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Abstract

Mutation of sarA in Staphylococcus aureus results in a reduced capacity to form a biofilm, but the mechanistic basis for this
remains unknown. Previous transcriptional profiling experiments identified a number of genes that are differentially
expressed both in a biofilm and in a sarA mutant. This included genes involved in acid tolerance and the production of
nucleolytic and proteolytic exoenzymes. Based on this we generated mutations in alsSD, nuc and sspA in the S. aureus
clinical isolate UAMS-1 and its isogenic sarA mutant and assessed the impact on biofilm formation. Because expression of
alsSD was increased in a biofilm but decreased in a sarA mutant, we also generated a plasmid construct that allowed
expression of alsSD in a sarA mutant. Mutation of alsSD limited biofilm formation, but not to the degree observed with the
corresponding sarA mutant, and restoration of alsSD expression did not restore the ability to form a biofilm. In contrast,
concomitant mutation of sarA and nuc significantly enhanced biofilm formation by comparison to the sarA mutant.
Although mutation of sspA had no significant impact on the ability of a sarA mutant to form a biofilm, a combination of
protease inhibitors (E-64, 1-10-phenanthroline, and dichloroisocoumarin) that was shown to inhibit the production of
multiple extracellular proteases without inhibiting growth was also shown to enhance the ability of a sarA mutant to form a
biofilm. This effect was evident only when all three inhibitors were used concurrently. This suggests that the reduced
capacity of a sarA mutant to form a biofilm involves extracellular proteases of all three classes (serine, cysteine and
metalloproteases). Inclusion of protease inhibitors also enhanced biofilm formation in a sarA/nuc mutant, with the
combined effect of mutating nuc and adding protease inhibitors resulting in a level of biofilm formation with the sarA
mutant that approached that of the UAMS-1 parent strain. These results demonstrate that the inability of a sarA mutant to
repress production of extracellular nuclease and multiple proteases have independent but cumulative effects that make a
significant contribution to the biofilm-deficient phenotype of an S. aureus sarA mutant.
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Introduction

Staphylococcus aureus is an opportunistic pathogen capable of

causing diverse forms of infection. Treatment of these infections is

complicated not only by the continued emergence of antibiotic-

resistant strains but also by the fact that many S. aureus infections

are associated with formation of a biofilm, which limits the efficacy

of antimicrobial therapy even in cases caused by strains that are

not clinically defined as resistant to the relevant antibiotics [1,2].

For this reason, the effective treatment of biofilm-associated

staphylococcal infections often requires surgical debridement to

remove infected tissues and/or devices [3,4].

Previous reports have implicated many S. aureus genes in biofilm

formation. These include agr [5,6], arlRS [7], bap [8], hla [9], ica

[10], rbf [11], sarA [12,13], sigB [14,15], tcaR [16], and traP [17,18].

However, in almost all cases, there are conflicting reports with

respect to the overall contribution of specific loci. For example,

some reports have concluded that ica and sigB are required for S.

aureus biofilm formation [10,14,15], while others have found that

mutation of these loci has little impact [13,19,20]. Similarly, there

is a report concluding that alpha hemolysin is required for biofilm

formation [9], but S. aureus isolates unable to produce alpha toxin

owing to a nonsense mutation in the corresponding gene (hla) are

capable of forming a biofilm and causing biofilm-associated

infection [19,21]. In fact, a recent report concluded that non-

hemolytic variants arise spontaneously within a biofilm and

ultimately become the dominant subpopulation [22].

Such conflicting reports may be due to strain-dependent

differences among S. aureus isolates. For instance, bap encodes a

surface-associated protein (Bap) that promotes biofilm formation,

but to date it has been found only in bovine mastitis isolates and

even then only rarely [23,24]. Many studies focusing on biofilm

formation have also utilized strains derived from NCTC 8325.

This includes RN6390, which is an 8325-4 strain in which three

prophage were cured from NCTC 8325 [25], and SA113, which is

a mutagenized, restriction-modification deficient derivative of

8325 [10,26]. All 8325-derived strains carry natural mutations in

rsbU, which renders them functionally sigB deficient [27–29]. They

also carry a mutation in tcaR [16], a regulatory locus that has also

been implicated in biofilm formation [30]. Perhaps owing to these
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mutations, the 8325-4 strain RN6390 has a reduced capacity to

form a biofilm by comparison to clinical isolates of S. aureus [19,21].

One exception to such conflicting reports is the staphylococcal

accessory regulator (sarA), mutation of which has been consistently

correlated with a reduced capacity to form a biofilm in both S.

aureus and S. epidermidis [12,13,21]. Indeed, with the exceptions of

RN6390 and Newman, the latter also being a poor biofilm former

[12] that has specific characteristics (e.g. production of truncated

fibronectin-binding proteins) that distinguish it from primary clinical

isolates [31], mutation of sarA has resulted in a reduced capacity to

form a biofilm in vitro in every S. aureus strain we have examined [12].

Mutation of sarA in the clinical isolate UAMS-1 was also shown to

result in a significant decrease in biofilm formation in vivo as defined

using a catheter-based murine model [19].

The sarA locus encodes a DNA-binding protein (SarA) that has a

global impact on gene expression in S. aureus [21,32], and it

remains unclear which components of this global response are

most relevant to biofilm formation. Mutation of sarA does result in

reduced expression of the ica operon and consequently reduced

production of the polysaccharide intercellular adhesion (PIA), but

our direct comparison of sarA and ica mutants generated in the

same strain used in the experiments reported here (UAMS-1)

demonstrate that this cannot account for the biofilm defect in a

sarA mutant [19].

