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ABSTRACT

Objective: We aimed to establish a comprehensive digital phenotype for postpartum hemorrhage (PPH). Cur-

rent guidelines rely primarily on estimates of blood loss, which can be inaccurate and biased and ignore com-

plementary information readily available in electronic medical records (EMR). Inaccurate and incomplete phe-

notyping contributes to ongoing challenges in tracking PPH outcomes, developing more accurate risk

assessments, and identifying novel interventions.

Materials and Methods: We constructed a cohort of 71 944 deliveries from the Mount Sinai Health System. Esti-

mates of postpartum blood loss, shifts in hematocrit, administration of uterotonics, surgical interventions, and

diagnostic codes were combined to identify PPH, retrospectively. Clinical features were extracted from EMRs

and mapped to common data models for maximum interoperability across hospitals. Blinded chart review was

done by a physician on a subset of PPH and non-PPH patients and performance was compared to alternate PPH

phenotypes. PPH was defined as clinical diagnosis of postpartum hemorrhage documented in the patient’s

chart upon chart review.

Results: We identified 6639 PPH deliveries (9% prevalence) using our phenotype—more than 3 times as many

as using blood loss alone (N¼1,747), supporting the need to incorporate other diagnostic and intervention

data. Chart review revealed our phenotype had 89% accuracy and an F1-score of 0.92. Alternate phenotypes

were less accurate, including a common blood loss-based definition (67%) and a previously published digital

phenotype (74%).

Conclusion: We have developed a scalable, accurate, and valid digital phenotype that may be of significant use

for tracking outcomes and ongoing clinical research to deliver better preventative interventions for PPH.
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INTRODUCTION

Postpartum hemorrhage (PPH) is a leading cause of maternal mor-

tality in the United States (US).1,2 The majority of these deaths are

preventable, and a primary cause is error or delay in diagnosis and

treatment.2–6 Though mortality rates due to PPH have remained sta-

ble over the past 15 years,7,8 the prevalence has increased consider-
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ably,9 ranging from 3% to 9% depending on the definition,7,10–14 as

well as the need for critical interventions to treat severe

cases.1,9,10,15,16 There is a critical need for optimization of preventa-

tive care and treatment modalities to reduce morbidity and mortal-

ity.17

Historically, postpartum hemorrhage has lacked a single, consis-

tent definition and has relied heavily on visual estimates of blood

loss, which can be inaccurate, biased, and unreliable.6,17–22 More re-

cently, in an effort to standardize clinical obstetric definitions, the

American College of Obstetricians and Gynecologists (ACOG) de-

veloped the reVITALize program, which defines postpartum hemor-

rhage as a cumulative blood loss of greater than or equal 1000mL or

blood loss accompanied by signs or symptoms of hypovolemia

within 24 hours following delivery (including intrapartum blood

loss).23 Currently, there is no “gold standard” definition for post-

partum hemorrhage that encompasses objective vital sign changes

and clinical data.24–27 Therefore, estimation of blood loss of at 1000

mL visually or quantitatively remains central to diagnosis and initia-

tion of treatment.4,6 The overreliance on estimated blood loss (EBL)

alone has contributed to underestimation of hemor-

rhage14,18,19,21,22,28 and this defines a key point for improvement in

PPH prevention efforts .

Due to the limitations of visual or estimated blood loss, practice

is shifting towards more objective measurements, such as quantita-

tive blood loss (QBL), with obstetric hemorrhage toolkits like the

California Maternal Quality Care Collaborative.29 The use of QBL

has not been widely adopted since it requires hospitals to have spe-

cialized equipment and training for providers.6,20 Furthermore, the

threshold of blood loss utilizing 1000mL is somewhat arbitrary and

some women needing care for hemorrhage may ultimately lose less

than 1000mL.22

To mitigate limitations of using blood loss alone to definite PPH,

additional measures have been proposed to refine case definitions. A

proxy measure of blood loss is change in hematocrit values, with a

10% drop indicating PPH,1 although this may have low specificity

and is affected by global changes in fluids like dehydration or any

infusions.20 Alternatively, PPH can also be indexed with diagnostic

codes (which have low sensitivity13) or with indications of severe

outcomes like blood transfusions or surgical interventions.12,30

Some efforts combined multiple retrospective diagnostic codes with

medications to manage uterine atony to improve detection of

PPH.12,20 Uterotonics, including oxytocin, carboprost trometh-

amine, misoprostol, and methylergonovine, are the first-line inter-

ventions for acute medical management of PPH,1 so they may be

useful markers for identifying PPH.

