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Abstract

SUMOylation is a post-translational modification that positively
regulates monoallelic expression of the trypanosome variant
surface glycoprotein (VSG). The presence of a highly SUMOylated
focus associated with the nuclear body, where the VSG gene is tran-
scribed, further suggests an important role of SUMOylation in regu-
lating VSG expression. Here, we show that SNF2PH, a SUMOylated
plant homeodomain (PH)-transcription factor, is upregulated in the
bloodstream form of the parasite and enriched at the active VSG
telomere. SUMOylation promotes the recruitment of SNF2PH to the
VSG promoter, where it is required to maintain RNA polymerase I
and thus to regulate VSG transcript levels. Further, ectopic overex-
pression of SNF2PH in insect forms, but not of a mutant lacking the
PH domain, induces the expression of bloodstream stage-specific
surface proteins. These data suggest that SNF2PH SUMOylation
positively regulates VSG monoallelic transcription, while the PH
domain is required for the expression of bloodstream-specific
surface proteins. Thus, SNF2PH functions as a positive activator,
linking expression of infective form surface proteins and VSG regu-
lation, thereby acting as a major regulator of pathogenicity.
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Introduction

Antigenic variation, the major mechanism by which African trypa-

nosomes evade the host immune response, is mediated by switching

expression between immunologically distinct variant surface glyco-

protein (VSG) genes [1]. The active VSG gene is transcribed poly-

cistronically by RNA polymerase I, together with several expression

site-associated genes (ESAGs), from a large telomeric locus (40–

60 kb), known as a VSG expression site (VSG-ES), currently named

bloodstream ES (BESs) [2]. In the mammalian bloodstream form

(BF), where antigenic variation occurs, only one of ~15 VSG-ES

genes is transcribed at a given time, resulting in monoallelic expres-

sion and a dense surface coat comprised of a single VSG type [3–5].

The active VSG-ES is recruited to a nuclear compartment, the

expression site body (ESB), which facilitates monoallelic transcrip-

tion [6–8]. Interestingly, small ubiquitin-like modifier (SUMO) post-

transcriptionally modified proteins are associated with the ESB

within a highly SUMOylated focus (HSF) [9]. However, in the insect

or procyclic form, VSGs are not expressed and procyclin glycopro-

teins cover the parasite surface [10].

SUMOylation is a large and reversible post-translational modifi-

cation (PTM) that regulates many critical processes, including tran-

scription, protein–protein interactions, protein stability, nuclear

localization, DNA repair, and signaling [11]. In Trypanosoma brucei,

there is a single SUMO ortholog, which is essential for cell cycle

progression of the procyclic form [12]. Proteomic analyses of SUMO

substrates in this life stage identified 45 proteins involved in multi-

ple cellular processes, including epigenetic regulation of gene

expression [13]. Transcription factors are well known SUMO targets,

whose activity can be modulated in both gene silencing and activa-

tion [14]. In T. brucei BF, SUMO-conjugated proteins were detected

highly enriched in the nucleus in a single focus (HSF) associated

with the ES body (ESB) and in the active VSG-ES chromatin,

suggesting chromatin SUMOylation acts as a positive epigenetic

mark to regulate VSG expression [9]. Chromatin SUMOylation to the

active VSG-ES locus is required for efficient recruitment of RNA

polymerase I in a SUMO E3 ligase (TbSIZ1/PIAS)-dependent

manner, suggesting protein SUMOylation facilitates the accessibility

of additional transcription factors [9].
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Thus, we sought to identify major SUMO-conjugated proteins in

the mammalian infective form and found a novel protein annotated

as a transcription activator in the database (Tb927.3.2140). Struc-

tural conserved domain predictions suggest that Tb927.3.2140 is a

member of the Snf2 (Sucrose Nonfermenting Protein 2) SF2 heli-

case-like superfamily 2 of chromatin remodelers [15–17] and also

contains a plant homeodomain (PHD). Thus, we designate the

protein SNF2PH.

Here, we show that SNF2PH is a developmentally regulated

protein enriched at chromatin of the VSG-ES (BES) telomere, partic-

ularly at promoter regions when modified by SUMO. SNF2PH deple-

tion leads to reduced VSG transcription and upregulation of

developmental markers for the insect stage. ChIP-seq data suggest

SNF2PH binds to selective regions in chromatin, in addition to the

active VSG-ES, like developmentally regulated loci, rDNA, SL-RNA,

and, interestingly, also to clusters of tRNA genes, which function as

insulators for repressed and active chromatin domains in other

eukaryotes. SNF2PH is strongly downregulated in quiescent (pre-

adapted to host transition) trypanosomes generated in both pleo-

morphic (differentiation-competent) and monomorphic (by

AMPKa1-activation) strains. Further, SNF2PH expression is nega-

tively regulated in the insect procyclic form. Most importantly, over-

expression of SNF2PH in the insect form triggers the expression of

bloodstream stage-specific surface protein genes, suggesting a role

as positive regulator of differentiation. Thus, SNF2PH links immune

evasion with pathogenicity.

Results

Trypanosome SNF2PH is SNF2_N-related protein that contains an
unusual plant homeodomain

SUMOylation is a hallmark of epigenetic VSG regulation at the level

of chromatin and nuclear architecture [9]. The highly SUMOylated

focus (HSF) detected by a specific mAb against TbSUMO in the

nucleus of bloodstream form (BF) trypanosomes was recently asso-

ciated with the nuclear body ESB [9], the site for VSG-ES monoal-

lelic expression [6]. Recognition of HSF together with the detection

of highly SUMOylated proteins at the active VSG-ES chromatin by

ChIP analysis suggests that a number of SUMOylated proteins are

mechanistically involved in regulation of VSG expression [9]. There-

fore, identifying these proteins is a novel approach for the discovery

of factors involved in VSG regulation. To identify abundant SUMOy-

lated proteins, we performed a non-exhaustive proteomic analysis

utilizing BF protein extracts from a cell line expressing an 8His-HA-

tagged SUMO (see Materials and Methods). LC-MS/MS analyses of

His-HA-affinity-purified extracts robustly identified several proteins

(see Appendix Table S1). Particularly, interesting was Tb927.3.2140

(length 948 aa), a protein annotated in the TriTrypDB database as a

transcription activator, which contains a conserved SNF2 family N-

terminal domain.

Comparative analyses of Tb927.3.2140 at CDART [18] and the

NCBI CDD domain database identified three conserved domains:

DEXHc_Snf, e-value 9.4e�74, SF2_C_SNF, e-value 8.0e�50,

PHD5_NSD, e-value 6.2e�14. Structural CD predictions suggest

than Tb927.3.2140 is a member of the Snf2 family (Sucrose

Nonfermenting Protein 2) from the SF2 helicase-like superfamily 2

of chromatin remodelers [15–17], which regulate DNA accessibil-

ity to facilitate central cellular processes as transcription, DNA

repair, DNA replication and cell differentiation [15,16]. Next,

searching for Tb927.3.2140 homologues using DELTA-BLAST

against UniProtKB/SwissProt database, identified a protein

member of the SWI/SNF family, SMARCA1 (e-value, 4e�157)

(SWI/SNF-related matrix-associated actin-dependent regulator of

chromatin subfamily A member 1) also known as the global tran-

scription activator SNF2L1 (length, 1054 aa) (homonyms SWI;

ISWI; SWI2; SNF2L; SNF2L1; SNF2LB; SNF2LT; hSNF2L;

NURF140) all described to be involved in transcription for either

gene activation or gene repression [16]. In addition to the SNF2 N

domain, a conserved helicase C-terminal domain was also

detected, known to function as a chaperon-like in the assembly of

protein complexes. Interestingly, Tb927.3.2140 also contains a

plant homeodomain (PHD) that is absent from other known

trypanosome chromatin remodelers. The PHD is a conserved

homeodomain involved in development [19] that binds H3 tails

and reads unmodified H3 tails [20] as well as H3 trimethylated at

Lys4 (H3K4me3) [21] or acetylated at Lys8 and Lys14 [22,23].

The PH domain is conserved in histone methyltransferases,

including murine HMT3 and human NSD3 (Appendix Fig S1).

Thus, we named this chromatin-remodeling factor trypanosome

SNF2PH.

SNF2PH is developmentally regulated and associated with the
ESB nuclear body

In order to investigate SNF2PH protein expression, we raised a

monoclonal antibody (mAb) (11C10E4) against the recombinant

protein expressed in bacteria. Western blot of total protein extracts

and immunofluorescence (IF) showed that SNF2PH protein levels

are developmentally regulated, with higher expression in the blood-

stream compared to the insect form (Fig 1A and Appendix Fig S2).

The specificity of mAb11C10E4 was demonstrated as SNF2PH levels

in whole cell extracts were markedly reduced in RNAi cells

(Fig 1B).

Subcellular localization of SNF2PH by 3D-deconvolution IF (3D-

IF) microscopy with mAb11C10E4 showed a nuclear localization,

with disperse distribution in the nucleoplasm, including puncta and

enrichment at the nucleolar periphery (Fig 1C). To determine

whether SNF2PH associates with the active VSG-ES locus, we used

a GFP-lacI targeted VSG-promoter cell line [6]. We detected 38.8%

(n = 55) colocalization (Pearson’s correlation coefficient) with GFP-

tagged active VSG-ES using an anti-GFP rabbit antiserum and

mAb11C10E4 anti-SNF2PH (Fig 1D). Statistical analysis showed

even lower association in 2K1N cells (S-G2) (Fig EV1A), suggesting

that SNF2PH association with the active VSG-ES locus occurs in a

cell cycle-dependent manner.

