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Limitations of the incidence density ratio as
approximation of the hazard ratio
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Abstract

Background: Incidence density ratios (IDRs) are frequently used to account for varying follow-up times when
comparing the risks of adverse events in two treatment groups. The validity of the IDR as approximation of the
hazard ratio (HR) is unknown in the situation of differential average follow up by treatment group and non-
constant hazard functions. Thus, the use of the IDR when individual patient data are not available might be
questionable.

Methods: A simulation study was performed using various survival-time distributions with increasing and decreasing
hazard functions and various situations of differential follow up by treatment group. HRs and IDRs were estimated from
the simulated survival times and compared with the true HR. A rule of thumb was derived to decide in which data
situations the IDR can be used as approximation of the HR.

Results: The results show that the validity of the IDR depends on the survival-time distribution, the difference between
the average follow-up durations, the baseline risk, and the sample size. For non-constant hazard functions, the IDR is
only an adequate approximation of the HR if the average follow-up durations of the groups are equal and the baseline
risk is not larger than 25%. In the case of large differences in the average follow-up durations between the groups and
non-constant hazard functions, the IDR represents no valid approximation of the HR.

Conclusions: The proposed rule of thumb allows the use of the IDR as approximation of the HR in specific data situations,
when it is not possible to estimate the HR by means of adequate survival-time methods because the required individual
patient data are not available. However, in general, adequate survival-time methods should be used to analyze adverse
events rather than the simple IDR.

Keywords: Hazard function, Incidence rate, Incidence density ratio, Randomized controlled trials, Simulation, Time-to-event
data

Background
Adverse events play an important role in the assessment
of medical interventions. Simple standard methods for
contingency tables are frequently applied for the analysis
of adverse events. However, the application of simple,
standard methods may be misleading if observations are
censored at the time of discontinuation due to, for example,
treatment switching or noncompliance, resulting in varying
follow-up times, which sometimes differ remarkably
between treatment groups [1]. Incidence densities (IDs), i.e.,
events per patient years, are frequently used to account for
varying follow-up times when quantifying the risk of adverse

events [2–4]. IDs are also called exposure-adjusted incidence
rates (EAIRs) to underline that varying follow-up times are
taken into account [2–5]. For comparisons between groups,
incidence density ratios (IDRs) are used together with confi-
dence intervals (CIs) based upon the assumption that the
corresponding time-to-event variables follow an exponential
distribution. The corresponding results are interpreted in
the same way as hazard ratios (HRs).
An example is given by the benefit assessment of the

Institute for Quality and Efficiency in Health Care
(IQWiG) in which the added benefit of abiraterone acet-
ate (abiraterone for short) in comparison with watchful
waiting was investigated in men with metastatic prostate
cancer that is not susceptible to hormone-blocking ther-
apy, who have no symptoms or only mild ones, and in
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whom chemotherapy is not yet indicated [6]. In this re-
port the IDR was used to compare the risks of cardiac
failure in the abiraterone group and the control group of
the corresponding approval study. The result was IDR =
4.20, 95% CI 0.94, 18.76; P = 0.060. It is questionable
whether the use of the IDR is adequate in this data situ-
ation because the median follow-up duration was 14.8
months in the abiraterone group but only 9.3 months in
the control group. The reason for this large difference
was the discontinuation of treatment after disease pro-
gression with stopping of the monitoring of adverse
events 30 days later. In the situation of constant hazard
functions, i.e., if the time-to-event data follow an expo-
nential distribution, the IDR accounts for the differential
follow up by treatment group. However, if the hazard
functions are not constant, the effect of differential fol-
low up by treatment group on the behavior of the IDR is
unknown. Appropriate methods should be used for ana-
lysis of survival data if access to the individual patient
data is available. However, access to the individual patient
data is not available in the assessment of dossiers or publi-
cations with aggregate-level data. In this situation, a deci-
sion has to be made on the situations in which the IDR can
or cannot be used as adequate approximation for the HR.
The use of IDs makes sense in the situation of constant

hazard functions in both groups [2, 3, 5, 7]. However, time-
to-event data rarely follow an exponential distribution in
medical research [3, 7]. In the case of low event risks, devia-
tions from the exponential distribution may be negligible if
the average follow up is comparable in both groups [2].
However, in the case of differential follow up by treatment
group, deviations from the exponential distribution may
have a considerable effect on the validity of the IDR and
the corresponding CIs as an approximation of the HR.
Kunz et al. [8] investigated bias and coverage probability

