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Anti-oestrogen therapy is effective for control of hormone receptor-positive breast cancers, although the detailed molecular
mechanisms, including signal transduction, remain unclear. We demonstrated here that long-term tamoxifen treatment causes G2/M
cell cycle arrest through c-jun N-terminal kinase (JNK) activation, which is dependent on phosphorylation of Fas-associated death
domain-containing protein (FADD) at 194 serine in an oestrogen (ER) receptor-positive breast cancer cell line, MCF-7. Expression of
a dominant negative mutant form of MKK7, a kinase upstream of JNK, or mutant FADD (S194A) in MCF-7 cells suppressed the
cytotoxicity of long-term tamoxifen treatment. Of great interest, similar signallings could be evoked by paclitaxel, even in an ER-
negative cell line, MDA-MB-231. In addition, immunohistochemical analysis using human breast cancer specimens showed a close
correlation between phosphorylated JNK and FADD expression, both being significantly reduced in cases with metastatic potential.
We conclude that JNK-mediated phosphorylation of FADD plays an important role in the negative regulation of cell growth and
metastasis, independent of the ER status of a breast cancer, so that JNK/FADD signals might be promising targets for cancer therapy.
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Various therapeutic strategies have been clinically applied for
patients with breast cancers, and the oestrogen receptor (ER)
antagonist, tamoxifen, is a major drug with documented efficacy.
The mechanisms have been suggested to involve cytotoxicity, and
although the details remain unclear, signalling pathways appear to
be essential.

c-jun N-terminal kinase (JNK) is a member of the serine/
threonine family of protein kinases that is induced by various
cellular stress agents like ultraviolet (UV), g irradiation and
cytotoxic drugs. c-jun N-terminal kinase activation plays an
important role in induction of cell cycle arrest or cell death, and
ionising or UV radiation has been found to cause G2/M cell cycle
arrest through JNK phosphorylation in breast cancer cell lines
(Mingo-Sion et al, 2004). Cell cycle arrest in the G2/M phase is
mainly involved with cytotoxicity due to paclitaxel or synergistic
effects with chemotherapy or ionising radiation (Tishler et al,
1992; Geard et al, 1993; Gagandeep et al, 1999).

The Fas-associated death domain-containing protein (FADD)
was originally identified as an adapter molecule inducing a death-
inducing signalling complex required for Fas-mediated apoptosis
(Chinnaiyan et al, 1995; Nagata and Golstein, 1995). Recently, we
have shown that FADD phosphorylation at Ser194 can be induced
by paclitaxel, with impact on functions both upstream and
downstream of the MEKK1/MKK7/JNK1 pathway, closely asso-
ciated with sensitisation to chemotherapy in prostate cancer cells
(Shimada et al, 2002, 2004). Involvement of FADD phosphoryla-

tion in cell cycle arrest has also been indicated in breast epithelial
or tumour cells (Alappat et al, 2003).

In the present study, we investigated whether the JNK and FADD
phosphorylation signals contribute to tamoxifen-induced cell
growth arrest in ER-positive breast cancer cells, then tried to
execute the signals and effect tumour suppression by using the
JNK/FADD activator, paclitaxel, in ER-negative cells. In addition,
the expressions of phosphorylated JNK/FADD were examined
using human breast cancer specimens by immunohistochemistry
and evaluated with reference to clinicopathological parameters.

MATERIALS AND METHODS

Cell culture and chemicals

The human breast cancer cell lines, MCF-7 (ER positive, p53-wt)
and MDA-MB-231 (ER negative, p53-mt), were purchased from the
American Type Culture Collection (Manassas, VA, USA) and
cultured in RPMI supplemented with 5% fetal bovine serum. For
establishment of long-term tamoxifen treatment, MCF-7 cells were
exposed to low doses (0.01 –1 mM) of tamoxifen (Wako, Osaka,
Japan) for 4 months, as detailed previously (Paulsen et al, 1996;
Madsen et al, 1997). Anti-p53, anti-JNK1, anti-p38, anti-p21, anti-
Bcl-2 and anti-actin antibodies were purchased from Santa Cruz
Biotechnology (Santa Cruz, CA, USA) and a specific inhibitor of
JNK (SP600125) from Calbiochem (San Diego, CA, USA). Paclitaxel
and anti-FLAG antibodies were from Sigma-Aldrich Japan, Ltd
(Tokyo, Japan) and anti-c-Myc antibodies were from Clontech,
Tokyo, Japan. Phospho-FADD (Ser194), Phospho-SAPK/JNK
(Thr183/tyr185) and Phospho-Bcl-2 (Ser70) antibodies were from
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Cell Signaling Technology (Beverly, MA, USA) and the anti-FADD
antibodies were from Transduction Laboratories (Lexington, KY,
USA). Antibodies to ER (M7047), progesterone receptor (M3569)
and c-erbB-2 receptor (A0485) were from Dako (Dako Corp,
Carpenteria, CA, USA).