To investigate the association with the HSF, we stained cells with

anti-TbSUMO mAb [9] and anti-SNF2PH antiserum (Materials and

Methods). 3D-IF showed colocalization between SNF2PH and HSF

in 53.7% of the cells (n = 67)) (Figs 1E and EV1B), likely due to the

highly dynamic nature of protein SUMOylation. Similar colocaliza-

tion in 53.49% of the cells was observed between SNF2PH and the

ESB (Figs 1F and EV1C), indicated by extranucleolar pol I signal

visualized with a YFP-tagged RPB5z (specific RNA pol I subunit 5z

[24]) (Figs 1F and EV1C).
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SNF2PH is SUMO conjugated

To investigate whether SNF2PH is a bona fide SUMO-modified

protein, we carried out immunoprecipitation (IP) utilizing the anti-

TbSUMO mAb [9] and anti-SNF2PH antiserum under denaturing

conditions to capture only proteins with covalent SUMO modifi-

cations. IP suggested that SNF2PH is SUMOylated when analyzed by

Western blotting using the anti-TbSUMO mAb on a SNF2PH

immunoprecipitate (Fig 2A). The reciprocal experiment, using anti-

SNF2PH antiserum on a TbSUMO immunoprecipitate reproducibly

detected SNF2PH conjugated to TbSUMO (Fig 2B).

While IP demonstrates that SNF2PH is SUMOylated, it is

unknown whether nuclear conjugation with SUMO is associated

with dispersed nuclear foci or localization to a specific subnuclear

site. We performed Proximity Ligation assays (PLA) (O-link

Bioscience), an IF method where a signal is produced only if two

proteins, or a protein and its PTM, are within 40 nm. After a first IF

experiment using anti-SUMO mAb and the SNF2PH antiserum,

secondary species-specific antibodies conjugated with oligonu-

cleotides are hybridized to the two PLA probes to produce a DNA by

rolling circle replication. As the PLA assay detected positive amplifi-

cation this suggests that SNF2PH is SUMOylated in situ in both the

nucleolus and nuclear periphery in one (84.12% � 0.25%) or two

puncta (15.88% � 0.25%) (Appendix Fig S3).

The low signal of SNF2PH antibody in TbSUMO IP experiments

is likely a consequence of the dynamic nature of SUMOylation,

yielding a small population of SUMOylated SNF2PH form at any

given time; similar behavior has been demonstrated for TbRPAI

(RNA Polymerase I largest subunit) [9] and additional SUMO

proteins in T. brucei [25]. To determine which domains of SNF2PH

are SUMOylated, we used an E. coli strain expressing the complete

T. brucei SUMOylation system [13]. We evaluated two different

constructs encompassing the SNF2PH N-terminal or C-terminal

domain (SNF2PH-N and SNF2PH-C, respectively), bearing a Flag

tag. We co-expressed SNF2PH-N and SNF2PH-C in E. coli with

TbSUMO (already exposing the diGly motif) and both activating

enzyme subunits (TbE1a/TbE1b) plus the conjugating enzyme

(TbE2). SNF2PHN appears as a single band migrating at the

expected position when expressed alone in E. coli (Fig 2C, lane 1)

or when co-expressed with a partially reconstituted system (lanes

2 and 3). However, when co-expressed with the complete

SUMOylation system, additional slower-migrating bands can be

detected (lane 4), suggesting that the N-terminal domain of

SNF2PH can be SUMO conjugated. In contrast, the C-terminal

domain is not a target of SUMOylation since it is only detected as

a single protein band at the expected position of the unmodified

protein (Fig 2D).

To confirm heterologous SUMOylation of SNF2PHN, we

performed in vitro deconjugation reactions using the specific

T. brucei SUMO isopeptidase TbSENP. As shown in Fig 2E, the
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Figure 1. SNF2PH is a developmentally regulated protein associated
with the expression site body (ESB) and highly SUMOylated focus (HSF).

A SNF2PH is differentially expressed in T. brucei developmental stages. The
mammalian infective form, bloodstream form (BF), and the insect form,
procyclic form (PF).

B Knockdown of SNF2PH by inducible RNA interference in bloodstream form
leads to protein depletion after 24 h. (5 × 106 cells/lane): parental,
uninduced (dox�), and induced (dox+). Total cell extracts were analyzed by
Western blotting using the anti-SNF2PH mAb.

C SNF2PH is diffusely distributed in the nucleoplasm with certain enrichment
in the nucleolus. Panels show DAPI and green channels after IF with the
anti-SNF2PH mAb (11C10E4). Scale bar, 1 lm.

D SNF2PH associates with the active VSG-ES. A cell line with a GFP-LacI tag
in the active VSG-ES [6] was subjected to double 3D-IF using anti-SNF2PH
mAb (red), anti-GFP rabbit antiserum (green) and DAPI staining. Maximum
intensity projections of deconvolved slices containing the GFP signal are
shown (arrowhead). (D’) Inset shows a higher magnification of the nucleus
including anti-SNFPH and anti-GFP fluorescence signals colocalization
mask (white). Scale bar, 1 lm.

E Colocalization analysis of SNF2PH with the Highly SUMOylated focus (HSF).
SNF2PH associates with the HSF (arrowhead) in bloodstream form nucleus.
Indirect 3D-IF analyses were carried out using the rabbit anti-SNF2PH
antiserum (red) and the anti-TbSUMO mAb 1C9H8 (green) [9]. Scale bar,
1 lm.

F CSNF2PH partially colocalizes with YFP-tagged TbRPB5z in the ESB. A cell
line expressing an N-terminal fusion of a Yellow Fluorescent Protein (YFG)
with the RNA pol I-specific subunit RPB5z described previously [24] was
used to analyze by double 3D-IF a possible association of SNF2PH with the
ESB. The 3D-IF was performed using the anti-SNF2PH mAb (red) and rabbit
anti-GFP antiserum (green) that recognizes the Yellow GFP variant.
Deconvolved slices containing both SNF2PH and the extranucleolar ESB
(arrowhead) are represented as maximum intensity projections. (F’) Inset
shows a higher magnification of the nucleus including anti-SNF2PH and
anti-GFP fluorescence signals colocalization mask (white). Scale bar, 1 lm.
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additional slowly migrating bands observed when SNF2PHN was

co-expressed with the T. brucei SUMOylation bacterial system (lane

1) completely disappear upon treatment of cell lysates with TbSENP

(lane 2), and the deconjugation ability of TbSENP was specifically

inhibited by addition of 20 mM NEM (lane 3). To investigate the

nature of SUMOylation of SNF2PHN, we compared the patterns

obtained in the bacterial system when replacing wild-type SUMO

with a variant unable to form SUMO chains (Fig 2F). In the latter

case, a doublet near the 55 kDa marker can be detected, suggesting

that there are at least two major sites for SUMOylation in the

SNF2PH N-terminus.

SNF2PH is highly enriched at active VSG-ES promoter chromatin

To investigate SNF2PH occupancy at VSG-ES loci, we performed

chromatin IP (ChIP) using anti-SNF2PH antiserum in a promoter-

tagged cell line. To overcome the problem of highly homologous

sequences at the promoter region among the 15 telomeric VSG-ESs,

we developed a tagged cell line (Dual-reporter Renilla Active Luci-

ferase Inactive or DRALI) (loci of interest schematic in Fig 3A). The

reporter genes in the DRALI cell line allowed us to determine

SNF2PH occupancy at the region downstream of the promoter in

either active or inactive VSG-ESs. First, we analyzed occupancy of
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Figure 2. SNF2PH is SUMOylated in vivo in trypanosomes and in vitro using a SUMOylation heterologous system.

A Immunoprecipitation (IP) of bloodstream SUMOylated proteins revealed that SNF2PH is SUMOylated. A nuclear fraction was lysed in urea-containing buffer, and
proteins were immunoprecipitated with rabbit anti-SNF2PH antiserum or unspecific antiserum (prebleed) and probed with anti-TbSUMO mAb 1C9H8 (arrow). As a
control, IP samples were reprobed with SNF2PH antiserum (below).

B A reciprocal IP experiment was performed using anti-TbSUMO mAb and probed with SNF2PH antiserum. As a control, the blot was reprobed with anti-TbSUMO mAb
(lower panel). Inp: Input, IP (0.5%).

C Anti-Flag Western blot analysis of SNF2PHN performed on soluble cell extracts from induced cultures of E. coli transformed with pET28-SNF2PHN-3xFlag alone (lane
1), or in the background of an incomplete (lane 2, pACYCDuet-1-TbE1a-TbE1b; lane 3, pCDFDuet-1-TbSUMO-TbE2) or a complete (lane 4, pCDFDuet-1-TbSUMO-TbE2
plus pACYCDuet-1-TbE1a-TbE1b) SUMOylation system.

D Similar samples as described in (C) were analyzed for SNF2PHC.
E Cell lysates of E. coli heterologously expressing SNF2PH and the complete T. brucei SUMOylation system were incubated at 28°C in the absence (�) or presence (+) of

recombinant TbSENP. The deconjugation activity of TbSENP was specifically inhibited by the addition of 20 mM NEM. Reaction mixtures were analyzed by Western
blot using anti-Flag monoclonal antibodies.

F Western blot analysis of SUMOylated SNF2PHN pattern performed on soluble cell extracts from a complete bacterial SUMOylation system using a wild type version
of SUMO (lane 1) or a Lys-deficient version of SUMO (TbSUMO K9R) unable to form chains (lane 2).
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SNF2PH by ChIP and quantitative PCR (qPCR), which detect signifi-

cant SNF2PH enrichment at the RLuc gene downstream of the active

VSG-ES promoter (P < 0.001) as well as at the active VSG221 gene

located in the telomere of BES1 (P < 0.01). However, FLuc located

downstream of an inactive VSG-ES promoter (Fig 3A) was not

significantly detected (Fig 3B). SNF2PH enrichment was also not
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detected at VSG genes known to be located at silent telomeric ES

position in this strain [2], such as VSG121 (VSG in BES3), VSGVO2

(BES2) and VSGJS (BES13) (Fig 3B). Altogether, the active VSG221

gene immunoprecipitated more efficiently than all inactive VSG

telomeric loci analyzed, suggesting SNF2PH associates preferentially

with the active ES telomere. Additionally, SNF2PH was detected at

other RNA pol I-transcribed loci, including rDNA and EP procyclin

promoters. Occupancy of SNF2PH at the two promoters of the

surface glycoprotein genes characteristic of mammalian and insect

forms (VSG-ES and EP) implicates SNF2PH in regulation of develop-

mental gene expression. Enrichment was also detected for the splice

leader (SL) promoter (P < 0.05) and coding regions. However,

SNF2PH was most enriched at the active VSG-ES chromatin

compared with EP and rDNA promoters.