(CP) of point and interval estimates of IDR in meta-ana-
lyses and in a single study with differential follow up by
treatment group when incorrectly assuming that average
follow up is equal in the two groups. It was shown that
bias and CP worsen rapidly with increasing difference in
the average follow-up durations between the groups [8].
Here, we do not consider the effect of incorrectly assum-
ing equal average follow-up durations. IDR is calculated
correctly by using the different follow-up durations in the
groups. The focus here is the effect of deviations from the
exponential distribution of the time-to-event data.
In this paper, the validity of the IDR as approximation of

the HR is investigated in the situation of differential average
follow up by treatment group by means of a simulation
study considering decreasing and increasing hazard func-
tions. A rule of thumb is derived to decide in which data
situations the IDR can be used as approximation of the HR.
We illustrate the application of the rule by using a real data
example.

Methods
Data generation
We considered the situation of a randomized controlled
trial (RCT) with two parallel groups of equal sample size n
in each group. We generated data for a time-to-event
variable T (time to an absorbing event or time to first
event) with a non-constant hazard function according to
Bender et al. [9]. The Weibull distribution is used to gen-
erate data with decreasing and the Gompertz distribution
is used to generate data with increasing hazard functions.
The survival functions S0(t)weib and S0(t)gomp of the control
group using the Weibull and the Gompertz distribution,
respectively, are defined by:

S0 tð Þweib ¼ exp −λtνð Þ ð1Þ

S0 tð Þgomp ¼ exp
λ
α

1− expðαtð Þ
� �

; ð2Þ

where λ > 0 is the scale parameter and ν > 0, α ∈ (−∞,∞)
are the shape parameters of the survival time distribu-
tions. The corresponding hazard functions of the control
group are given by:

h0 tð Þweib ¼ λ v tv−1 ð3Þ
h0 tð Þgomp ¼ λ exp αtð Þ; ð4Þ

leading to a decreasing hazard function for ν < 1 (Weibull),
and an increasing hazard function for α > 0 (Gompertz).
We simulated data situations with identical and with

different average follow-up durations in the control and
intervention group. The average follow-up duration in
the control group relative to the intervention group var-
ied from 100% to 30% (in steps of 10%, i.e., 8 scenarios).
To simulate a variety of study situations, we chose 9 dif-
ferent baseline risks (BLRs) (BLR = 0.01, 0.02, 0.05,
0.075, 0.1, 0.15, 0.2, 0.25, and 0.3), 7 different effect sizes
(HR = 0.4, 0.7, 0.9, 1, 1.11, 1.43, and 2.5), and 3 different
sample sizes (N = 200, 500, and 1000, with 1:1
randomization). The BLR is the absolute risk of an event
in the control group over the actual follow-up period in
the control group. The parameters of the survival-time
distributions were chosen so that the specified baseline
risks and effect sizes are valid for the corresponding fol-
low-up duration in the control group and the HR for the
comparison treatment versus control, respectively. We
considered 1 situation with decreasing hazard function
(Weibull distribution with shape parameter ν = 0.75) and
3 different situations with increasing hazard function
(Gompertz distribution with shape parameter α = 0.5,
0.75, 1) because the case of increasing hazard was ex-
pected to be the more problematic one. The correspond-
ing scale parameters λ for both the Weibull and the
Gompertz distribution varied depending on the baseline
risk and the follow-up duration in the control group.
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First results showed that in some situations with rela-
tive average follow-up durations in the control group of
80%, 90%, and 100%, the IDR has adequate properties
for all baseline risks considered. Therefore, additional
simulations were performed in these cases with larger
baseline risks (0.5, 0.7, 0.9, 0.95, and 0.99). In total, the
combination of 4 survival distributions with 8 or 3 rela-
tive follow-up durations, 9 or 5 baseline risks, 7 effect
sizes, and 3 sample sizes resulted in (4 × 8 × 9 × 7 ×
3) + (4 × 3 × 5 × 7 × 3) = 7308 different data situations.
We included only simulation runs in which at least 1