Here, we aimed to establish a physician-validated, comprehen-

sive digital phenotype for PPH using information extracted from

electronic medical records (EMR) in a large US health system. We

used several sources to identify deliveries with significant blood loss,

as well as deliveries where medical or surgical interventions for

treating PPH were given. Through careful extraction of medication

dosing and timing, mapping of fluctuations in lab values during la-

bor and delivery, and synthesis of medical observations across labor

and delivery admission, we aimed to develop a comprehensive phe-

notype to retrospectively identify deliveries with PPH. To validate

this phenotype, blinded chart reviews by a physician were conducted

on a subset of patients to confirm clinical diagnosis of PPH. Perfor-

mance of our phenotype was then compared to both a common defi-

nition of PPH (� 1000mL blood loss)1 and the most comprehensive

previously developed digital phenotype.12 Inaccurate phenotyping

remains a significant barrier to tracking incidence and management

of PPH in hospitals, developing more accurate risk stratification

tools, and identifying novel interventions. Our goal was to provide a

robust digital phenotype that can be readily implemented retrospec-

tively for both quality improvement initiatives and clinical research.

MATERIALS AND METHODS

Patient population
We used deidentified EMR data provided by the Mount Sinai Data

Warehouse (MSDW) from the Mount Sinai Health System (MSHS),

one of the largest and most comprehensive EMR systems in New

York City. MSHS includes 5 member hospitals with EMR from

2000–2020, which draw from a racially and ethnically diverse pa-

tient population. Clinical variables including patient demographics,

medical histories, or visit details were available for 9 million unique

patients. These deidentified data were used to construct a delivery

cohort and develop a digital phenotyping algorithm. A diagram of

our workflow is presented in Figure 1A.

We received approval from the Icahn School of Medicine at

Mount Sinai Institutional Review Board (IRB-17-01245) to conduct

this study.

Delivery cohort
To identify all deliveries, we used 3 sources: (1) a standardized deliv-

ery summary completed by delivery staff on Labor & Delivery, (2)

procedure records for vaginal or Cesarean deliveries (identified us-

ing CPT-4 and ICD-10-PCS billing codes), and (3) linked mother–in-

fant hospital visit records time-stamped to the infant’s day of birth.

For all deliveries, we identified gestational weeks at delivery, deliv-

ery time, delivery method, parity, and hospital admission time.

When gestational weeks at delivery was not recorded, it was esti-

mated using gestational age reported for prenatal visits (admit rea-

son). When delivery time was not available, we used the final

procedure time stamp or the time stamp at which the mother re-

ceived 5 or more units of oxytocin (a prophylactic dose given imme-

diately after delivery of the anterior shoulder).11 Delivery method

was labeled using delivery procedure records and ICD-9-CM or

ICD-10-CM diagnostic codes for delivery (Supplementary Table S1)

given to either the mother or infant. Parity was estimated by assum-

ing the first delivery for each woman was the earliest one included in

our cohort and that all following deliveries were also at MSHS. Fi-

nally, hospital inpatient admission and unit transfer times were

extracted to create admission–delivery journeys. Deliveries without

any gestational age information or without admission time were ex-

cluded. We also limited the cohort to deliveries from January 1,

2011 through December 31, 2019 to ensure records were complete

(prior to 2011, data availability through EMR is limited).

Clinical feature cleaning and normalization
All available demographic information, lab tests, vital signs, diagno-

ses, medications, and procedures were extracted for all women in

our delivery cohort. We standardized these data by mapping native

coding systems to common frameworks that are part of the Unified

Medical Language System—a process that also increases interopera-

bility between healthcare systems. All available observations were

cleaned and normalized within data type.

For patient demographics, we extracted patient’s age at delivery,

race, ethnicity, and insurance carried during the current pregnancy

journey. When there were inconsistencies within a patient’s history

of self-reported race or ethnicity, we assigned the most common self-
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report. Lab test names and units were mapped to logical observation

identifiers names and codes (LOINC). Values were cleaned (invalid

results and text removed) and converted to numeric values or stan-

dardized to non-numeric scales as appropriate. Duplicate results (eg,

“preliminary” and “final” results from the same test with the same

values) were filtered to retain the earliest result. Vital signs, including

weight, height, temperature, respirations, pulse, diastolic blood pres-

sure, and systolic blood pressure were standardized to common

names and unit scales. Diagnoses from ICD-9-CM and ICD-10-CM

were combined via mapping to broader categories using the Clinical

Classifications Software.31 We filtered medications to those adminis-

tered to patients and mapped all medication names to RxNorm

ingredients. Procedures were recorded through CompuRecord, an

anesthesia information management program,32 using CPT-4 codes.