As a first step toward defining the role of sarA in biofilm

formation, we compared the regulons defined by growth within a

biofilm and by mutation of sarA. We found that a large number of

genes were differentially expressed in a mature biofilm by

comparison to both exponential and post-exponential phase

planktonic cultures [19] and that many of these were also in the

sarA regulon [33]. Included among these genes was the bicistronic

operon alsSD, which encodes the enzymes (acetolactate synthase

and acetolactate decarboxylase) required for the conversion of

pyruvate to acetoin rather than the more acidic products of

glucose metabolism. Specifically, expression of alsSD was increased

in a biofilm by comparison to both exponential and post-

exponential planktonic growth [12]. Conversely, alsSD expression

was decreased in a sarA mutant [33]. This suggests that the

inability to express alsSD at adequate levels in a sarA mutant may

contribute to its inability to form a biofilm.

Also included in both the biofilm and sarA regulons was nuc, which

encodes the S. aureus thermostable nuclease. The expression pattern

of nuc was opposite that of alsSD in that it was decreased in a biofilm

but increased in a sarA mutant [19,33]. This observation, together

with recent reports demonstrating that extracellular DNA (eDNA)

contributes to S. aureus biofilm formation [34,35], suggest that the

inability to repress production of extracellular nuclease may also

contribute to the biofilm-deficient phenotype of a sarA mutant.

Expression of the genes encoding extracellular proteases was

also altered both in a biofilm and a sarA mutant, but in this case

the scenario is more complex in that expression of some protease

genes (e.g. scpA) was decreased in a biofilm while expression of

others (e.g. sspAB) was increased [19]. However, expression of all

of these genes, as well as the gene encoding aureolysin (aur) was

increased in a sarA mutant [33]. This is consistent with the

observation that the overall production of extracellular proteases is

increased in a sarA mutant [36–38]. This is potentially important

in that biofilm formation in clinical isolates of S. aureus is facilitated

by coating the substrate with plasma proteins [12], and the

increased protease production observed in sarA mutants has been

correlated with a reduced capacity to bind host proteins including

fibronectin [36,39]. Moreover, a recent report concluded that the

agr-mediated induction of protease production limits biofilm

formation and may play a functional role with respect to the

dispersal of S. aureus from an established biofilm [40]. Such results

suggest that the reduced capacity of a sarA mutant to form a

biofilm could also be related to the increased production of one or

more extracellular proteases.

Based on these considerations, we investigated the role of alsSD,

nuc, and extracellular proteases in S. aureus biofilm formation with a

specific emphasis on whether any or all of these factors contribute

to the biofilm-deficient phenotype of a sarA mutant.

Results And Discussion

Impact of sarA on alsSD expression, acetoin production,
stationary phase survival and biofilm formation

The alsS and alsD genes constitute a bicistronic operon and encode

acetolactate synthase and acetolactate decarboxylase respectively.

These enzymes function sequentially to convert pyruvate to 2-

acetolactate and then acetoin, the latter ultimately being converted

by acetoin reductase to 2,3- butanediol. Production of these neutral

products rather than the more acidic products of carbohydrate

metabolism is important for acid tolerance in a number of bacterial

species [41]. This is consistent with the observation that alsSD is

expressed at elevated levels in response to mild acid treatment of S.

aureus [42]. Our previous demonstration that expression of alsSD is

also increased in a biofilm by comparison to planktonic cultures is

therefore consistent with the hypothesis that a central theme behind

the adaptation of S. aureus to persistence within a biofilm is survival

within the acidic environment associated with carbohydrate

metabolism, particularly under low oxygen conditions [19]. It is

also consistent with a recent report demonstrating that Streptococcus

mutans is more acid tolerant when grown in a biofilm than when

grown in planktonic culture [43]. Moreover, production of the

enzymes required for acetoin production in Vibrio cholerae is co-

regulated with expression of genes directly involved in the switch

between motility and biofilm formation [41]. This co-regulation

provides further support for the hypothesis that acetoin production

and acid tolerance are important for biofilm formation in diverse

bacterial species.

A previous report described construction of a UAMS-1 alsSD

mutant (KB1097) and concluded that mutation of alsSD eliminated

acetoin production and resulted in reduced murein hydrolase

activity and reduced stationary phase survival [44]. We subse-

quently demonstrated that KB1097 also has a reduced capacity to

form a biofilm that is comparable to that observed with a UAMS-1

sarA mutant [33]. However, it was later discovered that KB1097

was a contaminant that ultimately proved to be S. hominis rather

than S. aureus (Dr. Ken Bayles, personal communication). Based on

this, we independently generated an alsSD mutant (UAMS-1489)

using the pKOR1 mutagenesis system [45]. Characterization of

this mutant confirmed the absence of alsSD transcription (Fig. 1),

the inability to produce acetoin and 2,3-butanediol as defined by

the Voges-Proskauer assay (Fig. 2), and reduced stationary-phase

survival (Fig. 3). The results also confirmed that mutation of sarA

impacts all three phenotypes in a similar although less definitive

manner (Figs. 1–3). Additionally, the capacity to form a biofilm

was significantly reduced in UAMS-1489 by comparison to the

UAMS-1 parent strain (p,0.001) (Fig. 4). Transcription of alsSD,

the Voges-Proskauer phenotype, stationary-phase survival, and

biofilm formation were all complemented by introducing a

functional alsSD operon into UAMS-1489 to generate UAMS-

1551 (Figs. 1–4). These results are consistent with the hypothesis

that alsSD plays a role in biofilm formation in S. aureus.

While UAMS-1489 had a reduced capacity to form a biofilm, it

remained significantly greater than that observed with the UAMS-

929 sarA mutant (p,0.001) (Fig. 4). This was true despite the fact

sarA in S. aureus Biofilms
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that mutation of alsSD had a greater impact than mutation of sarA

on alsSD transcription, the Voges-Proskauer assay, and stationary-

phase survival (Fig. 1–4). This demonstrates that the impact of sarA

on biofilm formation extends beyond its impact on transcription of

alsSD. Confirmation of this was obtained by analysis of the sarA/

alsSD double mutant (UAMS-1300), which demonstrated that

concomitant mutation of alsSD and sarA had no further impact on

the production of acetoin (data not shown) but did reduce biofilm

formation even by comparison to an alsSD mutant (p,0.001)

(Fig. 4).