event occurred in both groups and the estimation algo-
rithm of the Cox proportional hazard model converged.
If at least one of these conditions was violated a new
simulation run was started, so that for each of the 7308
data situations 1000 simulation runs were available. This
procedure leads to a bias in situations in which simula-
tion runs frequently had to be repeated (very low base-
line risk, low sample size). However, this problem
concerns both IDR and HR and it was not the goal of
the study to evaluate the absolute bias of the estimators.

Data analysis
The IDR was calculated from the simulated time-to-
event data by:

IDR ¼ e1=
Pn

j¼1t1 j
e0=

Pn
j¼1t0 j

¼ e1
Pn

j¼1t0 j
e0
Pn

j¼1t1 j
; ð5Þ

where ei represents the number of events in the control
(i = 0) and the intervention group (i = 1), respectively,
and tij represents the time to event or to study ending in
patient j (j = 1, …,n) in group i (i = 0,1).
A 95% CI for IDR based on the assumption of a con-

stant hazard function was obtained according to Deeks
et al. [10] by:

IDR� expðz0:975 � SEðlogðIDRÞÞ; ð6Þ
where z0.975 =Φ−1(0.975) and Φ denotes the cumulative
density function of the standard normal distribution.
The standard error (SE) of log (IDR) is given by:

SE log IDRð Þð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
e1

þ 1
e0

r
: ð7Þ

The Cox proportional hazards model was used for
point and interval estimation of the HR. All analyses
were performed using the R statistical package [11].

Performance measures
To assess the adequacy of the IDR as approximation of
the HR in the situation of non-constant hazard functions
we calculated the coverage probability (CP) of the 95%
CIs and the mean square error (MSE) and the SE of the

point estimates log (IDR) and log (HR). For effect sizes
not equal to 1 (i.e., true HR ≠ 1), additionally the relative
bias was calculated. The relative bias is given by the
mean percent error (MPE) defined by:

MPE ¼ 100
1
s

Xs

j¼1

θ j−θtrue
θtrue

; ð8Þ

where s is the number of simulation runs (s = 1000), θj is
the estimate of the considered parameter in simulation j,
and θtrue is the true value of the considered parameter.
The true HR was used as the true value for the HR esti-
mation and for the IDR estimation because the goal of
the study was to evaluate the adequacy of the IDR as ap-
proximation of the HR. Moreover, in the case of non-
constant hazard functions the IDR can be calculated by
means of formula (5). However, there is no clear theoret-
ical parameter available that is estimated by the empir-
ical IDR.
The primary performance measure is given by the CP,

which should be close to the nominal level of 95%. To
identify data situations in which the IDR can be used as
adequate approximation of the HR we used the criterion
that the CP of the 95% CI should be at least 90%. A rule
of thumb was developed depending on the relative aver-
age follow-up duration in the control group and the
baseline risk, to decide whether or not the IDR can be
used as a meaningful approximation of the HR.

Results
Simulation study
In the situations considered in the simulation study it is
not problematic to use the IDR as approximation of the
HR if the average follow-up durations in both groups are
equal and the BLR is not larger than 25%. The minimum
CP of the interval estimation of the IDR is 92,5% (CP for
HR 93,4%) for the Weibull and 91,2% (CP for HR 93,1%)
for the Gompertz distribution. There were no relevant
differences between the IDR and HR estimations in bias
or MSE (results not shown). This means that even in the
case of non-constant hazard functions but a constant
HR, the IDR - independent of the effect size and the
sample size - can be used as approximation to the HR if
the average follow-up durations in both groups are equal
and the BLR is not larger than 25%.
The situation is different in the case of unequal aver-

age follow-up durations in the two groups, which is the
more important case in practice. In this situation, there
are shortfalls in the CP and in part large relative bias
values for the IDR. The CP decreases remarkably under
the nominal level of 95% with increasing difference in
the average follow-up durations between the groups.
The CP improves with decreasing sample size, due to
the decreasing precision. Therefore, the sample size of
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N = 1000 is the relevant situation for the derivation of
general rules.
Figure 1 shows exemplarily the CP results for IDR and