When procedures included multiple time points (eg, procedure start,

anesthesia given, fluid given), only the earliest one was retained.

Clinical and obstetric characteristics

The latest hematocrit (LOINC 20570-8) test result and vital signs

given within 48 hours prior to delivery were used as baseline meas-

ures. Oxytocin or misoprostol administered after hospital admission

and prior to delivery was considered evidence of labor induction or

augmentation. Sixty-one ICD-9/ICD-10 codes given during preg-

nancy or within 30 days post-delivery were used to index pregnan-

cies with multiple gestation (Supplementary Table S2).

Digital phenotyping algorithm for PPH
We aimed to identify women who had significant blood loss, as well

as those who had PPH-specific interventions. A diagram of our

workflow is presented in Figure 1B.

Diagnostic indicators of PPH

We used multiple sources to detect substantial blood loss postpar-

tum. First, we considered EBL or QBL by clinicians post-delivery to

have exceeded 1000mL as evidence of PPH. MSHS adopted quanti-

fication practices in 2017; blood loss values were estimated prior to

then. Since EBL is biased towards underreporting PPH,6,18,19,23 and

quantified blood loss is not always reliable,12,33 we also included

women with critically low hematocrit (� 21) or a greater than 12-

point drop from baseline—a proxy measure for blood loss1—that

resulted in a minimum value at or below 25 within 48 hours of de-

livery. Finally, we included women given 1 or more of 30 diagnostic

codes selected by a Maternal Fetal Medicine specialist as indicators

of PPH (Supplementary Table S3). Since ICD codes can be assigned

to a visit after care was given, we considered codes given on delivery

day or within the following 14 days to reflect events during delivery.

ICD diagnoses are often inaccurate when used on their own,34 so we

additionally required administration of any uterotonic medication

except oxytocin (carboprost tromethamine, misoprostol, methyler-

gonovine). Oxytocin was excluded due to its routine use in the ac-

tive management of the third stage of labor.1

Interventions to prevent or treat PPH

We also identified deliveries where uterotonics or surgical interven-

tions intra- or postpartum were given to prevent or treat maternal

hemorrhage. Because methylergonovine can be given prophylacti-

cally or as treatment, we included women given methylergonovine

intramuscularly only if they were also given an ICD code for PPH

(as described above). If 1 first-line uterotonic does not sufficiently

control bleeding, acute medical management of PPH requires combi-

nation use of misoprostol, carboprost tromethamine, and/or tra-
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Figure 1. Workflow for data extraction (A) and digital phenotype (B).

Journal of the American Medical Informatics Association, 2022, Vol. 29, No. 2 323

https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocab181#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocab181#supplementary-data


nexamic acid (an antifibrinolytic drug that promotes blood clot-

ting).1 As such, we included women administered 250mcg of carbo-

prost tromethamine, � 600mcg of misoprostol, or any dose of

tranexamic acid within 48 hours of delivery.1,11

When hemorrhage continues despite medical management, Bakri

balloon placement and surgical interventions may be required. This

can include procedures occurring during laparotomies (CPT-4 codes

49000, 49002) like placement of compression sutures and uterine

artery ligation or embolization, curettage (59160), or, typically as a

last result, hysterectomies (58150, 58180, 59525).1,11,35 We in-

cluded all women that underwent any of these procedures postpar-

tum.

Deliveries with unclear outcomes and non-PPH deliveries

There were 831 deliveries given 1 or more of 30 PPH ICD codes

with a postpartum dose of oxytocin (10 or more units) and had no

other indication of PPH. Since this is a plausible scenario for PPH,

and we wanted to maximize our detection of true cases, we selected

some of these charts for review, but labeled them as “deliveries with

unclear outcomes” (DUO). Deliveries with an ICD code, but no

other indication were excluded (N¼165); all remaining deliveries

neither classified as a PPH delivery nor a DUO were classified as

non-PPH.