Although these results demonstrate that the impact of sarA on

alsSD transcription cannot fully account for the biofilm-deficient

phenotype of a sarA mutant, mutation of alsSD did have a

significant impact on biofilm formation by comparison to the

parent strain (Fig. 4), and this leaves open the possibility that the

impact of sarA on alsSD transcription makes an important

contribution in that regard. Based on this, we also generated

derivatives of UAMS-929 (UAMS-1729 and UAMS-1730) in

which alsSD expression was enhanced in a sarA mutant. Although

this did not fully restore alsSD transcription to wild-type levels

Figure 1. Expression of alsSD in alsSD and sarA mutants. The relative level of alsSD expression in each strain was determined by qRT-PCR.
Results represent the mean6standard deviation of 3 replicate samples. Strain designations are: U1, UAMS-1 (parent strain); U929, UAMS-1 sarA
mutant; U969, complemented sarA mutant; U1489, UAMS-1 alsSD mutant, U1551, complemented alsSD mutant.
doi:10.1371/journal.pone.0003361.g001

Figure 2. Production of acetoin and 2,3-butanediols in alsSD and sarA mutants. 18-hour culture supernatants were assayed for acetoin
production using the Voges-Proskauer assay. Strain designations are the same as those cited in Fig. 1 and detailed in Table 1. Results represent the
mean6standard deviation of 6 replicate experiments.
doi:10.1371/journal.pone.0003361.g002
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(Fig. 5A), which might be expected given the positive impact of

sarA on alsSD transcription [33], it did restore transcription to levels

sufficient to fully restore the Voges-Proskauer phenotype (Fig. 5B).

However, it had no impact on the ability of a sarA mutant to form a

biofilm (Fig. 5C). This provides further support for the conclusion

that mutation of sarA results in a defect in biofilm formation that

extends beyond its impact on expression of alsSD.

One possible explanation for these results is that alsSD is part of

a pathway that includes acetoin reductase, which is required to

convert acetoin to 2,3-butanediol, and expression of the

corresponding gene (SA0239 in the N315 genome) was also

reduced in a sarA mutant [33]. Thus, restoration of acetoin

production in a sarA mutant may not fully restore the ability to

convert pyruvate to 2,3-butanediol. While such an effect might not

be evident in the Voges-Proskauer assay, it could nevertheless

compromise other aspects of metabolism including the ability to

maintain pH homeostasis. However, subsequent analysis of all

relevant strains failed to reveal any significant difference in the pH

of culture supernatants from overnight cultures grown in biofilm

medium, which includes exogenous glucose (data not shown). The

alternative explanation is that sarA has an impact on biofilm

formation that involves genes unrelated to the acetoin/2,3-

butanediol pathway.

Contribution of thermostable nuclease to the biofilm-
deficient phenotype of a sarA mutant

Previous genome-scale transcriptional profiling experiments

focusing on UAMS-1 identified a number of other sarA-regulated

genes that were also differentially expressed in a biofilm by

comparison to planktonic cultures [19,33]. Included among these

genes was nuc, which encodes the S. aureus thermostable nuclease.

Specifically, expression of nuc was reduced in a biofilm and

increased in a sarA mutant [12,33]. Recent reports demonstrating

that extracellular DNA contributes to biofilm formation in S. aureus

Figure 3. Effect of alsSD and sarA mutations on stationary phase survival. Each strain was grown in the presence of 35 mM glucose. Aliquots
were removed at the indicated times to assess the number of colony-forming units (CFU) per ml (panel A) and culture density (panel B). Strain
designations: UAMS-1 (&), UAMS-929 (m), UAMS-969 (N), UAMS-1489 (X), UAMS-1551 (¤).
doi:10.1371/journal.pone.0003361.g003
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[34,35] are consistent with the hypothesis that this may also

contribute to the biofilm-deficient phenotype of a sarA mutant.

To address this hypothesis, we also generated UAMS-1 nuc and

sarA/nuc mutants and evaluated the impact on biofilm formation.

Phenotypic assays confirmed that mutation of sarA increased

nuclease production and that it was completely abolished by

mutation of nuc even in a sarA mutant (Fig. 6). Mutation of nuc in

UAMS-1 (UAMS-1471) had no impact on biofilm formation, but

complementation of the nuc mutation with a plasmid-borne version

of the nuc gene (UAMS-1552) did limit biofilm formation to a

significant degree (p = 0.001) (Fig. 7), presumably because it

resulted in increased production of nuclease by comparison to

the parent strain (Fig. 6). More importantly, concomitant mutation

of nuc in a sarA mutant (UAMS-1477) enhanced biofilm formation

by comparison to the sarA mutant (p,0.001) (Fig. 7). This effect

was completely reversed by complementation of the sarA/nuc

double mutant with a plasmid-borne version of the nuc gene

(UAMS-1725) (Fig. 7). At the same time, biofilm formation in the

sarA/nuc mutant (UAMS-1477) was not restored to wild-type

levels. In contrast, complementation of the sarA/nuc mutant with

sarA did fully restore biofilm formation (Fig. 7). These results

indicate that increased production of extracellular nuclease

contributes to the biofilm-deficient phenotype of a UAMS-1 sarA

mutant but that additional factors must also be involved.

Contribution of extracellular proteases to the biofilm-
deficient phenotype of a sarA mutant

Also included in both the biofilm and sarA regulons were most of

the S. aureus genes encoding extracellular proteases, the only

exception being the spl operon (splABCDEF), expression of which

was largely unaltered both in a biofilm and in a sarA mutant. For

example, expression of scpA was decreased in a biofilm but

elevated in a sarA mutant. Expression of the gene encoding

aureolysin (aur) was not altered in a biofilm but was increased in a

sarA mutant [19,33]. Expression of the sspABC operon was elevated

in a biofilm and a sarA mutant, but because no direct comparison

has been made, it is not known whether expression of sspABC is

elevated in a sarA mutant even by comparison to a biofilm.