In eukaryotes, chromatin remodelers are detected at RNA pol II

promoters and play important roles in their activity [26,27]. We

investigated the presence of SNF2PH in chromatin across the

genome, aside from the multiallelic VSG-ESs, to identify additional

genes targeted by this protein. We compared quantitative enrich-

ment profiles with ChIP-seq peak distribution and considered

0-mismatch error to avoid bias in polymorphic sequences within

repetitive chromosomal loci, leading to defined peaks (q value

< 0.05, Dataset EV1; Fig 3C). As demonstrated by quantitative

ChIP, the site of enrichment corresponded to developmentally

regulated loci EP and GPEET2 procyclin, and 18S ribosomal DNA

and SL-RNA-related sequences. Interestingly, SNF2PH localizes at

H3.V, a histone variant recently associated with VSG monoallelic

expression [28] and its own coding sequence. SNF2PH was also

significantly enriched at a substantial number of tRNAs gene

arrays located in chromosomes XI, X, VIII, VII, V, IV, and III

(Fig 3C); interestingly, tRNA clusters are known to function as a

chromatin insulators in eukaryotes from yeast to human, reviewed

in Ref. [29].

Figure 3B shows that SNF2PH is enriched at the active VSG-ES

(BES1) locus by ChIP qPCR analysis using unique sequences like

the Rluc reporter inserted downstream of the promoter and the

VSG221 gene at the telomeric end. However, we wished to investi-

gate in detail a possible SNF2PH occupancy at the area adjacent to

the promoter; nevertheless, highly homologues sequences shared

among most of the VSG-ESs (BES1 to BES17 in ref. [2]) prevented

this analysis using a simple ChIP-seq alignment. We have previ-

ously reported polymorphisms in the sequence at particular

regions located at the core promoter and upstream the promoter

region, referred to as ES promoter PCR fragments 1 and 4 (ESPM1

and ESPM4) (schematically represented in Fig 3D) [9]. These

minor polymorphisms in the sequences allowed us to differentiate

among different BES promoter regions. In particular, PCR fragment

ESPM 4 and 1 yielded 14 different sequences when genomic DNA

was used as template (Appendix Fig S5A in [9]) providing consid-

erable covering of most of the BESs [2]. ChIP-seq data were gener-

ated from the immunoprecipitated chromatin with the anti-

SNF2PH serum, which was then PCR amplified with ESPM1 and 4

PCR primers, and the products were deep-sequenced (see Materials

and Methods). Reads were aligned to BES promoter sequences,

and an index file was built by combining the sequences from the

ESPM1 and 4 together in a single lane with the sequences from

the corresponding BESs (BES1, 2, 3, 4, 7, 7dw, 10, 10dw, 12, 13,

15, 15dw, 17, 17dw described previously [2]). Next, using Bowtie

software, the alignments of the reads were assigned to the BES

promoter index file, and the number of reads aligning to each BES

is shown in Fig 3D. These data showed that SNF2PH is enriched

at the active BES1, at the ESPM1, which corresponds to the core

promoter of the active BES1 (VSG-ES221). SNF2PH was detected

to a lesser extent at other BES promoters, suggesting that SNF2PH

is controlling inactive promoters as well (Fig 3D). Interestingly,

the most prominent increase of read counts was found at the

ESPM1 fragment region, where the actual ES promoter is located,

suggesting SN2PH is associated with the active core ES promoter

rather than the upstream promoter region (Dataset EV1). Together,

these data indicate that SNF2PH is located at several BES promot-

ers; however, it is most enriched at the active VSG-ES promoter

(ESPM1 of the BES1) (Fig 3E).

▸Figure 3. SNF2PH is highly enriched upstream of the active VSG-ES chromatin while is detected to a lesser extent in silent promoters.

A Schematic representation of loci of interest in DRALI, the dual-reporter cell line (not to scale). Two reporters were inserted, Renilla luciferase gene (RLuc) downstream
of the Active VSG221-ES (BES1) promoter and firefly Luciferase gene (FLuc) downstream of an Inactive VSG-ES (DRALI). Few other inactive VSGs known to be telomeric
in this strain are also represented (VSG121 (BES3), VSGJS1 (BES13), and VSGVO2 (BES2)). Schematic representations for other chromosomal loci (ribosomal DNA and
procyclin locus) are shown. Color code: gray (reporters), green (active VSG-ES), red (Inactive VSG-ESs), blue (procyclin locus). Arrow (promoters).

B Chromatin at the active VSG-ES is enriched for SNF2PH. Chromatin immunoprecipitation (ChIP) analysis by quantitative PCR of reporter sequences inserted
downstream of the VSG-ES promoters indicates SNF2PH is highly enriched at the active VSG-ES (RLuc) (BES1) compared to an inactive VSG-ES promoter (FLuc)
(***P < 0.001). SNF2PH enrichment on the active telomeric VSG221 (BES1) compared to inactive VSGs (VSG121 (BES3), VSGJS1 (BES13), and VSGVO2 (BES2)) was also
significant (*P < 0.05–**P < 0.01). SNF2PH occupancy was detected at the splice leader promoter (SL promoter, pol II-transcribed) and EP procyclin (P < 0.05), as well
as the rDNA promoter (P < 0.01) (Student’s t-test) *P < 0.05 **P < 0.01, ***P < 0.001). ChIP analyses are shown as the average of at least three independent
experiments with standard error of the mean (SEM). Data are represented as percent of input immunoprecipitated (% input).

C Distribution of SNF2PH across the genome. ChIP-seq analysis using the SNF2PH antiserum and T. b. brucei 427 genomic library (v4) excluding the telomeres.
Histogram illustrates peak enrichment of representative genes expressed as log10 fold enrichment (FE). This global analysis confirmed previous ChIP data locating
SNF2PH on developmentally regulated genes (EP and GPEET), RNA pol I driven rDNA (ribRNAs) and the SL cluster of small RNAs that are trans-spliced in every mRNA.
Interestingly, beside those essential genes for cell growth, SNF2PH occupies few other coding genes; noteworthy is H3V protein recently linked to the regulation of
VSG monoallelic expression [28]. In addition, SNF2PH was consistently enriched at tRNA gene clusters in 7 chromosomes. Due to highly homologous sequences
among ESAGs, all ES-related sequences as ESAGs genes, VSG basic copies located in chromosomal internal positions were excluded of this graph since we cannot rule
out whether the ChIP-seq reads came from the active VSG-ES (all sequences are included in Dataset EV1).

D Schema of VSG-promoter region indicating the location of ESPM PCR fragments amplified (upper panel). Detailed schema of the promoter region showing both
upstream and downstream (dw) BES from the tandem repeated promoters ESPM 1 and 4 (lower panel).

E Chromatin at the core promoter of the active VSG-ES is highly enriched in SNF2PH. ChIP-seq data using SNF2PH antiserum reveal a higher number of reads
corresponding to the sequence polymorphism of the BES1 at the PCR fragment 1, (ESPM1) mapping at the VSG-ES promoter (Fig 3D) described before in [9]. dw,
downstream promoter.
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SUMOylation functions to recruit SNF2PH at the active VSG-ES

SUMOylated chromatin-associated proteins are enriched upstream

of the promoter region in T. brucei [9]. We assessed the importance

of SUMOylation on SNF2PH targeting by mutating lysine residue 2

to alanine (K2A). K2 was selected as it was predicted as a modifi-

cation site (SUMO V2.0 Webserver (http://sumosp.biocuckoo.org/)

and is contained within the N-terminal region modified by the in

bacteria SUMOylation system (Fig 2). SNF2PH K2A was expressed

with an HA tag from the endogenous locus (Fig EV2). We

performed ChIP qPCR analysis using anti-HA rabbit antiserum after

48-h expression of HA-SNF2PH K2A, using the parental cell line as a

control (Fig 4A). Expression of HA-tagged SNF2PH showed similar

occupancy to SNF2PH, but by contrast the HA-SNF2PH K2A mutant

was reduced in the active VSG221 telomeric locus (BES1) up to 4.6-

fold compared to inactive VSG genes, VSG121, VSGJS1, VSGVO2
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Figure 4. Expression of a SUMO-deficient mutant reduces SNF2PH occupancy at the active VSG-ES.

A ChIP analysis of mutant HA-SNF2PH K2A shows a reduction in the active telomeric VSG221 gene occupancy compare to the WT HA-SNF2PH. ChIP experiments were
carried out using the anti-HA antibody and chromatin isolated from 3 independent clones expressing HA-SNF2PH K2A compared with a cell line expressing WT HA-
SNF2PH. The mean of the ChIP analyses from three clones is represented as fold enrichment. A non-tagged cell line (Single Marker) was included as a negative HA
control. Histogram shows the mean from three independent clones expressing the K2A mutant, and error bars represent means � standard error of the mean (SEM).

B Reads per locus relative to input (%). ChIP analysis using anti-HA antibody in HA-SNF2PH and HA-SNF2PH K2A cell lines aligned with the ESPM1/4 index library
containing the sequences from all the BES amplicons. ChIP analysis of the HA-SNF2PH versus the mutant HA-SNF2PH K2A generated ChIP libraries. Control 1; C1,
PromSSR7 3U; Switch Strand Region promoter, Chr.7.