Descriptive statistics
We used univariate logistic regression to assess statistical differences

between PPH and non-PPH deliveries in age and gestational weeks

at delivery, parity, baseline labs and vital signs, and hours from ad-

mission to delivery. Proportional differences in race, ethnicity, insur-

ance, delivery method, labor induction or augmentation, and

multiple gestation by PPH status were assessed using chi-square tests

for independence. EBL/QBL differences were assessed separately for

vaginal and Cesarean deliveries. We used a Bonferroni correction to

conservatively control for multiple comparisons. With this adjust-

ment, the significance threshold was set to alpha < 0.001, two-

tailed. All statistical analyses were done using the stats package in R

(version 3.6.0).36

Chart review
To assess accuracy of our digital phenotyping algorithm, an obstetri-

cian with access to fully identified patient charts including labor and

delivery flow charts, progress notes, nursing notes, delivery sum-

mary, and discharge summaries conducted manual chart review to

ascertain presence or absence of a diagnosis of PPH in clinical docu-

mentation while blinded to the label assigned to each chart using the

digital phenotyping algorithm. Therefore, the PPH definition was

clinical documentation within the medical record. We randomly se-

lected 45 charts consisting of PPH (N¼26), non-PPH (N¼11), and

DUO (N¼6) defined by our digital phenotyping algorithm. Within

PPH phenotype, the chart selection covers each rule that we used to

identify phenotype to ensure representation including EBL/QBL

(N¼7), ICDs and methylergonovine (N¼3), hematocrit drop

(N¼6), intervention management (N¼4), and more than 1 rule

(N¼6) (Figure 1, Table 2).

We sought to review a sufficient number of charts such that the

95% confidence interval (CI) of the accuracy estimate exceeded

80%. We generated a bootstrap estimate of the lower bound of the

95% CI as a function of sample size by calculating the accuracy for

a randomly selected (with replacement) sub- or superset of the digi-

tal phenotype-clinical diagnosis pairs established by chart review.

We performed 1000 permutations to generate an empirical distribu-

tion for chart review accuracy and used this to estimate the 95% CI.

Our first aim for this review was to verify that our data-mining

techniques were accurate. Our data was deidentified to ensure pa-

tient privacy, so it did not include all information recorded for a de-

livery, including any information from physician or surgical notes.

Thus, we wanted to verify data accuracy by comparing information

extracted from EMR including lab results, medications, procedures,

delivery time and method, and blood loss values to what was avail-

able in native clinical charts accessible by physicians. We summa-

rized data accuracy by overall rates of exact matching values

between our data and chart review.

Our second aim was to assess the validity of our digital pheno-

typing algorithm. Charts were reviewed for evidence of significant

blood loss as indicated in notes or lab tests, explicit indication of

PPH in delivery summary or visit notes, or evidence of interventions

specifically for managing PPH clearly beyond standard care. A

judgement for each chart of “yes,” “no,” or “unclear” was made

based on this evidence. We summarized the performance of our digi-

tal phenotype by calculating specificity, sensitivity, positive and neg-

ative precision, accuracy, and F1 score for our labels compared to

chart review labels.

For comparison, we also calculated these same metrics for

each criterion individually (ie, by using presence or absence of

that criterion as the PPH label and comparing it to chart review

labels) in order to assess the value of combining criteria relative

to each indicator on its own. Finally, to compare our digital phe-

notype with alternate phenotypes, we generated PPH labels based

on the EBL criterion from the ACOG guidelines1 (PPH defined as

any delivery with EBL/QBL � 1000mL) and the most comprehen-

sive previously published digital phenotype, which was not evalu-

ated with chart review in the original report.12 ACOG

additionally defines any blood loss followed by signs or symptoms

of hypovolemia to be PPH, however, this criterion is difficult to

ascertain from EHR data without discrete definitions. Because

there is significant variability in the clinical and vital sign changes

that are associated with blood loss, there are no established cutoff

points to trigger clinical interventions.37,38 The latter phenotype

was originally proposed as 4 mutually exclusive levels of risk,

which we have combined here into a single phenotype for simplic-

ity. PPH deliveries were defined as having any of the following

criteria: administration of any uterotonic (except oxytocin), 1 or

more of 12 ICD-9 or ICD-10 codes for PPH12 (Supplementary Ta-

ble S3), transfusion of blood intra- or postpartum, receipt of intra-

uterine tamponade device, or hysterectomy. All patient charts

were used for comparison performance metrics, regardless of their

label using our digital phenotype.