Tumour samples

A total of 107 cancer samples were obtained at surgical resection
from patients in Nissei Hospital, Osaka and Nara City Hospital,
Nara, Japan between 1987 and 2002. Neither chemotherapy nor
radiation therapy was performed before surgery in any of the
cases. Histopathological diagnoses were made using the WHO
histological classification of tumours of the breast. Specimens were
fixed in 10% buffered formalin, embedded in paraffin, sectioned
and stained with haematoxylin– eosin (HE). Informed consent was
obtained from patients before the collection of specimens as
appropriate. Clinicopathological characterisics of 107 patients are
shown in Table 1.

Western blotting analysis

Cells were washed once with phosphate-buffered saline (PBS) and
suspended in lysis buffer (40 mM Hepes (pH 7.4) with 10%
glycerol, 1% Triton X-100, 0.5% Nonidet P-40, 150 mM NaCl,
50 mM NaF, 20 mM b-glycerol phosphate, 1 mM EDTA, 1 mM

phenylmethylsulphonyl fluoride and 0.1 mM vanadate) with an
added protease inhibitor mixture (1 mg ml�1 aprotinin, leupeptin
and pepstatin). Cell lysates were resolved on sodium dodecyl
sulphate (SDS)–polyacrylamide gels and transferred to polyviny-
lidene difluoride membranes (Millipore Ltd, Bedford, MA, USA).
The membranes were blocked in Tris-buffered saline-Tween 20
(TBST) buffer (20 mM Tris-HCl (pH 7.5) containing 150 mM NaCl
and 0.1% Tween 20) with 5% skim milk at room temperature for
1 h, then incubated with the indicated primary antibodies
overnight at 41C, washed with TBST, and incubated with anti-
rabbit or anti-mouse IgG (Amersham Pharmacia Biotech, Tokyo,
Japan) as the secondary antibody for 2 h. After washing with TBST,
blots were detected on X-ray films using an enhanced chemilumi-
nescence detection system.

Flow cytometry and cell cycle analysis

After stimulation, adherent cells from one 35 mm dish were
harvested by trypsinisation, washed in ice-cold PBS and fixed with
80% ethanol. After resuspension in PBS containing 50 mg ml�1

propidium iodide, 0.1% Nonidet P-40 and 100 mg ml�1 Rnase A
(Sigma, Tokyo, Japan), and incubation for 1 h, the cell cycle
distribution was analysed using a flow cytometry and Cellquest
software (Becton Dickinson, San Jose, CA, USA).

Preparation of constructs and stable clones, and
transfection of expression vectors

The FLAG-tagged human FADD cDNA, prepared by conventional
RT–PCR, was cloned into the mammalian expression vector
pME18S. The following primers were used for preparing the
resulting mutant of FADD, serine (S) 194-alanine (A) (dephos-
phorylated FADD): 50-GGAGTGGGGCCATGGCCCCGATGTCATG
GAAC-30 (Imai et al, 1999; Shimada et al, 2002). A plasmid Myc-
tagged dominant negative MKK7 (MKK7 d/n), the mutagenic
oligonucleotide (CAGGCCACATCATTGCTGTTCTGCAGATGCGG
CGCTCTGGGAAC) was used to convert Lys165 of MKK7 to Leu
(Moriguchi et al, 1997; Shimada et al, 2004). The mutation was
confirmed by DNA sequencing. Fas-associated death domain-
containing proteins S194A and MKK7 d/n were generated using a
Quick-change Site-directed Mutagenesis kit (Stratagene, La Jolla,
CA, USA). An expression vector for the Hygromycin-resistant gene
(pTK-Hyg) was obtained from Clontech. Cells were seeded at
5� 105 cells well�1 in six-well plates, cultured in fresh medium for
24 h and then cotransfected with the pTK-Hyg vector harbouring
the Hygromycin B (HygB)-resistant gene or the expression vectors
(Invitrogen, Tokyo, Japan). Resistant colonies were isolated after 6
weeks by selection with HygB, then examined by Western blotting
using antibodies.