It is clear that overall extracellular protease activity is elevated

in sarA mutants [36–38], but to date studies that have attempted to

address the issue have concluded that this has relatively little

impact on the biofilm-deficient phenotype of a sarA mutant. For

instance, mutation of sspA, which encodes the classic ‘‘V8’’ serine

protease (SspA), had no impact on biofilm formation in either

UAMS-1 or its sarA mutant [33]. Similarly, Valle et al. (2003)

concluded that the increased production of proteases in sarA

mutants was unlikely to explain their biofilm-deficient phenotype

based on the observations that 1) the capacity of a sarA mutant to

form a biofilm was not enhanced in the presence of the protease

inhibitors a2-macroglobulin or E64, 2) the capacity of the wild-

type strains (ISP479C and 15981) to form a biofilm was not

reduced by incubation in concentrated supernatants from sarA

mutants, and 3) concomitant mutation of sarA and sspA or sarA and

the aureolysin gene (aur) failed to enhance biofilm formation.

In contrast to such studies, Boles and Horswill (2008) recently

concluded that elevated protease production can be correlated with

reduced biofilm formation and that the increased production of

extracellular proteases plays an important role in agr-mediated

dispersal from an established biofilm. These studies were limited to

derivatives of SH1000, which is an rsbU-repaired derivative of 8325-

4, and they did not address the potential contribution of extracellular

proteases to the biofilm-deficient phenotype of sarA mutants, but

Figure 4. Effect of alsSD and sarA mutations on biofilm formation. Biofilm formation was assessed using the microtiter plate assay. Results
represent the mean and standard deviation of 24 replicates. Strain designations are the same as those in Figs. 1–3 with the addition of the sarA/alsSD
double mutant (UAMS-1300).
doi:10.1371/journal.pone.0003361.g004
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Figure 5. Impact of alsSD expression in a sarA mutant. Panel A: Expression of alsSD was assessed by qRT-PCR. Results represent the
mean6standard deviation of the results obtained with 3 replicate samples. Panel B: 18-hour culture supernatants were assayed for acetoin
production using the Voges-Proskauer assay. Results represent the mean6standard deviation of 6 replicate experiments. Panel C: Relative levels of
biofilm formation were determined using the microtiter plate assay. Results represent the mean6standard deviation of 16 replicate experiments.
Strain designations are the same as in previous figures with the addition of UAMS-1729 (U1729) and UAMS-1730 (U1730), both of which are UAMS-1
sarA mutants complemented with pLI50::alsSD.
doi:10.1371/journal.pone.0003361.g005

Figure 6. Production of extracellular nuclease. Results were assessed after overnight incubation of the indicated strains overnight on DNase
test agar plates. Numbers refer to UAMS strain designations (Table 1).
doi:10.1371/journal.pone.0003361.g006
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such results nevertheless suggest that previous studies may not have

fully defined the impact of protease production in this context. Based

on this, we employed a combination of three protease inhibitors in

an attempt to collectively limit the activity of all recognized S. aureus

extracellular proteases. Specifically, E-64, 1-10-phenanthroline, and

dichloroisocoumarin (DIC) inhibit the activity of cysteine proteases

(e.g. ScpA and SspB), metalloproteases (e.g. aureolysin), and serine

proteases (e.g. SspA and the Spl proteases) respectively.

Each inhibitor was added to the medium used in our biofilm

assays at a concentration of 1 mM or, in the case of phenanthroline,

the highest concentration (10 mM) that did not limit growth (Fig. 8).

In fact, addition of these inhibitors both alone or in combination with

each other increased growth of the sarA mutant to a limited degree at

least as defined by the maximum optical density of post-exponential

phase cultures (Fig. 8). This suggests that the increased production of

proteases may actually limit the growth of an S. aureus sarA mutant.

Subsequent analysis using skim milk-agar plates confirmed that this

combination of protease inhibitors also decreased overall proteolytic

activity by comparison to the sarA mutant (data not shown). More

importantly, at least in the context of this report, inclusion of these

inhibitors also enhanced biofilm formation in a sarA mutant

(p,0.001) (Fig. 9A). Although a slight increase in biofilm formation

was also observed with the parent strain, analysis of the relative

effects confirmed that the impact in a sarA mutant significantly

exceeded that observed in UAMS-1 (Fig. 9B). These results indicate

that the increased production of extracellular proteases also makes

an important contribution to the biofilm-deficient phenotype of a

UAMS-1 sarA mutant.

One possible explanation is that the presence of protease

inhibitors increased growth of the sarA mutant, particularly with

respect to the maximum density observed with post-exponential

phase cultures (Fig. 8). However, we observed a similar degree of

growth enhancement when each inhibitor was included alone as

well as in combination with each other, and this was not the case

with respect to biofilm formation. Specifically, E-64 was the only

individual inhibitor in which a significant increase in biofilm

formation was observed either alone or in combination with DIC

or phenanthroline (p,0.001) (Fig 10). This suggests that the effect

of the inhibitor cocktail on biofilm formation cannot be explained

by its impact on growth of the sarA mutant in biofilm medium. It

also indicates that the cysteine proteases ScpA and/or SspB play

an important role. This is in contrast to the results of Valle et al.

(2003), who concluded that E-64 has no impact on the biofilm-

deficient phenotype of a sarA mutant. However, the concentration

of E-64 employed in these earlier experiments (10 mM) was

considerably lower than that used in our experiments (1 mM). At

the same time, the impact of E-64 even at the higher concentration

was limited by comparison to both the wild-type strain (data not

shown) and the sarA mutant grown in the presence of all three

inhibitors (p = 0.012) (Fig. 10), and this clearly suggests that sarA-

regulated proteases other than ScpA or SspB are also involved.

In an effort to further define the role of specific proteases, we also

examined the impact of mutating sspA in both UAMS-1 (UAMS-

960) and its sarA mutant (UAMS-962). In both cases, mutation of

sspA had no significant impact on biofilm formation (Fig. 9A).