RESULTS

Demographic, clinical, and obstetric characteristics for

the pregnancy cohort
We identified 73 025 deliveries occurring between January 1, 2011

and December 31, 2019. We excluded 1081 deliveries in which a

hospital admission time could not be identified, leaving 71 944 de-

liveries from 57 151 mothers in our final cohort. Summary statistics

for demographic, clinical, and obstetric characteristics for the entire

cohort, as well as for PPH and non-PPH deliveries, are provided in

Table 1.
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Digital phenotype for PPH
We classified 6639 deliveries (9% prevalence) as PPH deliveries us-

ing diagnostic indicators of significant blood loss combined with

any evidence of PPH-specific interventions. Frequencies for each cri-

terion we considered for inclusion, as well as overall PPH prevalence

are listed in Table 2. We also classified PPH deliveries based on their

indication source (Figure 1B). We found that 71% of PPH deliveries

had evidence from 1 source of data (Medications: 28%, Hematocrit:

16%, ICDs: 14%, EBL: 13%, Surgeries: <1%), including those

with multiple indicators within a source (eg, a woman given carbo-

prost and misoprostol, but no nonpharmaceutical interventions),

while 29% of PPH deliveries had more than 1 type of indication in

their medical record (eg, at least a 12-point drop in hematocrit to at

or below 25 and EBL >1000 mL).

Validation of digital phenotype for PPH
We selected 45 charts to review for data accuracy and digital pheno-

type validation. Two charts were excluded due to restricted access,

resulting in 43 charts for review. Delivery method labels, delivery

times, estimates of blood loss, baseline and follow-up hematocrit lab

values, and uterotonics administration exactly matched those found

in chart review, with the exception of 1 missing medication for 2 de-

liveries. For these deliveries, methylergonovine was listed only in the

patient’s delivery summary, but not in the patient’s medication

records, so these events were not found in the structured data

extracted from EMR.

We also evaluated the accuracy of our PPH, non-PPH, and DUO

labels relative to chart review. Among deliveries labeled as having

PPH or non-PPH by our digital phenotype (N¼37), 24 had PPH,

and 13 did not according to physician review. One true PPH case

and 3 non-PPH cases were misclassified by our phenotype algo-

rithm, yielding 89% accuracy (Table 3) (95% CI lower bound ¼
81.6%; bootstrap method; Supplementary Figure S1) and an F1-

score of 0.92. The overlap between the digital phenotype and chart

review definitions of PPH status was statistically significant

(P¼8.1x10�6, odds ratio ¼ 76.7; Fisher’s exact test). Among

patients with unclear outcomes (DUO group), 3 had PPH, and 3 did

not. Overall performance and accuracy by PPH criterion were de-

tailed in Table 4. We also compared accuracy of our digital pheno-

type to labels using only 1 of the criteria we considered (rather than

combining them), and 2 alternate phenotypes: ACOG’s EBL PPH

guideline, and the most comprehensive EHR-based digital pheno-

type previously proposed. All were less accurate than our digital

phenotype (Table 3).

Table 1. Demographic, clinical, and obstetric characteristics for pregnancy cohort

Delivery cohort PPH Non-PPH

N (%) jMean6SD N (%) jMean6SD N (%) jMean6SD

Demographics

Number of patients 71 944 (100%) 6639 (9%) 64 309 (89%)

Age, years þ 32 6 6 33 6 6 32 6 6

Race þ
White 40 542 (56%) 3176 (48%) 36 801 (57%)

African American 7418 (10%) 911 (14%) 6407 (10%)

Asian 5819 (8%) 622 (9%) 5106 (8%)

Native American 284 (<1%) 25 (<1%) 253 (<1%)

Other 13 433 (19%) 1495 (22%) 11 761 (18%)

Unknown 4448 (6%) 410 (6%) 3981 (6%)

Ethnicity þ
Non-Hispanic 40 693 (57%) 3444 (55%) 36 629 (57%)

Hispanic 11 470 (16%) 1269 (19%) 10 044 (16%)

Unknown 19 825 (28%) 15 686 (25%) 17 891 (28%)

Insurance þ
Private 42 073 (59%) 3633 (55%) 37 810 (59%)

Medicaid or Medicare 20 827 (32%) 20 474 (37%) 23 644 (33%)

Uninsured 418 (<1%) 46 (1%) 471 (1%)

Other or missing 5254 (8%) 486 (7%) 5756 (8%)

Clinical baseline (last measurement prior to delivery)