C In situ detection of SUMOylated SNF2PH using a Proximity Ligation Assay (PLA) is reduced in mutant SNF2PH K2A. Percentage of nuclei showing positive amplification
signal in PLA assay analyzed as described before [9]. Histogram comparing the % PLA positive cells is represented separately for two independent clones
overexpressing the HA-SNF2PH K2A mutant. Trypanosome transgenic cell lines usually vary considerably in protein expression level and kinetic, leading to a
considerable degree of variability. Notwithstanding, both cell lines showed a decrease in PLA-positive nuclei upon expression of SNF2PH K2A. WT HA-SNF2PH c1 PLA-
positive 73.98% (n = 246 total cells) versus HA-SNF2PH K2A Clone 2.2, positive PLA 11.47% (n = 514). WT HA-SNF2PH c2 PLA-positive cells 64.43% (n = 298) versus
HA-SNF2PH K2A Clone 2.8 PLA-positive cells 41.39% (n = 387).
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(located at the telomeric end of the BES3, BES13, and BES2, respec-

tively [2]).

In order to determine whether K2A mutation also affects to

SNF2PH occupancy at the promoter region, we constructed a ChIP-

seq index library including all the BES sequences from PCR regions

ESPM1 and 4 (Fig 3D) and map the reads PCR amplified from DNA

immunoprecipitated using anti-HA antibodies and chromatin from

cell lines expressing HA-SNF2PH and HA-SNF2PH K2A (Fig 4B). As

controls we used gene Control 1, a promoter in chromosome 7,

SSR7 (Strand Switch Region, SSR) (sequence defined by the prom

SSR7 3U primers in Appendix Table S4) a RNA pol III (U2) were

included after input normalization (Fig 4B and Dataset EV2).

Sequence alignments using Bowtie1 and 0 mismatch error yielded a

number of reads aligned in BES ESPM1/4 libraries at the active

promoter in BES1 and BES2 (highly sequence homologue) that were

reduced for the cell line expressing the mutant K2A, to approxi-

mately ~0.5-fold. Conversely, at inactive promoters of BES the

number of reads was increased (BES12) or no significantly changed

(BES7 and BES13). This result is consistent with mutation K2A

reduced protein SUMOylation, which decreases the occupancy of

SNF2PH in the active promoter chromatin (Fig 4B).

We also assessed the effect of the K2A mutation on SUMO conju-

gation by PLA. The PLA signal for 3HA-SNF2PH (69.20% � 4.77)

was considerably greater than for the HA-SNF2PH K2A mutant

(26.49% � 15.02, n = 2), suggesting that K2 is required for efficient

SUMOylation in situ (Fig 4C). We conclude that SNF2PH is mainly

located at the active VSG-ES and that this specifically requires

SUMO modification.

SNF2PH is a transcriptional activator that regulates
VSG expression

To obtain direct evidence for function, we knocked down SNF2PH

and analyzed the effect using the DRALI cell line. Western blot

demonstrated depletion of the protein after 24 h RNAi (Fig 1B and

Appendix Fig S4A) and a reduction to proliferation was also

observed suggesting SNF2PH is essential for normal fitness

(Appendix Fig S4B). RT–qPCR analysis after 48 h RNAi indicated

significantly reduced levels of RLuc and VSG221 mRNAs (P < 0.05),

without changes to RNA pol II- or pol III-transcribed control loci C1

and U2, respectively. No reduction was detected in mature or pre-

spliced rDNA + 780 RNAs (Fig 5A), suggesting SNF2PH depletion

decreases VSG expression specifically. Next, we analyzed TbRPAI

(pol I largest subunit) occupancy in VSG-ES chromatin in cells

depleted of SNF2PH by ChIP using anti-TbRPAI (Fig 5B). Upon

SNF2PH depletion, we detected lower levels of TbRPAI recruitment

to the active VSG-ES (BES1) including the active VSG221 telomeric

locus (P < 0.05). This also detected for the RLuc gene inserted

downstream of the active promoter (2.94-fold). A lower decrease at

the rDNA promoter and ribosomal 18S locus was not significant.

Hence, SNF2PH is specifically involved in recruitment of the RNA

polymerase to the active VSG-ES, suggesting SNF2PH is required for

active VSG-ES transcription.

While a reduction of the reporter at the active VSG-ES promoter

was detected upon RNAi in three independent clones, we found that

Fluc activity from inactive VSG-ES promoters was clone dependent

(Appendix Fig S4C). Relative expression of FLuc transcripts correlates

with the FLuc expression level (Appendix Fig S4D). We performed

RNA-seq analysis on paired groups of individual clones (Appendix Fig

S4E and Dataset EV3), which showed variability in the VSG that is

derepressed. Some, like VSG427-15 (BES10) and VSG-14 (BES8), but

not all were upregulated, while the active BES1 telomeric VSG221

gene was consistently downregulated, suggesting that where SNF2PH

was depleted, random derepression of inactive VSG-ES promoters

occurred. Thus, SNF2PH depletion induced derepression of a cluster

of silent BES but not all, similar to recently reported for H3V-H4V KO

[28]. As the PH domain is known to bind Histone 3 tails, the H3V KO

[28] and SNF2PH depletion phenotypes may be related.

Next, we asked whether VSG protein expression was also

reduced in SNF2PH depleted cells. VSG221 protein levels in three

independent SNF2PH RNAi clones (Fig 5C) were significantly

decreased (P < 0.05) (Fig 5D). Decreased VSG221 at the cell surface

was also detected after SNF2PH RNAi by fluorescence-activated cell

sorting (FACS) (Fig 5E). These results indicate that SNF2PH func-

tions as positive transcription factor for VSG expression.

To identify factors associated with SNF2PH, we ectopically

expressed triple-HA-tagged SNF2PH followed by affinity purification

and LC-MSMS (Appendix Table S2 and Table EV1). Among the

identified proteins, we found mRNA splicing factor TbPRP9 and

nucleosome assembly protein, AGC kinase 1 (AEK1), a kinase

essential for the bloodstream form stage [30] and a TP-dependent

RNA helicase SUB2, (Tb927.10.540). Importantly, several previously

identified VSG transcription factors, including Spt16 included in

FACT complex (Facilitates Chromosome Transcription) [31], the

▸Figure 5. SNF2PH depletion results in a reduction of active VSG expression.

A Reduced VSG-ES transcripts upon SNF2PH 48 h RNAi. Quantitative RT–qPCR analysis indicates 43% reduction of VSG221 mRNA, validated by RLuc reporter
(*P < 0.05). No significant changes in ribosomal RNA transcripts were detected (18s and rDNA + 780).

B Reduced RNA pol I occupancy in the active VSG-ES upon SNF2PH depletion. TbRPAI analysis was carried out in 48 h RNAi-induced cell lines and the parental cell line
(DRALI). Statistical analysis shows a significant reduction of TbRPAI occupancy levels between parental and SNF2PH-depleted cells at the active VSG-ES (*P < 0.05).
Data from three independent clones with standard error of the mean (SEM) are represented as fold over non-specific antiserum. NS; nonsignificant.

C Quantitative Western blots of VSG221 expression in three independent SNF2PH RNAi clones using IR fluorescence. Anti-VSG221 and tubulin antibodies were
incubated with the same blot and developed using goat anti-rabbit IgG 800 and anti-mouse IgG 700 Dylight (Thermo Fisher). A standard curve based on tubulin-
normalized anti-VSG221 signal intensity was generated using different concentrations of parental cell extracts (R2=0.99).

D Quantitation of VSG221 expression relative to the parental cell line. Relative VSG221 protein levels appear to be reduced compared with the parental cell line
(*P < 0.05).

E FACS analysis of VSG221 expressing cells shows a decreased active VSG221 population upon SNF2PH depletion (continuous red line) performed on DRALI cell line.
Control: DRALI cell line population expressing VSG221. SNF2PH-dox+: induced SNF2PH-depleted cells. SNF2PH-dox�: uninduced SNF2PH-depleted cells. Secondary Ab:
population incubated with secondary antibodies as a negative control.

Data information: All data are reported as the mean � SEM for biological replicates (n = 3). *P < 0.05 using two-tailed Student’s t-test for paired observations.
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proliferative cell nuclear antigen (PCNA) and a subunit from the

Class I transcription factor A [32] were also identified (Appendix

Table S2). Furthermore, RNA pol I subunit RPA135 and the RNA

pol II RPB1 were also found to co-purify with SNF2PH suggesting

possibly a transient interaction with RNA polymerases subunits, as

previously described for yeast SNF2. Together, these data suggest

that SNF2PH occupies a central position in VSG transcription regula-

tion and links to RNA pol II transcription.

SNF2PH is required for the maintenance of the bloodstream
stage expression profile

The above results suggest that SNF2PH regulates VSG expression

however also interacts with a RNA pol II subunit and RNA binding

proteins suggesting SNF2PH may regulates the expression of addi-

tional genes. In addition, SNF2PH protein levels in the bloodstream

form are decreased in the insect form suggesting a possible function
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in development. To investigate that possibility, we knocked down

SNF2PH in bloodstream trypanosomes. Transcript levels for EP

procyclin (P < 0.01), PAD1 and PAD2 (Protein Associated with Dif-

ferentiation 1 and 2) were significantly upregulated (P < 0.05),

whereas MyoB levels decreased (P < 0.01) (Fig 6A). Relative mRNA

levels of ribosomal 18S and C1 were unchanged. An increase in EP

procyclin and PAD1/2 transcription followed by a reduction in

MyoB, similar to the transcript profile of the stumpy form, a transi-

tion to the insect stage [33,34].

Furthermore, we investigated whether SNF2PH depletion influ-

ences EP procyclin replacement dynamics during in vitro differentia-

tion from the BF to the PF. We triggered differentiation with 3 mM

cis-aconitate (Fig 6B). Under these conditions, SNF2PH-depleted

cells expressed higher procyclin transcripts at 4 h of induction,

whereas VSG221 mRNA levels were reduced compared to the

parental cell line. Surface protein analyses of EP procyclin and

VSG221 in SNF2PH-depleted cells by IF, found a ~2-fold faster

replacement of VSG by EP procyclin (Fig EV3).