HR dependent on the BLR and the relative average follow-
up duration in the control group, for the Gompertz distri-
bution with shape parameter α = 1, sample size N = 1000,
and a true HR of 0.4. We see that the CP for the IDR
decreases remarkably under the nominal level of 95% with
increasing difference in the average follow-up durations
between the groups and with increasing BLR, whereas the
CP for the HR lies within the desired area in all situations.
The results for the Gompertz distribution, with shape

parameter α = 1, sample size N = 1000, and a relative
average follow-up duration in the control group of 90%,
are presented In Table 1 as an example. We can see in
Table 1 that the CP of the 95% CIs of the IDR is larger
than 90% if BLR is ≤ 10%, but is below 90% if BLR is ≥
15%, which means that IDR is an adequate approxima-
tion of the HR in the corresponding data situation if
BLR is ≤ 10%. However, even in these cases a strong,
relative bias in the IDR occurs with absolute MPE values
partially above 100% (overestimation for the Weibull
and underestimation for the Gompertz distribution).
This can be accepted in practice for the following
reason. The MPE is given in the log scale. A relative bias
of MPE = 100% means that a true HR = 0.9 is estimated
by IDR = 0.81. Such a bias seems to be acceptable if the
corresponding CI has a CP of at least 90%.

Thresholds for BLR were derived for all other data sit-
uations. In total, 4 × 3 × 8 = 96 tables were produced for
the 4 survival-time distributions, 3 sample sizes, and 8
relative average follow-up durations considered in the
control group. The results are summarized in Table 2.
Whether the IDR can be considered as adequate ap-
proximation of the HR depends not only on the BLR
and the difference in the average follow-up durations be-
tween the groups but also, e.g., on the true survival-time
distribution, which is unknown in practice. However, to
derive general rules for the identification of situations in
which the IDR can be used as approximation for the
HR, the consideration of the BLR in dependence on the
relative average follow-up duration in the control group
seems to be sufficiently accurate. From Table 2, the fol-
lowing pragmatic rules can be derived:

� The IDR can be used in the case of equal follow-up
durations in the two groups if BLR is ≤ 25%

� The IDR can be used in the case of a relative
average follow-up duration in the control group
between 90% and 100% if BLR is ≤ 10%

� The IDR can be used in the case of a relative
average follow-up duration in the control group
between 50% and 90% if BLR is ≤ 1%

� The IDR should not be used in the case of relative
average follow-up durations < 50% in the control
group

Fig. 1 Coverage probability (CP) by baseline risk for the Gompertz distribution with shape parameter α = 1, sample size N = 1000, relative average
follow-up duration in the control group from 30% to 100%, and a true hazard ratio (HR) of 0.4. The shaded area is the range of the CP for the HR
over all these 72 scenarios; solid lines represent the CP for the incidence density ratio (IDR) for the different relative average follow-up duration in
the control group; the horizontal dashed line marks the desired CP of 0.95

Bender and Beckmann Trials          (2019) 20:485 Page 4 of 8



Other improved rules can be derived in certain situa-
tions if there is knowledge about the true survival-time
distribution. However, this requires new simulations
with the specific survival-time distribution. Without

knowledge about the true survival-time distribution, the
rule of thumb presented above can be used for practical
applications when there is no access to the individual
patient data.