Transfection with nonsense or antisense p53

MCF-7 cells treated with long-term tamoxifen were seeded at
5� 105 cells well�1 in six-well plates, and transfected with a
nonsense p53 oligonucleotide (NSO) (50-GGAGCCAGGGGGGAGC
AGGG-30) or an antisense p53 oligonucleotide (ASO) (50-CCCTGC
TCCCCCCTGGCTCC-30) (from Biomol Res. Lab., PA, USA) using
LipofectAMINE (Invitrogen) according to the manufacturer’s
protocol. After 48 h, the cells were stimulated with the indicated
reagents and the expression of p53 was analysed by Western
blotting using anti-p53 antibodies (Shimada et al, 2003).

Cell viability assay

Cell survivals were analysed by CellTiter 96TM nonradioactive cell
proliferation assay (Promega, Madison, WI, USA). Briefly, 15 ml of
MTT reagent was added to each well followed by incubation at
371C for 4 h to allow the formation of purple colour crystals of
formazan. Then, 100ml of Solubilisation/Stop solution was added
to each well, and the reaction mixture was incubated in the dark
for 1 h at room temperature. The developed colour density was
measured spectrophotometrically at 570 nm using the microplate
reader. Assessment was performed in triplicate.

Matrigel invasion assay

In vitro invasion assays were performed using Matrigel-coated
wells (11mg per filter; 8 mm, pore size). Briefly, 8� 104 cells of the
control clone (HygB) and the stable clone overexpressing FADD
S194A were placed in the insert. After 24 h incubation at 371C, the
chambers were scrubbed with a cotton bud to remove noninvading
cells, and invading cells were fixed and stained with haematoxylin,

Table 1 Clinicopathological characteristics of 107 patients

Characteristics No. of patients (n¼ 107) (%)

Age
o50 34 (31.8)
X50 73 (68.2)

Tumour size (cm)
o2 37 (34.6)
X2 70 (65.4)

Lymph node status
Positive 36 (33.6)
Negative 71 (66.4)

Oestrogen receptor 76 (71.0)
Positive 31 (29.0)
Negative

Progesterone receptor
Positive 55 (51.4)
Negative 52 (48.6)

c-erbB-2 receptor
Positive 29 (27.1)
Negative 78 (72.9)
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then counted under a light microscope. The experiment was
repeated three times.

Immunohistochemical staining

Tumour sections 4 mm thick were deparaffinised, and endogenous
peroxidase was blocked by immersing in a 3% hydrogen
peroxidase in methanol for 20 min. The slides were then immersed
in 10 mM citrate buffer solution (pH 6.0) and placed in a pressure
cooker for 10 min at 1201C. After cooling, immunohistochemistry
was performed by the avidin–biotin complex technique using
a histofine SAB-PO (R) Kit (Nichirei, Tokyo, Japan). Slides
were rinsed with PBS and nonspecific binding was blocked
with 10% goat normal serum (Histofine kit). Incubation with
primary Phospho-FADD (Ser194) antibody (diluted 1 : 50; Cell
Signaling Technology, Beverly, MA, USA) and Phospho-SAPK/JNK
(Thr183/tyr185) antibody (diluted 1 : 50; Cell Signaling Techno-
logy, Beverly, MA, USA) was at 41C overnight. The reaction
products were visualised by immersing the slides in diaminoben-
zidine tetrahydrochloride (DAB) and finally counterstained
with Mayer’s haematoxylin. Phosphorylated JNK (P-JNK) and
phosphorylated FADD (P-FADD) immunostainings were calcu-
lated as the percentage of positive primary cancer cells in rela-
tion to the total number in at least 10 representative fields.
Nuclear stainings greater than 10% were judged as positive in
oestrogen and progesterone receptor. Only membrane staining
intensity and patterns were evaluated and the results were
judged using Hercep Test Kit scoring guidelines in c-erbB-2
receptor (Table 1).

Statistical analysis

Statistical analyses were performed using StatView 5.0 software
(SAS Institute. Inc.). The Student t-test was used to detect
differences between the expressions of P-JNK and P-FADD,
positive and negative in lymph node metastasis. Post hoc test
(Tukey– Kramer) and Spearman’s correlation test were carried out
to analyse the relations between P-JNK and P-FADD expressions.
P-values less than 0.05 were considered to be statistically
significant. All P-values were two sided.