To investigate additional genes regulated by SNF2PH, we

carried out RNA-seq upon knockdown in the bloodstream form

(Fig 6C). Eighteen representative differentially expressed genes

(DEG) with a false discovery rate (FDR) < 0.05 were found out of

8673 genes from two experimental replicates and 221 transcripts

with a P < 0.05 (Dataset EV4). Among them, clear upregulation of

genes related to the procyclic form, including procyclin genes

(EP1-2, GPEET2), followed by procyclin-associated genes (PAG1,

4 and 5) and expression site-associated genes (ESAG2 and 8),

some of them consistent with previous analysis in procyclic forms

[33] (Appendix Table S3). We also found upregulation of protein

associated with differentiation 1, 2 (PAD1 and PAD2), zing finger

family ZC3H18, and the receptor-type adenylate cyclase

GRESAG4-related transcripts. Conversely, genes with normally

higher expression in bloodstream form were downregulated,

including the alternative oxidase and glucose transporter THT-2

(Dataset EV4).

Given that SNF2PH expression is clearly reduced in the

procyclic stage (Fig 1A), we sought to investigate the gain-of-func-

tion phenotype induced by ectopic expression of SNF2PH in the

procyclic form. Interestingly, we detected an increase in silent

telomeric VSG121, VSGBn2, and VSGJS1 transcripts from two inde-

pendent clones in the procyclic form where no VSG is normally

expressed (Fig 6D).

To determine possible changes to global gene expression

induced by SNF2PH overexpression, we used RNA-seq and

compared the overexpressor and parental procyclic cell line

(Fig 6E). We found increased expression of ESAG3 from several

BES, ranging from 2.5 to 5.2- log FC, while the promoter adjacent

transferrin-binding protein ESAG6/7 increased 1.7 to 3.2- log FC

(Fig 6E and Dataset EV5). Of the total mapped reads, 55.08%

were linked to telomeric bloodstream ESs (BESs), including BES1

(BES40 ~5.2- log FC), BES4 (BES28/98 ~4.5- log FC), BES2

(BES129/126 ~3.8- log FC), and BES13 (BES56/153/51/4 ~2.6- log

FC) (Fig 6E and Dataset EV5). Importantly, no expression of VSG

basic copies genes, located within internal chromosomal arrays,

was detected, ruling out global chromatin deregulation. These

results show that, in procyclic forms where no VSG is expressed,

overexpression of SNF2PH induced upregulation of telomeric

VSG-ES (BES) transcripts, suggesting that SNF2PH functions as a

central regulator of the BES. Thus, in BF, where SNF2PH is highly

expressed, this chromatin remodeler likely functions to promote

and maintain the expression of VSG-ES (BES).

Next, we analyzed the relevance of the SNF2PH plant homeo-

domain and overexpressed a truncated form of SNF2PH lacking the

PH domain (SNF2DPH) (Fig 6F). RNA-seq analysis detected 737

genes (FDR < 0.05 and P < 0.01, out of 7,918 genes) differentially

expressed after overexpression of SNF2DPH versus 118 genes

▸Figure 6. SNF2PH is required for maintaining infective form surface protein expression.

A Depletion of SNF2PH (48 h) in the bloodstream form results in an increase of procyclin and proteins associated with differentiation (PADs) transcripts. Procyclin,
PAD1, and PAD2 mRNAs are upregulated when SNF2PH is depleted. Results are the average from three independent clones and data normalized with U2 mRNA. Error
bars represent means � SEM. (*P < 0.05, **P < 0.01) using two-tailed Student’s t-test for paired observations.

B SNF2PH KD cells differentiate to procyclics more efficiently. The procyclin transcript is increased in SNF2PH KD-depleted cells during in vitro differentiation compared
with parental cell line. Parental and SNF2PH-depleted cells were treated with 3 mM cis-aconitate and temperature shift for 4 hours. Quantitative RT–PCR data from
two independent clones were normalized against C1 (RNA pol II-transcribed) as a housekeeping gene. Error bars represent means � standard deviation (SD).

C Scatter plot for differentially expressed genes (DEG) from RNA-seq analysis upon SNF2PH depletion (FDR < 0.05). Non-DEG: Non-differentially expressed genes. Up:
upregulated genes. Down: downregulated genes.

D Ectopic expression of SNF2PH in procyclic form upregulates telomeric VSG mRNAs. Histogram showing the relative expression of mRNA measured by qRT–PCR of VSG
genes located in different telomeric VSG-ESs (BES) genes after 48 h of induction of SNF2PH overexpression in procyclic form. This analysis included mRNAs from
telomeric VSG genes (BF stage-specific) not expressed normally in the insect procyclic form, including the VSG121 (BES3), VSGJS1 (BES13) VSGBR2 (BES15), and VSGVO2
(BES2). Data from two independent clones and parental controls are represented as normalized fold expression relative to C1 (RNA pol II transcribed) as a
housekeeping gene. Error bars represent means � SD from technical replicates for each independent clone.

E Ectopic expression of SNF2PH in procyclic induces expression of bloodstream form surface proteins. Scatter plot for differentially expressed genes (DEG) in RNA-seq
analysis shows upregulation of telomeric BESs. A significant increase of BES-associated genes (ESAGs) linked to telomeric BESs was detected after full-length SNF2PH
overexpression in the procyclic form. Data from at least two experimental replicates are represented as log2 fold change (FC) for genes with FDR < 0.05 and
P < 0.001 after correction with the uninduced procyclic cell line. Relative mRNA levels of procyclic cells after 48 h of SNF2PH overexpression increase telomeric BESs,
including VSG221-ES (BES1; TAR40), VSG121-ES (BES3; TAR15), VSGJS1-ES (BES13; TAR56), and VSGVO2-ES (BES2; TAR129), VSGR2-ES ES (BES15; TAR126), see (2) for
detailed BES and TAR nomenclature (Dataset EV5). Ectopic expression of SNF2PH full-length also induced invariant surface glycoprotein 65 (ISG65) genes (Dataset
EV5). Data from two independent clones and parental controls are represented as normalized fold expression relative to C1 (RNA pol II transcribed) as a housekeeping
gene.

F Expression of bloodstream form surface proteins requires SNF2PH plant homeodomain. EP procyclins and other insect stage-specific markers (FDR < 0.05, P < 0.001)
are expressed in the SNF2PH mutant form lacking of the plant homeodomain (SNF2DPH). No BF surface proteins like VSG-ES (BES related or ESAGs) neither invariant
surface glycoproteins (ISG65) genes were induced under ectopic expression of the SNF2DPH mutant.
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(FDR < 0.05 and P < 0.001, out of 8,451 genes) for SNF2PH full

length, illustrated in Fig EV3C and D. Most significantly, induction

of BES-related genes did not occur in cells overexpressing the

SNF2DPH mutant lacking the PH domain (Fig 6F), suggesting that

the PH domain is required to provide SNF2PH specificity to bind

and recognizes VSG-ES (BES) chromatin (Fig 6F and Dataset EV5).
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Significantly, beyond impacts to BES expression, invariant

surface glycoprotein ISG65 genes, transcribed exclusively in the

bloodstream form, were also significantly increased up to 6-fold in

procyclics ectopically expressing SNF2PH compared to the parental

procyclic cell line (Fig 6E). Importantly, ISG gene transcripts were

not detected in cell lines expressing SNF2DPH (Dataset EV5). We do

not know whether ISG65 is expressed at the surface of these cells,

but consider it unlikely as we previously demonstrated that ectopi-

cally expressed ISGs are rapidly degraded in insect stage cells [35],

as well as with ectopic expressed mRNA VSG. As VSG is transcribed

by the RNA pol I and ISG65 by RNA pol II, this suggests that

SNF2PH acts beyond the telomeric BES, and may act as a global

transcriptional activator of surface protein genes irrespective of the

RNA polymerase involved.

These results suggest that the PH domain is essential to direct

SNF2PH to specific bloodstream form surface proteins genes,

promoting transcriptional activation. In metazoans, transcription

factors containing homeodomains determine cell fates during devel-

opment, and this is the chromatin-binding domain necessary to

regulate downstream target genes. Our results provide an important

contribution of the plant homeodomain in recognition epigenetic

chromatin patterns to regulate gene expression in trypanosomes, an

early-branching eukaryote.

SNF2PH is downregulated in quiescent stumpy forms

The stumpy form of pleomorphic trypanosomes is pre-adapted to

the metabolism required by the procyclic form for survival within

the insect vector. Given upregulation of stumpy form markers in

SNF2PH knockdown cells, we examined SNF2PH dynamics during

the stumpy to procyclic form transition. Recent evidences suggest

that the AMP-dependent kinase, AMPKa1, is a key regulator of the

development of quiescence in bloodstream form trypanosomes [42]

reviewed in [43]. Upon AMPKa1 activation, stumpy-like differentia-

tion was induced in a monomorphic cell line. Quantitative Western

blots and RT–qPCR analyses of monomorphic cells treated with an

AMP analog showed a significant decreased in SNF2PH proteins

levels and transcripts (Appendix Fig S5A). Reduction of SNF2PH

protein levels in stumpy-like cells obtained after AMPKa1 activation

by AMP suggests AMPK pathway negatively regulates SNF2PH

expression.

We also assessed the transcriptional profile in stumpy-like

forms induced by AMP treatment and compared with SNF2PH

knockdown. qRT–qPCR confirmed a transcriptional profile charac-

teristic of the stumpy form in untreated SNF2PH knockdown

versus AMP treated cells, in which relative mRNA levels for

SNF2PH transcripts were downregulated (P < 0.01; Appendix Fig

S5B). Interestingly, stumpy form-like transcriptome changes were

more prominent in cells treated with 50-AMP and depleted for

SNF2PH compared with 50-AMP alone and 50-AMP untreated

knockdown cells.