Table 1 Results for the Gompertz distribution

BLR True
HR

CP MPE MSE SE

IDR HR IDR HR IDR HR IDR HR

0.01 0.4 0.976 0.978 −22.678 −9.860 0.595 0.580 0.026 0.027

0.7 0.964 0.978 −45.271 −5.351 0.612 0.634 0.023 0.024

0.9 0.983 0.989 − 128.131 1.149 0.466 0.461 0.021 0.022

1 0.977 0.976 NA – 0.458 0.455 0.020 0.021

0.02 0.4 0.956 0.970 −7.247 7.156 0.369 0.404 0.018 0.019

0.7 0.952 0.956 −34.036 1.679 0.280 0.285 0.015 0.016

0.9 0.943 0.953 − 118.042 4.062 0.240 0.243 0.014 0.015

1 0.956 0.973 NA NA 0.209 0.214 0.014 0.014

0.05 0.4 0.930 0.948 −11.000 3.343 0.145 0.149 0.011 0.012

0.7 0.928 0.964 −35.534 1.250 0.098 0.091 0.009 0.010

0.9 0.936 0.966 − 133.290 −13.655 0.095 0.083 0.009 0.009

1 0.929 0.946 NA NA 0.087 0.077 0.009 0.009

0.075 0.4 0.931 0.970 −12.835 2.092 0.086 0.082 0.009 0.009

0.7 0.921 0.958 − 37.182 −1.180 0.070 0.059 0.008 0.008

0.9 0.914 0.954 − 125.979 −6.983 0.069 0.055 0.007 0.007

1 0.916 0.945 – – 0.065 0.053 0.007 0.007

0.1 0.4 0.914 0.943 −11.975 2.503 0.076 0.072 0.008 0.008

0.7 0.907 0.941 −33.896 2.140 0.061 0.052 0.007 0.007

0.9 0.927 0.968 −102.743 13.059 0.047 0.038 0.006 0.006

1 0.902 0.959 NA NA 0.053 0.038 0.006 0.006

0.15 0.4 0.885 0.942 −14.697 0.333 0.058 0.046 0.006 0.006

0.7 0.875 0.943 −35.599 0.407 0.045 0.033 0.005 0.006

0.9 0.888 0.953 − 115.852 0.054 0.039 0.027 0.005 0.005

1 0.884 0.958 NA NA 0.037 0.024 0.005 0.005

0.2 0.4 0.851 0.949 −15.946 −1.037 0.049 0.031 0.005 0.006

0.7 0.852 0.945 −36.576 −1.049 0.037 0.023 0.005 0.005

0.9 0.869 0.955 − 111.602 0.545 0.031 0.019 0.004 0.004

1 0.862 0.951 NA NA 0.031 0.019 0.004 0.004

0.25 0.4 0.835 0.957 −15.713 −0.142 0.043 0.025 0.005 0.005

0.7 0.830 0.951 −36.719 −0.629 0.033 0.019 0.004 0.004

0.9 0.854 0.950 −115.785 −5.196 0.028 0.015 0.004 0.004

1 0.872 0.956 NA NA 0.024 0.015 0.004 0.004

0.3 0.4 0.829 0.950 −16.209 0.014 0.038 0.019 0.004 0.004

0.7 0.818 0.956 −36.302 − 0.295 0.029 0.014 0.004 0.004

0.9 0.862 0.946 − 103.272 6.879 0.023 0.013 0.004 0.004

1 0.857 0.948 NA NA 0.021 0.013 0.003 0.004

Gompertz distribution with shape parameter α = 1, sample size N = 1000, and a relative average follow-up duration of 90% in the control group
If the true HR is 1 the MPE cannot be calculated
BLR baseline risk, CP coverage probability, HR hazard ratio, IDR incidence density ratio, MPE mean percent error, MSE mean square error, SE standard error
Numbers in boldface indicate a CP below 90%
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Example
For illustration we consider the IQWiG dossier assess-
ment, in which the added benefit of enzalutamide in
comparison with watchful waiting was investigated in
men with metastatic prostate cancer that is not suscep-
tible to hormone-blocking therapy, who have no or only
mild symptoms, and in whom chemotherapy is not yet
indicated [12]. According to the overall assessment,
enzalutamide can prolong overall survival and delay the
occurrence of disease complications. The extent of
added benefit is dependent on age [12].
The benefit assessment was based upon an RCT, which