Additionally, the enhanced biofilm formation observed with a

UAMS-1 sarA mutant grown in the presence of all three inhibitors

was also observed with a sarA/sspA double mutant (p,0.001)

(Fig. 9B). This indicates that the impact of the protease inhibitors on

biofilm formation was independent of SspA. This is consistent with

the results of Valle et al. (2003), who also found that mutation of sspA

had no impact on biofilm formation in a sarA mutant.

To further examine this issue, we carried out zymogram analysis

using both casein and gelatin gels. This analysis confirmed that

both the inhibitor cocktail and E-64 alone or in combination with

either DIC or phenanthroline reduced the activity of cysteine

proteases to undetectable levels as defined by the sensitivity of our

zymogram assays (Fig. 11). In contrast, we could not demonstrate

significant inhibition of serine or metalloproteases with DIC or

phenanthroline. Moreover, production of SspA was unaffected by

the inclusion of DIC in the growth medium (Fig. 11). To the extent

that DIC is a specific inhibitor of serine proteases, including SspA,

this suggests that the concentration of DIC used in our

experiments was below the level required to have a phenotypic

effect. We could not determine whether the same was true for the

spl-encoded serine proteases because we could not detect the

activity of these enzymes in either of our zymograms. This is

perhaps not surprising since the activity of these proteases was

recently shown to be dependent on their binding of specific

substrates in a manner analogous to the exfoliative toxins [46,47].

Figure 7. Effect of nuclease on biofilm formation. Biofilm formation was assessed using the microtiter plate assay. Results represent the
mean6standard deviation of 24 replicates. Strains designations are the same as in previous figures with the addition of UAMS-1725 and UAMS-1726,
which are the sarA/nuc mutant complemented with nuc and sarA respectively.
doi:10.1371/journal.pone.0003361.g007
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Similarly, we could not demonstrate inhibition of the metallopro-

tease aureolysin with phenanthroline because we could not detect the

activity of this protease even in a sarA mutant (Fig. 11). Nevertheless,

the fact that the combination of all three proteases inhibitors

enhanced biofilm formation to an extent that exceeded that observed

with any single or even dual combination of protease inhibitors

(Fig. 10) suggests that the concentrations of both DIC and

phenanthroline used in these experiments were in fact inhibitory.

It is also consistent with the hypothesis that extracellular proteases

other than the cysteine proteases ScpA and SspB also make an

important contribution to the biofilm-deficient phenotype of a sarA

mutant. To the extent that this effect was independent of sspA (see

above), this suggests that the spl-encoded serine proteases and/or

aureolysin may be particularly important in this regard. Although

confirmation of this hypothesis will require examination of UAMS-1

sarA/aur and sarA/spl mutants, this is consistent with the results of

Boles and Horswill (2008), who detected increased levels of serine

proteases in the effluent from S. aureus biofilms and demonstrated

that concomitant mutation of aur and spl resulted in an enhanced

capacity to form a biofilm at least in the 8325-4 strain SH1000.

While the combination of protease inhibitors enhanced biofilm

formation in a sarA mutant, it did not restore it to wild-type levels

(Fig. 9A). One explanation for this is that the concentration of

inhibitors used in our experiments was sufficient to limit protease

activity in a sarA mutant but not sufficient to restore it to wild-type

levels. As discussed above, this is particularly true with respect to

DIC and phenanthroline. It was not possible to use either of these

inhibitors at a higher concentration either due to issues related to

limited solubility in biofilm medium (DIC) or inhibition of growth

(phenanthroline), so addressing this possibility will also require

detailed analysis of relevant protease mutants. Nevertheless, the

results discussed above suggest that the increased production of both

extracellular nuclease and multiple extracellular proteases contribute

to the biofilm-deficient phenotype of an S. aureus sarA mutant.

However, they also demonstrate that the biofilm-defect in a sarA

mutant cannot be explained by its impact on either nuclease or

proteases alone. To determine whether these effects might be

cumulative, we also examined whether inclusion of protease

inhibitors had an impact on bioflm formation with a sarA/nuc

mutant. The results confirmed that the effect was cumulative in that

biofilm formation was enhanced in a sarA/nuc mutant in the presence

of protease inhibitors by comparison to both a sarA mutant in the

presence of protease inhibitors (p,0.001) and a sarA/nuc mutant in

the absence of inhibitors (p,0.001) (Fig. 9A). In fact, in the presence

of the inhibitor cocktail, the sarA/nuc mutant exhibited a level of

biofilm formation approaching that of the UAMS-1 parent strain.

Conclusions
Taken together, our results provide important clues with respect

to explaining the biofilm-deficient phenotype of a S. aureus sarA

mutant, and there may in fact be a common theme that ties them

all together. For instance, a recent report demonstrated that

mutation of cidA, which encodes a regulator of murein hydrolase

activity, results in reduced release of extracellular DNA and a

reduced capacity to form a biofilm [35]. The cidA gene is part of

the cidR regulon, which also includes alsSD [44]. Our results

confirmed that mutation of alsSD in UAMS-1 results in a

stationary-phase survival defect manifested as cell death in the

absence of cell lysis. This suggests that mutation of alsSD may limit

the release of extracellular DNA as well as limit the capacity to

Figure 8. Effect of protease inhibitors on growth. Growth of the UAMS-929 sarA mutant in biofilm medium without protease inhibitors (¤) was
compared to growth in the same medium containing 1 mM DIC (m), 1 mM E-64 (N), 10 mM 1,10-phenanthroline (+) or a cocktail containing all three
inhibitors (X). Growth was monitored at hourly intervals for 10 hours. Results indicate the OD6006standard deviation of 3 replicates.
doi:10.1371/journal.pone.0003361.g008
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produce acetoin and maintain pH homeostasis. In fact, one

explanation for our results is that mutation of alsSD limits biofilm

formation because it limits the availability of extracellular DNA but

that this effect is modest by comparison to the impact of sarA on the

production of extracellular nuclease. Such a scenario might also

provide an alternative explanation for why restoration of alsSD

expression in a sarA mutant failed to restore biofilm formation since

what little extracellular DNA would be available would presumably

be degraded due to the increased production of nuclease.