An important question, however, is whether SNF2PH downregu-

lation occurs naturally during in vivo differentiation of a wild-type

pleomorphic strain. Bloodstream pleomorphic trypanosomes

undergo differentiation from the proliferative to the quiescent

stumpy form throughout mice infection. SNF2PH protein levels

analysis in the pleomorphic AnTAT 90.13 strain decreased at 4-

5 days postinfection (Appendix Fig S5C), whereas AMPKa1 was

fully activated as previously described [42]. Taken altogether, these

data suggest that SNF2PH is negatively regulated during transition

to stumpy form and mechanistically linked to AMPKa1 activation

by an undefined mechanism.

Discussion

Antigenic variation in African trypanosomes is mediated by complex

regulatory mechanisms that secure monoallelic expression of a

single VSG, the fundamental basis of immune evasion. The

transcriptional state of VSG genes is maintained through several

generations and is the product of epigenetic mechanisms and

post-translational modifications (PTM) that mark the active VSG

genes. Several PTMs are associated with silencing the inactive VSG-

ESs [3], but SUMOylation is the only known modification associated

with the active VSG-ES [9]. A concentration of SUMOylated proteins

[9] is located adjacent to the expression site body where VSG gene

transcription occurs. Additionally, several chromatin-associated

SUMO-modified proteins are enriched at the active VSG-ES, and

chromatin SUMOylation is also required for efficient RPAI

recruitment [9].

Epigenetic factors are likely regulators of VSG transcription;

silencing of TbISWI, HDACs, and additional chromatin remodelers

such as ASF1, CAF1, and FACT, consistently results in similar

phenotypes, i.e., the derepression of normally silent VSG-ES

subtelomeric regions (reviewed in [4]). By contrast, pharmacologi-

cal inhibition of bromodomain chromatin remodelers leads to the

upregulation of both silent and basic copy VSG genes, suggesting a

role in maintaining global chromatin organization, rather than

specific action at the active ES [36]. Further, post-translational

histone modifications are associated with the repression of silent

VSG-ESs (see [37] for a review). Interestingly, proteins regulating

nuclear architecture also alter monoallelic VSG expression, includ-

ing the lamina proteins NUP-1 [38] and cohesin, where silencing

leads to a ~10-fold increase in VSG switch frequency [24]. Deletion

of histone variants H3.V and H4.V highly increases VSG switch

frequency via homologous recombination, and the telomeric VSG-

ES loci are confined to distinct compartments within the nucleus

[28]. Altogether, these data support a model where epigenetically

marked VSG-ES chromatin occupies a unique subnuclear compart-

ment, facilitating monoallelic expression [6].

The product of Tb927.3.2140 is a SUMO-conjugated protein

unregulated in the bloodstream form. Tb927.3.2140 possesses

domains homologous with the SWI/SNF family of chromatin

remodelers, e.g., SMARCA1, also known as the global transcription

activator SNF2L1, and SNF2 helicase domains. Thus, we named

the gene product SNF2PH. The SNF2 family N-terminal domain

participates in many processes [16], while the chromatin SWI/SNF

remodeler superfamily regulates either specific or global gene

expression. SNF2PH also contains helicase domains homologous to

transcriptional activators HsSMCA5 and MsSMCA1 of the ISWI

subfamily (Appendix Fig S1). Interestingly, SNF2PH contains a

homeodomain that interacts directly with histone tails to regulate

development, the plant homeodomain (PHD), which is present in

histone methyltransferases, such as MmHMT3 and HsNSD3

(Appendix Fig S1). The H. sapiens chromatin remodeler CHD4-

based NuRD also contains a PHD [39] and was shown to act in
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both a positive and negative manner in regulating cell-specific dif-

ferentiation [16]. Multiple lines of evidence suggest that SNF2PH

has an architecture typical of transcriptional regulators and chro-

matin readers and similarly acts in both, positive and negative

manners, to regulate developmental stage-specific gene expression

of surface proteins in trypanosomes.

SUMO modification acts as a switch for the localization of

SNF2PH, and modified SNF2PH is recruited to the active VSG-ES

promoter, while unmodified SNF2PH is present at silent VSG

promoters. While we cannot be certain if this is cause or conse-

quence, loss of function associated with a non-SUMOylated mutant

of SNF2PH suggests an active role for SUMOylation in targeting.

SNF2PH depletion leads to downregulation of the active VSG-ES,

indicating a possible function as a positive regulator. This conclu-

sion is supported by an increased frequency of sequences related to

BES1 in the ChIP-seq data, as well as upregulation of procyclin and

PAD genes after SNF2PH knockdown, suggesting a suppressive

function in the insect stage. Interestingly, ChIP-seq analysis revealed

SNF2PH occupancy at the H3.V locus, which suggests that SNF2PH

regulates H3.V expression, a histone variant crucial for regulating

VSG expression [28].

SNF2PH associates with several proteins, including histone chap-

erone Spt16 [40] and proliferative cell nuclear antigen (PCNA),

essential for replication [41], suggesting a link between SNF2PH and

cell cycle progression. Another significant interactor is the CITFA-4

subunit of the RNA pol I promoter binding complex [31]. SNF2PH

also shows an association with RNA pol I subunit RPA135 and RNA

pol II subunit RPB1, the latter consistent with SNF2PH occupancy at

pol II-transcribed loci (Fig 3B). This prompts us to speculate that

SNF2PH-pol II association facilitates accessibility of transcription

factors to regulate RNA pol II transcription.

SNF2PH depletion leads to expression of insect form genes,

which suggests a role in maintaining the BF chromatin state by

opposing control of the two major developmentally regulated

surface gene families, procyclins and VSGs. Importantly, overex-

pression of SNF2PH in the procyclic form leads to the expression of

bloodstream form telomeric VSGs and ESAGs, requiring the PH

domain to promote telomeric expression in a repressed VSG tran-

scriptional background. Consequently, this domain is apparently

required to maintain bloodstream form through developmental

regulation [19].

The stumpy form is a pre-adaptation to the insect host and

requires AMPKa1 activation [42]. 50-AMP analog treatment leading

to enhanced AMPKa1 activation in monomorphic cells resulted in

SNF2PH downregulation. Whereas AMPKa1 activation promotes

differentiation, reduced SNF2PH expression in stumpy forms

observed in wild-type pleomorphic trypanosomes during mice infec-

tion confirmed the biological relevance. This result rules out a possi-

ble SIF-independent induction of differentiation by VSG-ES

transcription attenuation described previously [44].

Interestingly, SNF2PH is enriched at tRNAs clusters on several

chromosomes (Fig 3C). tRNAs can act as insulators to prevent the

spread of silencing in S. cerevisiae [45,46] and in mammals to

prevent enhancers from activating promoters [47,48]. We detected

low colocalization of SNF2PH with GFP-tagged active VSG-ES

(Fig 1D), and even lower association in 2K1N cells (G2) (Fig EV1A),

which may suggest that the association of SNF2PH with the active

VSG-ES locus occurs preferentially in G1. Although such insulator

function has not been described in trypanosomes, the presence of

SNF2PH at tRNA loci during interphase, as some insulator proteins

[49], suggests a tentative model where SNF2PH/tRNAs could act as

a chromatin domains organizer to maintain bloodstream stage-

specific surface protein gene expression.

The ISG65 genes are transcribed by RNA pol II from polycistronic

arrays located in core chromosomal regions, while VSG genes are

transcribed by RNA pol I from the VSG-ES (BES) telomeric locus.

Notwithstanding, the chromatin remodeler SNF2PH, utilizing the PH

domain as epigenetic reader, recognizes both distinct gene families.

This is suggested by SNF2PH ectopic expression in procyclic forms,

which led to a developmental epigenetic reprogramming, similar to

homeodomain proteins in other organisms. Furthermore, ISGs are

transcribed at similar levels for all allelic variants, while the VSG is

monoallelically transcribed at one out of 15 different telomeric BESs

[2]. Interestingly, SNF2PH overexpressed in procyclic forms lacking

SUMO induced then expression of all BES (Fig 6E), and monoallelic

expression of VSG genes was not achieved. We speculate that

SNF2PH SUMOylation is likely the modification that SNF2PH acquires

at the nuclear body ESB, where VSG-ES transcription occurs [6,9],

allowing SNF2PH to recognize and activate a single BES telomere

among the VSG multiallelic gene family.

In sum, SNF2PH requires SUMO modification to function as a

transcriptional activator of VSG-ES monoallelic expression, and the

PH domain is required for this and for maintaining the mammalian

infective form surface protein coat, ensuring continuous and proper

VSG and ISG surface display, essential for pathogenicity.

Materials and Methods

Trypanosome strains and cell lines

Trypanosma brucei brucei, bloodstream form (Lister 427, antigenic

type MiTat 1.2, clone 221a), 427 procyclic form and the pleomor-

phic AnTAT 90.13 were used in this study. The dual-reporter cell

line, DRALI, contains the Renilla luciferase (RLuc) gene inserted

405 bp downstream of the active VSG-ES promoter and the Firefly

luciferase (FLuc) gene downstream of an inactive VSG-ES promoter.

The insertion site was checked by sequencing the flanking region

from DRALI genomic DNA confirming RLuc inserted in the active

VSG221-ES (BES1), whereas FLuc was inserted downstream of the

inactive VSG-ES promoter BES15/TAR126 VSGbR-2/427-11. The

VSG221-ES GFP-tagging and YFP-TbRPB5z fusion were previously

described [24].

Recombinant proteins and monoclonal antibodies

C-terminal fragment of SNF2PH (Tb927.3.2140) was amplified by

PCR, and the PCR product was cloned into BamHI and HindIII

sites of pET28a vector (Novagen) expressed as a C-terminal His

tag (Appendix Tables S5 and S6). The recombinant protein was

purified using NI Sepharose Fast flow 6 (GE Healthcare) and inoc-

ulated into mice to generate anti-SNF2PH (11C10E4) monoclonal

antibody (mAb), using standard procedures. Hybridomas were

screened against the recombinant protein by ELISA and further

confirmed by Western blot analysis using trypanosome protein

extracts that recognized the protein of the expected size.
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Hybridoma cell line 11C10E4 was grown as ascites. SNF2PH poly-

clonal antibody was obtained by affinity purification from rabbit

antiserum after several inoculations of the recombinant protein

using an Aminolink column (Pierce), following the manufacturer’s

instructions. Anti-TbSUMO (1C9H8) monoclonal antibody was

generated as previously described [9].

