract low-level visual features
of multimodal brain tumors, and fused high-level semantic
features to generate high-resolution features with fewer net-
work parameters and fast segmentation, achieving good seg-
mentation results. AIGhamdi et al. [99] introduced dense
block in U-net for breast artery calcification detection; DU-
net has dense connectivity, which helps to improve compu-
tational reusability and gradient mobility and improves
accuracy and training difficulty. Second, codec introduces
dense block. Vila et al. [100] performed semantic segmenta-
tion of carotid ultrasound plaques based on DenseNet, dense
connectivity captured multiscale contextual information,
and correlation coefficient of carotid intima-media thickness
reached 0.81 in the experiment; robustness and generaliza-
tion ability were validated on two datasets. Thirdly, 3D
dense block was applied to segmentation networks. Bui
et al. [101] proposed 3D-SkipDenseSeg, an accurate segmen-
tation method for infant brain MRI, in which jump connec-
tions directly combine fine and coarse feature information
from different levels of dense block to alleviate low accuracy
problem caused by low-intensity contrast between MRI tis-
sues, final model obtained the best dice similarity coefficient
of 90.37, and segmentation accuracy and parameter effi-
ciency are high.

(1) Dense Connection in Medical Image Segmentation Appli-
cation Research. First, dense connection is introduced in
codecs. Shi et al. [102] proposed dual dense context-aware
network (DDCNet) to automatically segment hippocampus;
dense connection is introduced between codecs to fuse high
level and low level multiresolution features and contextual
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Figure 15: Application of DenseNet in medical image
segmentation.
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information, which can enhance interlayer feature propaga-
tion and improve information flow between codecs. Second,
nested U-net introduces dense connection; Li et al. [103]
proposed ANU-Net combining deeply supervised codec
structure and nested segmentation network, designed full
resolution nested U-net between codecs, introduced dense
connection between nested convolutional layers of same res-
olution to obtain full-resolution features at different seman-
tic levels, and experimentally demonstrated that ANU-Net
can suppress irrelevant background regions while increase
target region weight.

(2) DenseNet in Medical Image Segmentation Application
Research. Multipath DenseNet extracts features. Kitrungrot-
sakul et al. [104] proposed multipath DenseNet for hepatic
vascular segmentation, binary classification of blocks in
three planes, sagittal, coronal and transverse; IRCAD dataset
experiments show that the model is currently the latest
method accuracy.

4.6. Application of DenseNet in Medical Object Detection.
Localization of anatomical structures and lesion regions in
human organs is an important preprocessing step in clinical
treatment planning and intervention, and localization of
specific biomarkers or anatomical structures in medical
images is directly related to treatment outcome. The key tar-
get of interest or lesion detection is to classify each pixel;
DenseNet is applied to improve the effectiveness of medical
image localization detection, with the following three main
models.

First, Ghatwary et al. [105] detected esophageal abnor-
malities in endoscopic images based on faster R-CNN- and
DenseNet-enhanced feature propagation between layers,
combined with Gabor manual feature enhancement to
detect texture details in stage, obtaining 92.1% and 91%
accuracy on MICCAI2015 and Kvasir datasets. Second, Liu
et al. [106] proposed fully convolutional dense pixel classifier
(FC-DenseNet) depicting ribs and clavicles, aggregating con-
textual information with jump connections, dense blocks
instead of upsampling paths in convolutional layer, and
dense connections to enhance feature propagation and
reuse, and FC-DenseNet automatically depicts chest radio-
graphs from multiple public databases to generate accurate
binary edge maps, verifying the effectiveness of the model
for bone suppression. Third, Xiao et al. [107] designed Siam
network based on DenseNet to track vessel wall displace-
ment from ultrasound RF signals and target blocks of labeled
data as convolutional kernels to calculate blocks in search
region with similarity score maps, achieving first single-
target displacement tracking in ultrasound pulse wave imag-
ing, accurately predicting local mechanical properties of
arteries, and tracking better than traditional single-target
block matching better.

5. Summary and Outlook

In summary, DenseNet, which can learn deeper and more
discriminative features from images, has been applied to sev-
eral research areas of medical image analysis and has made

breakthroughs; although DenseNet has been effectively vali-
dated in publicly available and relevant medical image data-
bases [41], it still faces many challenges. First, the huge
amount of medical data outside images [4] contains rich
information, but it is difficult to be fully utilized, such as
additional labels indicating lesion conditions, clinical diag-
nosis reports reflecting physicians’ conclusions and descrip-
tions, which can help deep learning models to improve
diagnostic performance, and recurrent convolutional neural
networks (RNN) can be utilized to incorporate medical
other data into DenseNet.

Second, deep learning models rely on a large number of
manually labeled datasets [108, 109], which usually require
significant effort and time to collect, clean, and debug data,
and changes and evolution of actual task requirements also
lead to retagging of the datasets, data dependence of models
and cost of dataset labeling are issues that need to be
urgently addressed by researchers. With the limited labeled
trainable data [110, 111] currently available for training,
semisupervised and weakly supervised methods can be used
to learn unlabeled, weak, and small portions of labeled data.

Finally, there are still many challenges to training a
model with higher classification or prediction accuracy and
better generalization ability. There are limitations in using
multiple branches to achieving DenseNet broaden; Dense-
Net lightweight is not only studied from the direction of
architecture design and model compression but also based
on data considerations, such as dimensionality reduction of
intermediate features; dense connections lead to redundancy
of feature extraction in different layers; dense block has
excellent performance, but transition layer structure of
dimensionality reduction is too simple, and it is difficult
for single sensory field to capture multilevel features of dense
block; the existing attention mechanism is basically in form
of “weighting,” and appropriate attention mechanism should
be designed according to data characteristics, such as resid-
ual shrinkage network [112]; “soft thresholding” is used to
cope with strong noisy data.

Massive medical domain data presents challenges and
opportunities for researchers in medical image analysis, by
appropriate integration methods, different types of domain
knowledge are used to assist deep learning to better accom-
plish corresponding tasks, and natural image pretraining
weights are also introduced to improve network perfor-
mance in medical domain. The massive data in medical
image analysis will provide inexhaustible power as network
architecture and algorithms improve; dense block and dense
connection in DenseNet can be optimized for these new
models, and DenseNet-base derivative models may also yield
significant improvements in results for specific tasks.
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