How the production of proteases might fit into this scenario

remains undefined. The production of active extracellular nuclease

does require protease processing [48], but if this were a defining

characteristic of the biofilm-deficient phenotype of a sarA mutant,

then mutation of nuc and inclusion of protease inhibitors would not

be expected to have a cumulative effect since mutation of nuc

eliminates the production of nuclease in any form. This suggests that

nuclease and protease have independent effects that remain to be

defined but are perhaps related to the attachment vs. accumulation

phases of biofilm formation. Given our experimental approach using

a cocktail of protease inhibitors, it also remains to be determined

exactly what proteases are involved, how they interact with each

other, what S. aureus proteins are the most relevant targets, and what

role these targets play in biofilm formation. In this respect it should

be noted that biofilm formation in UAMS-1 and other clinical

isolates is enhanced by coating the substrate with plasma proteins

[12] and that, at least in UAMS-1, it is not dependent on PIA

production [19]. Moreover, we have demonstrated that the

increased production of proteases in sarA mutants results in a

decreased capacity to bind host proteins including fibronectin [36].

Taken together, these results suggest that the negative impact of

proteases on biofilm formation may be multifactorial and involve

both attachment and accumulation. A recent report also demon-

strated that induction of agr expression leading to increased

production of multiple proteases may also serve as a specific means

of dispersal from an established biofilm [40].

While our experimental focus is on the role of sarA in biofilm

formation, our results may also have broader implications for S.

aureus regulatory circuits. For instance, sarA represses production of

Figure 9. Effect of protease inhibitors on biofilm formation. Panel A: The microtiter plate assay of in vitro biofilm formation was performed
with bacteria grown in biofilm medium (gray) or biofilm medium containing the inhibitor cocktail (black). Results represent the mean6standard
deviation of 24 replicates. Panel B: Results of the biofilm assay shown in panel A represented as the ratio of biofilm formation in the presence of the
inhibitor cocktail/biofilm formation in the absence of inhibitors.
doi:10.1371/journal.pone.0003361.g009
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many S. aureus exoproteins including nuclease and multiple

proteases [33,36] while the accessory gene regulator (agr) has the

opposite effect [25,40]. While there are reports concluding that

reduced expression of agr can be correlated with a reduced

capacity to form a biofilm [18,49–51], most studies have

concluded that agr expression limits rather than enhances biofilm

formation [5,12,52]. In fact, it has been proposed that induction of

agr expression may serve as a specific means of dispersal from an

established biofilm [5,12,22,40].

One report suggested that the negative impact of agr on biofilm

formation may be due to the increased production of delta-toxin,

which is a phenol-soluble modulin (PSM) proposed to act as a

surfactant to limit cellular accumulation [5,53]. The alternative

explanation is that expression of agr results in the increased

production of both extracellular nuclease and protease(s) [25].

This would presumably promote detachment and release from a

mature biofilm based on degradation of the relevant S. aureus

adhesins and/or extracellular matrix components including

extracellular DNA. Indeed, Boles and Horswill (2008) recently

concluded that agr-mediated protease production plays a primary

role in this regard. Together with our results, this would suggest

that sarA and agr have independent and opposite effects on biofilm

formation, with the ultimate impact being dependent on the

relative contribution of each with respect to the other.

In this scenario, S. aureus strains that express agr at high levels would

presumably have a reduced capacity to form a biofilm. This is

consistent with our observation that the 8325-4 strain RN6390,

which by comparison to most clinical isolates including UAMS-1

expresses agr at high levels and produces elevated amounts of nuclease

and extracellular proteases [36], has a limited capacity to form a

biofilm [12]. It is also consistent with the observation that mutation of

agr enhances biofilm formation in RN6390 [12]. This effect is

reversed by concomitant mutation of sarA [12], which suggests that

the impact of sarA is epistatic to agr at least in this context.

It is unclear whether this has any relevance with isolates other

than RN6390, which as noted above has specific characteristics that

distinguish it from clinical isolates of S. aureus. However, a recent

report concluded that most community-acquired MRSA (CA-

MRSA) isolates express agr at higher levels than their healthcare-

associated MRSA (HA-MRSA) counterparts [53]. Our studies done

with a USA300 CA-MRSA isolate suggest that this does not

preclude biofilm formation at least in this strain [52], but there are

reports demonstrating a general inverse relationship between the

level of agr expression and biofilm formation [5]. Together with the

fact that agr expression is also correlated with the increased

production of S. aureus extracellular proteins and PSMs, the latter

having both surfactant-like and anti-phagocytic properties [53], this

could perhaps explain why CA-MRSA isolates often cause acute

infections while HA-MRSA tend to cause chronic infections that are

more likely to have a biofilm-associated component [54].

Finally, our previous studies characterizing the sarA and biofilm

regulons in UAMS-1 [19,33] identified 43 genes that were

differentially expressed both in a biofilm and in a sarA mutant

[12,33]. Of the four possible scenarios, 17 genes were expressed at

lower levels in both a biofilm and a sarA mutant, 6 genes were

expressed at higher levels in both a biofilm and a sarA mutant, 17

genes were expressed at lower levels in a biofilm and higher levels

in a sarA mutant, and 3 genes were expressed at higher levels in a

biofilm and lower levels in a sarA mutant. Given the complex and

interactive nature of regulatory circuits in S. aureus, it is difficult to

predict which of these scenarios would be most important, and we

certainly do not preclude the need to investigate additional genes

in the sarA/biofilm regulon. However, our results suggest that the

inability of a sarA mutant to repress production of specific

extracellular proteins, including nuclease and multiple proteases,

play a particularly important role in that regard. A detailed

understanding of these processes is important given the role of

biofilms not only in the development of many forms of S. aureus

infection but also with respect to their impact on the ability to

effectively treat these infections.