3xHA tagging of SNF2PH versions

A T. brucei bloodstream form cell line expressing a 3xHA-tagged

SNF2PH was developed by replacing both copies of the endogenous

gene. For the 3xHA K2A, one allele was replaced by the mutant

version due to cell viability. Procyclic form cells carrying both

3xHA-tagged full-length and truncated SNF2PH isoforms were

ectopically expressed from the ribosomal spacer. Cloning proce-

dures are detailed in Appendix Tables S5 and S6.

RNAi experiments

SNF2PH RNAi construct was made using the p2T7Bla vector [50].

Since most of the RNAi constructs using this vector are leaky, compar-

ative analyses always included addition of the dox induced (+) and

uninduced (�) RNAi in the parental cell line (DRALI). Amplified PCR

fragment corresponding to 1113-bp of C-term SNF2PH ORF was

cloned into BamHI and HindIII sites of p2T7Bla and transfected into

the dual-reporter cell line DRALI (Appendix Tables S5 and S6).

Synthesis of dsRNA was induced by adding 1 lg/ml of doxycycline.

At least three independent clones were analyzed, and protein deple-

tion was confirmed by Western blot using specific antibodies.

RT–qPCR

RNA isolation, cDNA synthesis, and qPCR were performed as previ-

ously described [9]. Relative expression levels were referred to a

control (parental cell line) and normalized against a housekeeping

gene (U2, pol III-transcribed gene), using the software Bio-Rad CFX

Manager Software. Experimental conditions were performed in trip-

licate and analyzed by Student’s t-test. A detailed primer list is

found in Appendix Table S4.

RNA-seq analysis

Total RNA from at least two independent biological replicates of

both SNF2PH knock down (BF) and overexpression (PF) after 48 h

of doxycycline induction was used to generate a library from poli

(A) + mRNA isolated fragments. Libraries were sequenced on an

Illumina NextSeq 500 platform (150 cycles) in paired-end mode with

a read length of 2 × 76 bp and sequence depth of approximately 50

million reads per sample. The miARma-Seq pipeline [51] was used

to analyze all transcriptomic data. In detail, this pipeline contains

all needed software to automatically perform any kind of differential

expression analysis. It uses fastqc to check the quality of the reads

and aligned them using hisat2 on T. brucei TREU427 refer-

ence genome (TritrypDB release 39). Subsequently, the aligned

reads are quantified and summarized for each gene using feature-

counts. Finally, gene counts are analyzed using the edgeR package

from Bioconductor. In such a way, all samples were size corrected

in order to be comparable and then normalized using the TMM

method from the EdgeR package. TMM values for each gene were

used for the differentially expression analysis. RPKM values for each

gene were calculated from the normalized read counts values using

the rpkm method from edgeR. Genes transcripts isolated form unin-

duced versus induced SNF2PH RNAi cells with a [log2FC] ≥ 1 (log2
of Fold Change) and FDR ≤ 0.05) were considered as differentially

expressed. Additionally, miARma-Seq [51] generated a volcano plot

to facilitate the identification of genes that felt higher variation in

expression.

Chromatin Immunoprecipitation (ChIP) and ChIP
sequencing (ChIP-seq)

Bloodstream form T. brucei cultures were fixed and processed as

previously described [9]. Pre-cleared chromatin (5 × 107 cells per IP)

was incubated with each antibody (90 lg anti-SNF2PH, 6 lg anti-

TbRPAI, 6 lg of rabbit anti-HA tag antibody (abcam), and 90 lg of

an unspecific antiserum). The immunoprecipitated products were

reverse crosslinked, and the extracted DNA was analyzed by quanti-

tative PCR (qPCR). For ChIP-seq analysis, the protocol was scaled for

a final concentration of ~5 ng of immunoprecipitated DNA. To

compare the amount of DNA immunoprecipitated to the total input

DNA, 10% of the pre-cleared chromatin saved as input was processed

with the eluted immunoprecipitated products before the crosslink

reversal step. Quantitative PCR was performed using SYBR green

Supermix (Bio-Rad) in a CFX96 cycler (Bio-Rad). IP percentages were

determined as previously described [9]. At least three independent

experimental assays were displayed and analyzed by Student’s t-test.

A detailed primer list is detailed in Appendix Table S4.

Generation of the ChIP-seq library

ChIP-seq analysis in Fig 3D
Immunoprecipitated DNA (~5 ng) from each condition was evalu-

ated in a 2100 BioAnalyzer to assess fragmentation size and

subjected to end-repair enzymatic plus dA-tailing treatments further

to be ligated to adapters using the Illumina TruSeq DNA Sample

preparation kit, following the manufacturer’s instructions. Adapter-

ligated libraries were enriched with 15 cycles of PCR using Illumina

PE primers and purified with a double-sided SPRI size selection in a

range below 300 bp. Libraries were sequenced in an Illumina

NextSeq 500 platform leading to a 650,000 reads per sample. The

raw reads were processed using the miARma-Seq pipeline [51] to

measure quality, adapter sequence removal and read alignment.

Briefly, this software first assessed the quality of the sequences

using FASTQC tool kit. After that, adapter sequences were removed

using the cutadapt utility. Once reads were processed, they were

aligned against the Trypanosoma brucei Lister 427 genome obtained

from TriTrypDB version 34 using the BWA aligner with default

parameters. Later, final results obtained from miARma-seq were

processed with macs. Therefore, each paired sample (-f BAMPE)

chip (-t) was processed against the input sample (-c) to eliminate

general peaks in both types of samples using as organism size 2.7e7 (-g).

The correspondence of peaks between both types of samples (HA-

SNF2PH and HA-SNF2PH K2A) and with gene sequences was

carried out with the intersectBed script from bedtools using the gene

annotation provided by TriTrypDB version 34 and visualized in GB

browser. A starting pool of 8 amplicons 18S, U2, C1, prom SSR7,
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ESPM-1/4, VSG221 (BES1), and VSG121 (BES3)) were combined

together in a single lane per condition (including respective inputs).

Coding sequences for 18 and U2 were used as reference genes to

evaluate the immunoprecipitation efficiency in each experimental

case. Differential peak distribution was represented as fold enrich-

ment relative to input and assessed by –logP value, considering a 0

nucleotide mismatch to discern telomeric sequences.

ChIP-seq analysis in Fig 3E
To discriminate among the BES promoters, we carried out ChIP-seq

analysis using selected PCR ES Promoter Mapping (ESPM) regions

known to have sequence polymorphisms among different BESs, as

previously described [9]. A pool of amplicons of sequences of the

promoter regions ESPM1 and ESPM4 (Fig 3D, defined with the

primer include in Appendix Table S4) containing the corresponding

sequences from the BES1, BES2, BES3, BES4, BES7, BES7dw,

BES10, BES10dw, BES12, BES13, BES15, BES 15dw, BES17,

BES17dw, and 18S, U2, C1 as control were combined together in a

single lane to build an index file (ebwt), next the alignment was

done with bowtie -S -n0 command to consider a 0 nucleotide

mismatch to distinguish among few nucleotide sequence differences

in each BES, as described before [9]. The actual number of reads

aligned on each BES in represented in the histogram of Fig 3E.

Cell extracts and Immunoblots

Parasite cultures were collected by centrifugation and washed once

in Trypanosome Dilution Buffer (TDB) with 1X protease inhibitor

cocktail (Roche) and 20 mM N-ethylmaleimide (NEM) and pellets

were processed as previously described [9]. Western blot

membranes were incubated with anti-SNF2PH mAb ascites

(1:1,000), anti-SNF2PH affinity-purified antiserum (1:1,000) and

monoclonal anti-HA high affinity (1:500, clone 3F10, Roche Applied

Science). Mouse monoclonal anti-TbSUMO mAb ascites (1:1,000),

anti-Tubulin mAb (1:5,000), anti-MVP mAb (1:1,000), rabbit anti-

VSG221 antiserum (1:50,000), and rabbit mAb Phospho-AMPKa
(Thr172) (40H9) (1:1,000, Cell Signalling technologies) were used

as described previously [9,34,42].

Quantitative western blots

Quantitative Western blots analyses were performed as previously

described [9]. Membranes were incubated with anti-VSG221

(1:50,000), anti-SNF2PH affinity-purified antiserum (1:1,000), Tubu-

lin (1:5,000), and anti-MVP mAb (1:1,000). A standard curve based

on Tubulin-normalized anti-VSG221 signal intensity was generated

using different concentrations of parental cell extracts (R2 = 0.99).

The standard curve regression was used to determine VSG221

expression levels in SNF2-depleted cell lines. For both detection of

AMPK phosphorylated levels and SNF2PH in in vitro and in vivo

assays, a MVP-normalized anti-SNF2PH and/or anti-p-AMPK were

used to quantify differences in signal intensity compared with the

parental condition.

Purification and identification of TbSUMO conjugates

To identify SUMO conjugates from a bloodstream form, T. brucei

cell line expressing an 8xHis and HA-tagged version of SUMO

(Tb927.5.3210) was developed by replacing both copies of the

endogenous gene, see Appendix Tables S5 and S6. Purification of

conjugates was performed in denaturing conditions by nickel affin-

ity chromatography. After imidazole elution, the urea concentration

was decreased and SUMOylated proteins were subjected to a second

affinity purification step using an anti-HA agarose resin. Final conju-

gates were analyzed by mass spectrometry, and processing data was

performed as previously described [34].