Body-mass index, kg/m2 þ 29 6 5 30 6 6 29 6 5

DBP, mmHg þ 73 6 11 75 6 12 72 6 11

SBP, mmHg þ 121 6 14 125 6 16 121 6 14

Hematocrit, % þ 36 6 3 35 6 4 36 6 3

Obstetric characteristics

Cesarean delivery þ 25 434 (35%) 3132 (47%) 21 942 (34%)

Admission to delivery, hr þ 9.5 6 7.3 11.5 6 8.3 9.3 6 7.2

Gestational wks at delivery þ 39 6 2 38 6 3 39 6 2

Labor induction or augmenta-

tion þ
47 697 (66%) 4783 (72%) 42 248 (66%)

Multiple gestation þ 4122 (6%) 661 (10%) 3388 (5%)

Parity þ 1.5 6 0.6 1.4 6 0.9 1.5 6 0.9

EBL/QBL, mL

Vaginal delivery þ 322 6 180 581 6 414 297 6 116

Cesarean delivery þ 730 6 342 1080 6 606 677 6 243

þSignificant difference between PPH and non-PPH deliveries, P< .001 .
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DISCUSSION

We have developed a comprehensive digital phenotype for PPH us-

ing a large and diverse EMR system from New York City. Chart re-

view confirmed its validity with 96% sensitivity, 77% specificity,

and 89% precision. Considering this performance relative to any in-

dividual criterion (accuracy ranging from 40%–74%), the most

comprehensive previously proposed digital phenotype (74% accu-

racy), and a common definition based on the EBL criterion from

ACOG’s guidelines (67% accuracy), our digital phenotype affords

the highest accuracy (89%). Concretely, this increase in accuracy

allows us to identify more than 3 times as many PPH deliveries

(N¼6639) than would be identified using blood loss alone

(N¼1747). While additional clinical criteria may be considered by

a clinician when they are determining patient care, for retrospective

PPH outcomes assessments and research, EBL is often the objective

measure that is consistently documented. Our digital phenotype sug-

gests that this approach may substantially underestimate the inci-

dence.

We also confirmed the data we extracted were highly consistent

with clinical notes, highlighting the reliability of our approach. To

increase accessibility across healthcare systems, our digital pheno-

type used only structured data mapped to common data models and

did not require the use of advanced methods to mine notes (eg, natu-

ral language processing) or individual chart review to extract data,

both of which are variable and time-consuming, but are commonly

included in phenotyping algorithms.34,39 Together, we suggest this

digital phenotype is a scalable, accurate, and valid research tool that

could be used to improve tracking of PPH incidence and manage-

ment, as well as facilitate research to enhance risk assessment and

intervention.

Interestingly, we found that overlap between PPH-inclusion cri-

teria was only moderate. While 29% of PPH deliveries had more

than 1 indication (eg, medication and blood loss >1000 mL), most

had indications from only 1 category, underlining the need to incor-

porate multiple sources of information for identification of PPH de-

liveries (Figure 1B). Our most accurate categories on their own were

EBL/QBL and hematocrit, which were both 100% accurate (equally

accurate as having more than 1 indication) (Tables 3 and 4). Though

drop in hematocrit has been noted to have low specificity20 and can

also reflect changes in volume status, our definition for hematocrit

drop was more stringent. Additionally, we included low hematocrit

(� 21), which can indicate blood loss anemia related to delivery,

which is supported by our data. EBL measures are known to be bi-

ased towards underreporting, which is consistent with our find-

ings.6,18,19,22 Deliveries where blood loss was estimated to be

>1000 mL were highly likely to be PPH deliveries, but deliveries

with estimated blood loss at or below 1000 mL were not always

non-PPH deliveries (Tables 3 and 4). One metric for capturing PPH

deliveries with blood loss estimates less than 1000 mL may be to use

a conservative threshold for hematocrit (12-point drop to � 25).