Materials And Methods

Bacterial strains and growth conditions
The strains utilized in this study are listed in Table 1. All strains

were maintained as stock cultures at 280uC in tryptic soy broth

(TSB) containing 25% (v/v) glycerol. For each experiment, the

relevant strains were retrieved from cold storage by plating on

Figure 10. Biofilm formation in the presence of individual inhibitors alone and in combination with each other. Biofilm formation in
the UAMS-929 sarA mutant was assessed in the absence of protease inhibitors (W), the presence of the protease inhibitor cocktail (CT), or in presence
of individual inhibitors alone and in paired combinations with each other. Inhibitor designations are E-64 (E), DIC (D) and phenanthroline (P). Results
represent the mean6standard deviation of 24 replicates.
doi:10.1371/journal.pone.0003361.g010
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tryptic soy agar (TSA) with appropriate antibiotic selection.

Antibiotics were used at the following concentrations: kanamycin

(Kan; 50 mg per ml), neomycin (Neo; 50 mg per ml), chloramphen-

icol (Cm; 10 mg per ml), and erythromycin (Erm 5 mg per ml). To

ensure that the results of phenotypic assays were consistent, all assays

other than nuclease production (see below) were done using TSB

supplemented with 0.5% glucose and 3.0% sodium chloride (biofilm

medium) without antibiotic selection as previously described [12].

Mutagenesis
Mutagenesis of alsSD and nuc was done as previously described

[52] using the pKOR1 mutagenesis system [45]. According to the

annotation for the MRSA252 genome, which was previously shown

to be the most closely related of the sequenced strains to UAMS-1

[21], the specific open-reading frames (ORFs) targeted in these

experiments were SAR2297 (alsS), SAR2296 (alsD), and SAR0947

(nuc). The corresponding ORFs in the N315 genome are SA2008/

SA2007 (alsSD) and SA0746 (nuc). The oligonucleotide primers used

for mutagenesis are listed in Table 2. In UAMS-1489, the deleted

region started 650 bp downstream of the alsS start codon and ended

182 bp downstream of the alsD stop codon (primers alsSDMut1-

FattB1, alsSDMut1RSacII, alsSD2FSacII, alsSD2RattB2).

In the case of nuclease, the deleted region starts 83 bp downstream

of the nuc start codon and ends 180 bp upstream of the nuc stop codon

(primers nucMut1FattB1, nucMut1RSacII, nucMut2FSacII, nuc-

Mut2RattB2). Genotypic confirmation of all mutations was obtained

by PCR using primers flanking the deleted region (data not shown).

Because pKOR1-generated mutations are not marked by an

antibiotic-resistance gene and cannot be transduced, mutagenesis

of alsSD and nuc was done in both UAMS-1 and its corresponding

sarA mutant (UAMS-929). The UAMS-1 sspA (SAR1022/SA0901)

and sarA/sspA mutants were generated by W11-mediated transduc-

tion of the ssp::tet mutation from an existing 8325-4 mutant (kindly

provided by Simon Foster, University of Sheffield) into UAMS-1 and

UAMS-929 respectively. Generation of UAMS-929 is described

elsewhere (Blevins et al., 2002).

Complementation of alsSD, nuc and sarA mutations
Complementation of the alsSD mutation was done by cloning the

region spanning 431 bp upstream and 118 bp downstream of the

alsSD operon (primers alsSDproF and alsSD downstream KpnI) into

the E. coli/S. aureus shuttle vector pLI50 [55]. Complementation of

the nuc mutation was done by cloning the region spanning 453 bp

upstream of 277 bp downstream of the nuc gene (primers nuc comp-

Figure 11. Zymogram analysis of protease production in the presence of protease inhibitors. Analysis of the production of specific
proteases was assessed using casein (upper panel) and gelatin gels (lower panel) in UAMS-1 (WT) and its UAMS-929 sarA mutant. Analysis was done
after growth in biofilm medium in the absence of any inhibitor (W), the presence of the inhibitor cocktail (CT), or the presence of each inhibitor alone
and in combination with each other. Inhibitor designations are the same as in the legend for Fig. 10. The presumed identity of individual proteases is
indicated to the right. In the case of SspA, this was confirmed by analysis of the corresponding sarA/sspA mutant (data not shown). In the case of
ScpA and SspB, identification is presumptive based on their identity as cysteine proteases, inhibition of both by E-64, and the fact that ScpA has
greater activity than SspB on casein while the opposite is true on gelatin (Dr. Jan Potempa, personal communication).
doi:10.1371/journal.pone.0003361.g011
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F and nuc comp-R) into pLI50. Complementation of the sarA

mutation was done as previously described [36]. In all cases,

complementing plasmids were first introduced into the S. aureus strain

RN4220 before transduction into the corresponding UAMS-1

mutants using W11 as previously described [56].

Phenotypic assays
The Voges-Proskauer assay was used to assess the production of

acetoin and 2,3-butanediol as previously described [44]. Briefly,

cultures were grown for 18 hrs in biofilm medium (TSB

supplemented with 0.5% glucose and 3.0% NaCl) with constant

shaking before harvesting cell-free supernatants by centrifugation.

The assay was done in 96-well microtiter plates by adding 50 ml of

0.3% creatine and 60 ml of 5% alpha-naphthol freshly prepared in

100% ethanol to 120 ml of fresh culture supernatant. After gentle

mixing, 30 ml of 40% KOH was added to the reaction mixture,

which was then incubated at room temperature for 30–45 min

with occasional mixing. Results were assessed by measuring

absorbance at 540 nm.

Biofilm formation was assessed in vitro using the static, microtiter

plate biofilm assay as previously described [12]. To assess

stationary-phase survival, overnight cultures of each S. aureus

strain were grown in TSB with appropriate antibiotic selection and

then used to inoculate 21 ml of NZY broth (Fisher Scientific, St.

Louis, MO) containing 35 mM glucose to an OD600 of 0.05.

Flasks were loosely capped and grown at 37uC with constant

shaking. After 8, 24, 48, and 72 hrs, the optical density (OD600) of

each culture was determined and an aliquot was removed to

determine viable count by plating on TSA.