was the approval study for enzalutamide in the indication
described above. In this study, patients were randomized to
either enzalutamide (intervention group) or placebo (control
group), while the hormone-blocking therapy was continued
in all patients. In each group, treatment was continued until
either disease progression or safety concerns arose. Due to
differential treatment discontinuation by treatment group,
the median follow-up duration for safety endpoints was
threefold longer in the intervention group (17,1months)
compared to the control group (5,4months).
Here, we consider the endpoint hot flashes, which

played a minor role in the overall conclusion of the benefit
assessment. However, for the present study this endpoint
is relevant, because interesting results are available for
three different analyses. In the corresponding dossier sub-
mitted by the company, effect estimates with 95% CIs and
P values were presented in the form of risk ratios (RRs)
based upon naive proportions, as IDRs and as HRs. Add-
itionally, Kaplan-Meier curves were presented. In each of
the analyses only the first observed event of a patient was
counted, i.e., there are no problems due to neglect of
within-subject correlation.

The following results were presented in the dossier for
the endpoint “at least one hot flash”. In the intervention
group 174 (20.0%) among n1 = 871 patients experienced
one or more events compared to 67 (7.9%) among n0 =
844 patients, which leads to an estimated RR = 2.52 with
95% CI 1.93, 3.28; P < 0.0001. However, as correctly ar-
gued by the company, this statistically significant effect
could be induced simply by the threefold longer median
follow-up duration in the control group. To account for
the differential follow-up duration by treatment group,
events per 100 patient years were presented (14.7 in the
intervention group and 12.4 in the control group) lead-
ing to the not statistically significant result of IDR = 1,19
with 95% CI 0.87, 1.63; P = 0.28. However, according to
our pragmatic rules, the IDR should not be used if the
relative average follow-up duration in the control group is
below 50%, which is the case here. Therefore, the validity
of the IDR results is questionable in this example. Fortu-
nately, the results of the Cox proportional hazards model
were also presented. The result was statistically significant
with an estimated HR = 2.29, 95% CI 1.73, 3.05; P <
0.0001. It should be noted that censoring is possibly not
independent of outcome, leading to high risk of bias.
Nevertheless, the results of the Cox proportional hazards
model are interpretable and were accepted in the dossier
assessment with the conclusion of a considerable harm of
enzalutamide for the endpoint hot flashes [12].
This example shows that the use of IDR is invalid in

the present case of differential follow-up duration by
treatment group and non-constant hazard functions.
From the Kaplan-Meier curves presented in the dossier
it can be concluded that the hazard function of the end-
point hot flashes is decreasing. This situation can be il-
lustrated as follows.
In Fig. 2 we consider the situation of decreasing hazard

with true HR= 2, i.e., the hazard in the intervention group
is larger compared to the control group. The relative aver-
age follow-up duration in the control group is only 33%
compared to the intervention group. If the hazard is
estimated simply by means of events per person year, it is
implicitly assumed that the hazards are constant. In fact,
however, the average hazard in each group is estimated by
means of the ID for the available follow-up duration. As the
follow-up duration in the control group is much shorter,
the right part of the true hazard function is not observed,
which leads to a strong bias of the ID as estimate of the
average hazard in the control group. Therefore, the IDR is
also biased as an estimate of the HR. In this example with
decreasing hazards and a large difference in the follow-up
durations between the treatment groups, the harmful effect
of enzalutamide on the endpoint hot flashes in comparison
with watchful waiting could not be detected by means of
the IDR. Therefore, the IDR is invalid here and should not
be used to describe the effect of the intervention.

