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ABSTRACT Mansfield is a PB1-like Escherichia bacteriophage with a 68,120-bp ge-
nome and a predicted 3,673-bp direct terminal repeat. This myophage encodes 105
proteins, for which 32 functions were predicted.

Escherichia coli is a commensal Gram-negative bacterium that thrives in the intestinal
section of the gastrointestinal tract (1), but some strains are pathogenic (2). E. coli

O157:H7 is one of the most virulent serotypes, with its strains inducing severe bloody
diarrhea and dehydration in infected patients (3). Although humans are a primary host
for symbiotic E. coli strains, livestock have also been identified as carriers and shedders
of strains that are commensal and pathogenic to humans (4). With the rise of antibiotic
resistance, bacteriophages are being considered as a precision alternative medicine for
eliminating E. coli specifically (5). Here, we present the genome sequence of myophage
Mansfield, which infects E. coli.

Mansfield was isolated from filtered (0.2-�m pore size) stream water in College
Station, TX, by propagation on its host, E. coli 4s, grown in Luria broth/agar aerobically
at 37°C via the soft agar overlay method (6, 7). Mansfield genomic DNA was purified
using the Promega Wizard DNA clean-up system described by Summer (8). A library
prepared with a TruSeq Nano low-throughput kit was sequenced on an Illumina MiSeq
platform using paired-end 250-bp reads with V2 500-cycle chemistry. The 414,121
sequence reads from the index containing the phage genome were quality controlled
using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), and a com-
plete genome was assembled via SPAdes v3.5.0 (9), with 297.7-fold coverage after
trimming with the FASTX-Toolkit 0.0.14 (http://hannonlab.cshl.edu/fastx_toolkit/). PCR
(forward primer, 5=-CGACACATTCGGTCCACTAA-3=; reverse primer, 5=-TATTGAGCGTTC
CCTCGAAAG-3=) and Sanger sequencing were used to close the genome. Gene calling
was completed with Glimmer v3.0 and MetaGeneAnnotator v1.0 (10, 11). Gene func-
tions were predicted using InterProScan v5.33-72, TMHMM v2.0, and BLAST v2.2.31 at
their default settings, cross-referencing hits for BLAST at a 0.001 maximum expected
value cutoff versus the NCBI nonredundant, UniProtKB Swiss-Prot, and TrEMBL data-
bases (12–15). Additional evidence came from the HHSuite v3.0 tool HHpred (multiple-
sequence alignment [MSA] generation with HHBlits ummiclus30_2018_08 database
and modeling with PDB_mmCIF70) (16). TransTermHP v2.09 was used to annotate
Rho-independent termination sites (17). The absence of tRNA genes was deter-
mined using ARAGORN v2.36 (18). Genome sequence similarities were calculated by
progressiveMauve 2.4.0 (19). All tools are hosted in the Center for Phage Technology
Galaxy instance, and annotation was performed in Web Apollo (https://cpt.tamu.edu/
galaxy-pub) (20, 21). To determine Mansfield’s morphology, samples were negatively
stained with 2% (wt/vol) uranyl acetate and viewed by transmission electron micros-
copy at the Texas A&M Microscopy and Imaging Center (22).

The Mansfield genome is 68,120 bp, with a G�C content of 46.14%. The 105
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protein-coding genes are at a 93% coding density, and 32 have a predicted function.
Mansfield’s genome was opened at the boundary of 3,673-bp direct terminal repeats
predicted by PhageTerm (23).

The two phages most closely related to Mansfield are PB1-like phages of the
pbunaviruses, Escherichia phage ECML-117 (GenBank accession number JX128258) and
Escherichia phage FEC19 (GenBank accession number MH816966), having 90.89%
nucleotide similarity and 90 proteins in common with phage ECML-117, and 90.52%
nucleotide similarity with 89 proteins in common for phage FEC19 (24, 25).

Data availability. The genome sequence and associated data for phage Mansfield
were deposited under GenBank accession number MK903282, BioProject accession
number PRJNA222858, SRA accession number SRR8893603, and BioSample accession
number SAMN11414488.
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