Purification of protein complexes and identification by
Nano-LC-MS/MS

A total cell mass of 4.0 × 1010 procyclic form cells, strain

T. brucei 449 expressing the 3HA-tagged version of TbSNF2PH

was induced with 1 lg/ml doxycycline during 48 h and harvested

at 1,400 g rpm during 10 min at 4°C. The pellet is washed in

50 ml PBS 1× including protease inhibitors and subjected to cryo-

genic grinding, resulting in a lyophilized powder with all nuclear

components, as previously described [52]. Immunoprecipitation

assays were performed with 50 mg of lyophilized powder and

resuspended immediately in 1 ml of Lysis buffer (20 mM HEPES

pH 7.4, 50 mM sodium citrate, 1 mM MgCl2, 10 lM CaCl2, 2×

protease inhibitor cocktail (Roche), and 0.1% CHAPS), followed

by three cycles of sonication of 15 s at 50 W and centrifuged at

20,000 g during 10 min at 4°C. The supernatant containing the

nuclear fraction was incubated with 10 ll (0.1 mg) of previously

equilibrated HA-Magnetic beads and incubated during 2 h at 4°C

on rotation and washed three times, preserving the same buffer

conditions. HA-Magnetic beads were eluted at 99°C during 5 min

with 15 ll of NuPAGE SDS Sample buffer (Life technologies)

with 1.5 ll of NU PAGE SDS Sample Reducing Agent (Life tech-

nologies) and denatured at 99°C during 5 min prior to being

analyzed in an SDS–PAGE gel with silver stain. Sample prepara-

tion for MS analysis was eluted with 50 ll of 2% SDS and

20 mM Tris–HCl pH 8.0 at 72°C and precipitated with 100%

ethanol. After centrifugation, the sample was subjected to tryptic

digestion and reductive alkylation of Cys groups with 50 mM

iodoacetamide and finally vacuum-dried to be dissolved in 1%

acetic acid. Then, tryptic peptides mixtures were injected onto a

C-18 reversed phase nano-column (100 mM ID, 12 cm, Teknok-

roma) and separated in a continuous acetonitrile gradient. Eluted

peptides from the RP nano-column were fragmented in a LTQ-

Orbitrap Velos Pro mass spectrometer (Thermo Scientific). For

protein identification, the mass spectra were deconvoluted using

MaxQuant version 1.5 searching the T. brucei427_927_Tritryp-3.1

annotate protein database (37,220 proteins). Search engine analy-

sis was performed assuming the full trypsin digestion (strict

trypsin) in Mascot version 2.4.1. with pre-established parameters

(Fragment Tolerance: 0.60 Da (Monoisotopic) Parent Tolerance:

10.0 PPM (Monoisotopic) Fixed Modifications: +57 on C (Car-

bamidomethyl) Variable Modifications: -17 on n (Gln->pyro-Glu),

+16 on M (Oxidation), +32 on M (Dioxidation), +42 on n

(Acetyl)). To visualize MS-spec data, we used Scaffold Proteome

Software version 4.4.6 with a 0.5% peptide threshold and 5%

protein threshold and 1 peptide minimum. False discovery rates

(FDR) were calculated for both peptide and protein levels. A

non-tagged cell line (procyclic form 449) was used to subtract

contaminant proteins.
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Immunoprecipitation in denaturing conditions to detect
TbSUMO conjugates

For each immunoprecipitation (IP) experiment, 1.0 × 1010 blood-

stream form (BF) cells were used. Cells were washed in TDB with

1X protease inhibitor cocktail (Roche) and 20 mM NEM. Pellets

were resuspended at ~5.0 × 109 cells/ml in urea buffer (6M Urea,

50 mM HEPES pH 7.5, 500 mM NaCl, 20 mM NEM, 0.5% NP-40, 2×

protease inhibitor cocktail (Roche)) and sonicated until their viscos-

ity was lost. The cell lysate was centrifuged at 20,000 g for 10 min

at 4°C, and the supernatant with the nuclear enriched fraction was

stored at �80°C. For immunoprecipitations, the nuclear extract was

diluted 1:6 with dilution buffer (50 mM HEPES pH 7.5, 500 mM

NaCl, 1% NP-40, 0.5% Lauryl Sarcosine, 0.1 mM EDTA, 10 mM

NEM, 1× protease inhibitor cocktail (Roche)) followed by overnight

antibody incubation at 4°C on rotation. Antibody concentration for

IP experiments was 180 lg/ml anti-SNF2PH rabbit antiserum,

800 lg/ml of anti-TbSUMO mAb 1C9H8, and 180 lg/ml of unspeci-

fic IgGs (prebleed antiserum). Previously equilibrated Protein G

Sepharose beads (Sigma-Aldrich) were added to each diluted extract

(~5.0 × 109 cells) containing the antibodies and incubated during

1 hr at 4°C on rotation to capture specific IgGs. Beads were washed

five times for 5 min at 4°C on a rotating wheel with 1 ml of wash

buffer (1 M urea, 50 mM HEPES pH 7.5, 500 mM NaCl, 1% NP-40,

0.5% Lauryl Sarcosine, 0.1 mM EDTA, 10 mM NEM, 1× protease

inhibitor cocktail (Roche)). Then, beads were eluted with 2×

Laemmli sample buffer and boiled at 99°C for 5 min. IP samples

and inputs were subjected to SDS–PAGE and quantitative Western

blotting using the appropriated antibodies.

3D-Immunofluorescence

Three-dimensional immunofluorescence (3D-IF) was carried out on

cells in suspension as previously described [24]. Mouse anti-

TbSUMO mAb 1:2,000, mouse anti-SNF2PH mAb 1:1,000, rabbit

anti-SNF2PH affinity-purified antiserum 1:1,000, rabbit anti-VSG221

antiserum 1:50,000, mouse anti-Procyclin mAb 1:500 (MyBio-

Source), and mouse anti-GFP mAb, 1:600 (Invitrogen) were used as

primary antibodies. Alexa Fluor 488 and Alexa Fluor 594 goat anti-

mouse or anti-rabbit (Invitrogen) were used as secondary antibod-

ies. Cells were DAPI stained. Pseudocoloring, colocalization analy-

sis, and maximum intensity projections were performed using

ImageJ Fiji program version 1.51n software (National Institutes of

Health), and one-way analysis of variance was used to compare the

Pearson’s coefficient value generated by the JACoP analysis plugin,

available under ImageJ Fiji. For the colocalization mask, the plugin

“Colocalization highlighter” was used where two points are consid-

ered as colocalized if their respective intensities are strictly higher

than the threshold of their channels, which was set to 80% and if

their ratio of intensity is higher than the ratio setting value of 80%.

In vitro Trypanosoma brucei SUMOylation assay in bacteria

In vitro reconstituted SUMOylation system was performed in Escher-

ichia coli BL21 (DE3) cells transformed with pCDFDuet-1-TbSUMO/

TbE2, followed by pACYCDuet-1-TbE1a-TbE1b. Competent bacteria

were transformed again with pET28a(+)-3xFlag-SNF2PHN or

pET28a(+)-3xFlag-SNF2PHC (See Appendix Tables S5 and S6 for

cloning details). Assessment of SUMOylation reaction and TbSENP

deconjugation assays were performed according to [13], and

samples were analyzed by Western blot using an anti-Flag M2

mouse monoclonal antibody 1:5,000 (Sigma-Aldrich). Horseradish

peroxidase-conjugated goat anti-mouse secondary antibody 1:5,000

(Sigma) was detected by Chemiluminescence using SuperSignal

West Pico Chemiluminescent Substrate (Pierce).

Proximity ligation assay

The PLA assay was performed as previously described [9] by using

the rabbit anti-SNF2PH affinity-purified antiserum (1:1,000) and

mouse anti-TbSUMO 1C9H8 (1:2,000) as primary antibodies.

Luciferase assay

Luciferase assays were carried out using the Luciferase Assay

System (Promega�) following the manufacturer’s instructions from

bloodstream form culture (3 × 106 cells) of control and SNF2PH

depleted cells. Lectures were performed in a FB 12 Single Tube

Luminometer (Titertek-Berthold) with pre-established parameters

(2 s of delay time/10 s temp).

Fluorescent-activated cell sorting (FACS) analysis

SNF2PH RNAi bloodstream form induced cultures (1.5 × 107 cells)

were collected and processed as previously described [9] using anti-

VSG221 (1:3,000) as primary antibody. Alexa Fluor 488 goat anti-

rabbit (Invitrogen) was used as secondary antibody.

Differentiation to procyclic form

Differentiation from slender to insect procyclic form was induced by

3 mM cis-Aconitate (Sigma-Aldrich), with a temperature shift from

37°C to 28°C and switching the medium to Differentiating Trypano-

some Medium (DTM) as previously described [34]. The assessment

of the differentiation process was monitored by a double IF to detect

the expression of the surface glycoproteins using anti-procyclin and

anti-VSG221 antibodies.

AMP Analog treatment and obtaining in vivo stumpy forms

Parasites in culture at a low density (2 × 105 cells/ml) were incu-

bated with 8-pCT-20-O-Me-50-AMP (1 lM) (c078; Biolog Life Science

Institute) during 18 h. To avoid the AMPK activation caused by cell

density, the control and treated cells were analyzed at the same cell

density. Slender and stumpy forms of pleomorphic AnTat 90.13

were purified from Balb/c mice at 3–5 days postinfection as previ-

ously described [42].

Ethics statement

Slender (Lister 427, antigenic type MiTat 1.2, clone 221a) and

stumpy (pleomorphic AnTat 90.13) forms were isolated from Wistar

and Balb/C mice rats, respectively, in compliance with policies

approved by the Committee on Use and Care of Laboratory Animals

of the Institute for Parasitology and Biomedicine López-Neyra,

National Spanish Research Council (CSIC-IPBLN).
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Statistical analysis

Statistical analysis was performed using two-tailed Student’s t-test

for paired observations using SigmaPlot Systat Software.

Data availability

RNA-Seq and ChIP-Seq datasets produced in this study are available

in the database: Sequence Read Archive PRJNA562785 (https://

www.ncbi.nlm.nih.gov/sra/PRJNA562785).

Expanded View for this article is available online.
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