Table 2 Maximum BLR for which CP of at least 90% is reached
for interval estimation of IDR as approximation of the HR

Relative
average
follow-
up time
of the
control
group

Maximum BLR

Weibull
(decreasing
hazard)

Gompertz (increasing hazard)

α = 0.5 α = 0.75 α = 1

30% – 1% – –

40% – 1% – –

50% 1% 2% 1% –

60% 2% 2% 1% 1%

70% 7.5% 5% 2% 1%

80% 30% 10% 2% 2%

90% 30% 30% 20% 10%

100% 30% 30% 30% 25%

Total sample size N = 1000
BLR baseline risk, CP coverage probability, HR hazard ratio, IDR incidence
density ratio
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Discussion
The IDR represents a valid estimator of the HR if the true
hazard function is constant. However, for non-constant
hazard functions we found that in the simulated data situ-
ations with decreasing and increasing hazard functions,
the IDR is only an adequate approximation of the HR if
the average follow-up durations in the groups are equal
and the baseline risk is not larger than 25%. In the case of
differential follow up by treatment group, the validity of
the IDR depends on the true survival-time distribution,
the difference between the average follow-up durations,
the baseline risk, and the sample size. As a rule of thumb,
the IDR can be used as approximation of the HR if the
relative average follow-up duration in the control group is
between 90% and 100% and BLR is ≤ 10, and in the situ-
ation where the average follow-up duration in the control
group is between 50% and 90% and BLR is ≤ 1%. The IDR
should not be used for relative average follow-up durations
in the control group below 50%, because in general the
IDR represents no valid approximation of the HR and the
meaning of the IDR is unclear. The usefulness of this rule
of thumb was illustrated by means of a real data example.
The results and the conclusions of our simulation

study are limited in the first instance to the data situa-
tions considered. We considered a wide range of effect
sizes (HR 0.4–2.5), three total sample sizes (N = 200,
500, 1000) with balanced design, and four survival-time
distributions with deceasing (Weibull distribution) and
increasing hazard functions (Gompertz distribution). For
the baseline risk, we considered almost the complete
range (0.01–0.99) in the simulations. We derived

practical rules to decide in which data situations the IDR
can be used as approximation of the HR. These rules
should also be approximately valid for other data situ-
ations. If detailed knowledge of the underlying sur-
vival-time distribution is available, more simulations
can be performed to find improved rules for the spe-
cific data situation.
We have not investigated the amount of bias associ-

ated with different patterns of dependent censoring. In
this context, the framework of estimands offers add-
itional possibilities to deal with competing events, lead-
ing to censoring mechanisms that are not independent
of the considered time-to-event endpoint [13]. We have
also not considered the data situations with recurrent
events. Extensions of the Cox proportional hazards
model, such as the Andersen-Gill, the Prentice-Williams-
Peterson, the Wei-Lin-Weissfeld, and frailty models
[14, 15] have been developed for analysis of recurrent
event data. The application of methods for analysis of
recurrent event data to analysis of adverse events in
RCTs is discussed by Hengelbrock et al. [16]. Further
research is required for the investigation of the im-
pact of dependent censoring and multiple events on
the validity of the IDR.

Conclusions
In summary, in the case of large differences in the average
follow-up durations between groups, the IDR represents
no valid approximation of the HR if the true hazard func-
tions are not constant. As constant hazard functions are
rarely justified in practice, adequate survival-time methods

Fig. 2 Effect of a shorter follow-up duration in the control group on the incidence density ratio (IDR). ID1(t1) is the estimated average hazard in
the intervention group up to t1 (black solid line), ID0(t0) is the estimated average hazard in the control group up to t0 (gray solid line); ID0(t1) is
the estimated average hazard in the control group up to t1 (gray dashed line), which is not observed; the use of ID1(t1) and ID0(t0) leads to a
biased estimate of the hazard ratio (HR)
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accounting for different follow-up times should be used to
analyze adverse events rather than the simple IDR, includ-
ing methods for competing risks [17]. However, the pro-
posed rule of thumb allows the application of IDR as
approximation of the HR in specific data situations, when
it is not possible to estimate the HR by means of adequate
survival-time methods because the required individual pa-
tient data are not available.
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