While hematocrit measures can reflect other changes besides blood

loss (eg, administration of intravenous fluids or blood transfu-

sions),15 we found this threshold to be a good discriminator of PPH

deliveries from non-PPH deliveries. Finally, we found that the accu-

Table 3. Performance for digital phenotype, individual criteria, and alternate phenotypes

Sensitivity (Recall) Specificity Precision (PPV) NPV Accuracy

Digital phenotype

PPH vs non-PPH 96% 77% 88% 91% 89%

PPH and DUO vs non-PPH 96% 63% 81% 91% 84%

PPH vs non-PPH and DUO 85% 81% 89% 76% 84%

Phenotype criterion alone

EBL/QBL >1000mL 44% 100% 100% 48% 65%

Hematocrit � 21 or 12-point drop to � 25 30% 100% 100% 46% 56%

ICD 74% 75% 83% 63% 74%

Medication (carboprost, misoprostol, tranexamic acid) 19% 88% 71% 39% 44%

Procedure 4% 100% 100% 38% 40%

Alternate phenotype

Goffman et al, levels 1–4 85% 56% 77% 69% 74%

ACOG EBL 59% 81% 84% 54% 67%

Table 2. Frequencies of clinical features used to assess medically

actionable risk for PPH

Criteria PPHa N Percentb

EBL/QBL

Any record 64 240 89%

>1000 mL X 1747 2%

Hematocrit

Baseline measurement 68 807 96%

Any follow-up measurement 29 899 42%

� 21 or � 12-point drop from

baseline to � 25

X 1949 3%

Billing codes

PPH ICD code 4219 6%

PPH ICD code þ oxytocin, � 10

units

DUO 3829 5%

PPH ICD code þ methylergono-

vine, 0.2mg/mL IM

X 2060 3%

Medication management

Oxytocin, � 10 units 61 476 85%

Methylergonovine, 0.2mg/mL

IM

8094 11%

Carboprost tromethamine, 250

mcg

X 1806 3%

Misoprostol, � 600mcg X 2000 3%

Tranexamic acid X 111 <1%

Surgical interventions

Laparotomy X 18 <1%

Curettage X 51 <1%

Hysterectomy X 74 <1%

Any PPH indication X 6639 9%

aIndicates delivery inclusion in digital phenotype (x) or deliveries with

unclear outcome (DUO).
bAs a percent of entire cohort N¼ 71 944.
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racy of diagnostic billing codes depended on the context. While they

were frequently assigned correctly (83% precision; Table 3), preci-

sion dropped to 67% with methylergonovine only and to 50% when

paired exclusively with oxytocin (Table 4).

This phenotype should be considered in the context of several

limitations. We reported 3 false positives and 1 false negative in

chart review. Of the false positives, 2 of the 3 were deliveries where

PPH treatment was applied prophylactically, despite no evidence of

hemorrhage, because they had significant risk factors at hospital ad-

mission. Considering this, the use of our phenotype may be best

suited for identifying women who needed interventions for PPH (us-

ing this as our definition, precision would be 96%), although its pre-

cision for PPH is still high (89%; Table 3). In general, the use of

medications for uterine atony relies on visual cues and clinical judge-

ment which are not uniform and may vary by clinician, adding an-

other limitation.

The false negative was a delivery with an unanticipated surgical

complication, which is a less common cause of PPH (and 1 not

treated with uterotonics), and whose hematocrit values narrowly

missed our threshold. While 70%–80% of PPH cases are caused by

uterine atony, uterine trauma (eg, lacerations or other tissue tears),

retained tissue (eg, invasive placenta), and acquired or chronic coa-

gulopathies can also cause PPH.1,11 It is possible that information

pertaining to these causes is more readily available through physi-

cian notes or blood bank records, which we could not access with

deidentified data. However, in general, these causes are less likely to

be preventable with improved risk prediction than uterine atony—

eg, intraoperative complications can be unforeseen and thus harder

to prevent, whereas atony can be targeted prophylactically with ute-

rotonics—so, again, this suggests the phenotype may be best suited

for identifying women likely to benefit from interventions for PPH.

The benefit of a comprehensive definition that encompasses both

mild and severe cases is the early identification and time to intervene

prior to further decompensation, particularly since many women

without risk factors experience PPH.40,41 Early identification of clin-

ically actionable postpartum hemorrhage would also allow for fur-

ther planning and allocation of resources that may prevent further

clinical decompensation and adverse maternal outcomes.41

Additionally, accurate phenotyping is a cornerstone of high cali-

ber clinical research and hospital quality improvement. Here, we of-

fer a robust, portable, physician-validated digital phenotype for

PPH that captures more than 3 times as many deliveries as the most

commonly used approach by leveraging a suite of complementary

information available in EMR. This research tool may be of signifi-

cant use in designing patient safety initiatives in addition to ongoing

clinical research to deliver better preventative interventions for the

leading cause of maternal morbidity worldwide.42
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