Nucleolytic activity was assessed using D’NASE Test Agar

(REMEL, Lenexa, KS). Briefly, overnight cultures were standard-

ized to an equal optical density before spotting 10 ml aliquots onto

nuclease test agar. Plates were incubated overnight at 37uC.

Nuclease activity was then assessed by overlaying the agar with 1N

HCl to precipitate undigested DNA and define the zone of

clearance around each strain.

Overall protease activity was assessed using skim milk agar as

previously described [40], the only difference being that we analyzed

standardized culture supernatants after 15-fold concentration using

Centricon YM-3 filter units (Millipore, Bedford, MA). The activity of

specific proteases was assessed by zymography using Ready Gel

Zymogram Gels containing gelatin or casein (BioRad Laboratories,

Hercules, CA). For casein gels, supernatants were analyzed without

further processing. For gelatin gels, supernatants were first

concentrated as discussed above. Samples in both cases were loaded

Table 1. Strains used in this study.

Strain Description Reference

UAMS-1 MSSA, osteomyelitis isolate Gillaspy et al., 1995

UAMS-929 UAMS-1sarA::kan Blevins et al., 2002

UAMS-960 UAMS-1ssp::tet Blevins et al., 2002

UAMS-962 UAMS-929/ssp::tet Blevins et al., 2002

UAMS-969 UAMS-929(pLI50::sarA) Blevins et al., 2002

UAMS-1300 UAMS-929DalsSD This study

UAMS-1471 UAMS-1Dnuc This study

UAMS-1477 UAMS-929Dnuc This study

UAMS-1489 UAMS-1DalsSD This study

UAMS-1551 UAMS-1489 (pLI50::alsSD) This study

UAMS-1552 UAMS-1471 (pLI50::nuc) This study

UAMS-1725 UAMS-1477 (pLI50::nuc) This study

UAMS-1726 UAMS-1477 (pLI50::sarA) This study

UAMS-1729 UAMS-929 (pLI50::alsSD) This study

UAMS-1730 UAMS-929 (pLI50::alsSD) This study

doi:10.1371/journal.pone.0003361.t001

Table 2. Primers used in this study.

Primer or Probe Oligonucleotide Sequence

alsSD Mut1FattB1 GGG GAC AAG TTT GTA CAA AAA AGC AGG CTC ACA CCA ATC AAT CCA ACA TCC C

alsSD Mut1RSacII ATC GTA GCC GCG GTC AGC ACT AGA ACT TCT CAT ACC

alsSD 2FSacII ATC GAT CCG CGG ATA TGC AAC TGT AAC TAA ATT CG

alsSD 2RattB2 GGG GAC CAC TTT GTA CAA GAA AGC TGG GTA TAA ATA AAT CCC CTC ACT ACC G

nuc Mut1FattB1 GGG GAC AAG TTT GTA CAA AAA AGC AGG CTG TAA GTA CAC TTA GTC AGT CTC ACC

nuc Mut1RSacII GGA CCT CCG CGG CGA AAC ATT ACT GAT AGC CAT CCC T

nuc Mut2FSacII GGA CCT CCG CGG TGA TAA ATA TGG ACG TGG CTT AGC G

nuc Mut2RattB2 GGG GAC CAC TTT GTA CAA GAA AGC TGG GTG GCC TTC TTC TAA TGA TTT GTA TCC

alsSD proF CAG TCA TTT ATA TTC ATT TCC CTT C

alsSD downstream KpnI GGA CCT GGT ACC CTA TGA CAA CCA TGC TTA ACC G

nuc comp-F ACT TTG CTA AAG CTA CTG CAA AGG

nuc comp-R TAA CTC ACA TTT TTC TTC ACG CTC

alsSD probe CAT CTG TTT CAT AGC CCT CTT TAA TTG CCG

alsSD RTA AAG GTT TAC GAG TTA CTA ATC AAG

alsSD RTS AAT TTA CAG GTA TAT CAA TTA ATA CTG G

gyrB2 probe CCG CCA CCG CCG AAT TTA CCA CCA

gyrB RTA CCA ACA CCA TGT AAA CCA CCA GAT

gyrB RTS AGT AAC GGA TAA CGG ACG TGG TA

doi:10.1371/journal.pone.0003361.t002
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onto gels in a buffer containing DTT but without b-mercaptoeth-

anol. After electrophoresis, gels were first incubated for 30 min at

room temperature (RT) in renaturing buffer (2.5% TritonX-100)

and then overnight at 37uC in developing buffer (0.2 M Tris, 5 mM

CaCl2, 1 mM DTT). To visualize protease bands, gels were then

stained with SimplyBlue SafeStain (Invitrogen, Carlsbad, CA) at RT

for 2 hrs before destaining overnight with water.

Protease inhibitors
In experiments employing E-64 (Fisher Scientific, St. Louis,

MO), and dichloroisocoumarin (DIC) protease inhibitors (Sigma

Chemical Co., St. Louis, MO), each inhibitor was dissolved in

biofilm medium at a 1 mM concentration. For experiments

employing 1-10-phenanthroline (Fisher Scientific, St. Louis, MO),

the concentration was reduced to 10 mM because higher

concentrations inhibited growth. Subsequent experiments con-

firmed that these concentrations did not inhibit growth either

alone or in combination with each other.

RNA isolation and qRT-PCR analysis
To assess relative levels of alsSD expression, total bacterial RNA

was isolated using the Qiagen RNeasy Mini Kit as previously

described [52]. Quantitative, real-time RT-PCR (qRT-PCR) was

then performed [33] using alsSD-specific primers and a corre-

sponding TaqMan probe (Table 2). Results were standardized by

comparison to the results obtained with the same samples using

primers and a TaqMan probe corresponding to the gyrB gene

(Table 2).

Statistical analysis
Statistical comparisons were done using the Student’s t-test or,

where appropriate, the Mann Whitney Rank Sum Test as

formatted in SigmaStat Statistical Software Version 2 (SPSS

Inc., Chicago, IL). Because multiple comparisons were made

within each data set, statistical significance, along with the

corresponding p value, is noted in the text rather than within

each figure.
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