RESULTS

Long-term tamoxifen treatment induces phosphorylation
of JNK and G2/M cell cycle arrest in ER-positive
breast cancer cells

As shown in Figure 1A, JNK was ubiquitously phosphorylated in
MCF-7 cells grown in medium containing tamoxifen at concentra-
tions of 0.01–1 mM for 4 months, but the level was slight. The
activity was little changed with the stimulation at 0.01– 0.1mM

tamoxifen, but it was significantly elevated with 1 mM. With higher
doses of tamoxifen, p53 protein and P-FADD expressions were
increased, whereas p21 and phosphorylation of Bcl-2, p44/42
MAP kinase or p38 were not induced (data not shown). Short-term
(6–96 h) stimulation with 1 mM tamoxifen did not affect JNK
phosphorylation (Figure 1B). Figure 1C and D shows changes in
cell cycle distributions by tamoxifen for each incubation period.
With short-term treatment (12 or 24 h), cell cycle distributions
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Figure 1 Long-term tamoxifen treatment and cell cycle arrest. (A) MCF-7 cells were grown with 5% fetal calf serum for 4 months in the presence or
absence of 0.01–1 mM tamoxifen. Phosphorylated and nonphosphorylated forms of FADD and JNK, and p53 expression were assessed by Western
blotting. (B) MCF-7 cells were stimulated with 1mM tamoxifen for the indicated times. Phosphorylated and nonphosphorylated forms of JNK expression
were assessed by Western blotting. The positive control (P) was long-term 1 mM tamoxifen-treated MCF-7 cells. (C) Cell cycle analyses of MCF-7 cells
treated with 1 mM tamoxifen for short (12 and 24 h) and long (4 months) periods were performed by flow cytometry. (D) Each proportions of cells in the
G1, S and G2/M phase was calculated. Control MCF-7 for 4 M (fourth bar) was the cells cultured in the medium without tamoxifen for 4 months. P-JNK:
phosphorylated JNK, P-FADD: phosphorylated FADD, TAM: tamoxifen.
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were not significantly affected, but the long-term treatment
(4 months) caused G2/M arrest.

Recently, phosphorylation of JNK or FADD at 194 serine has
been shown to be closely associated with cell cycle arrest in various
types of cells (Scaffidi et al, 2000; Alappat et al, 2003; Mingo-Sion
et al, 2004; Shimada et al, 2004). Therefore, we investigated the
contribution of JNK and FADD phosphorylation and cell growth
suppression induced by long-term tamoxifen in MCF-7 cells. As
shown in Figure 2A, treatment with the specific JNK inhibitor,
SP600125, for 12 or 24 h, reduced phosphorylation of JNK in a
dose-dependent manner, and similarly inhibited phosphorylation
of FADD at 194 serine. Moreover, p53 induction was also
suppressed by JNK inhibition. Cell proliferation was strongly
reduced by long-term tamoxifen treatment, but inhibition of
JNK by transfection with a dominant negative mutant form of
the upstream kinase of JNK, MKK7, or inhibition of FADD
phosphorylation by overexpression of S194A mutant FADD or
knock down of p53 by antisense oligonucleotide transfection
restored almost normal cell growth activity to the cells (Figure 2B).
Consistently, the long-term tamoxifen-induced cell cycle arrest at
G2/M was also inhibited by the same treatments (data not shown).
Interestingly, p53 induction by tamoxifen was cancelled by
S194A mutant FADD overexpression (Figure 2C). When FADD
was knocked down in MCF-7 cells with long-term tamoxifen
treatment, p53 induction was strongly cancelled (data not shown).
These results clearly demonstrate that JNK activation-dependent
FADD phosphorylation is an upstream signal to stabilise p53, and
that JNK/FADD/p53 signals are essential for growth arrest by long-
term tamoxifen treatment in human breast cancer cells.

Paclitaxel causes cytotoxic signals similar to tamoxifen
in ER-negative breast cancer cells

The cytotoxic signals induced by tamoxifen were not detected in
an ER-negative breast cancer cell line, MDA-MB-231 (data not

shown). Since we previously demonstrated activation of JNK and
phosphorylation of FADD by paclitaxel in prostate cancer cells
(Shimada et al, 2004), we examined the cytotoxicity of paclitaxel
for long-term tamoxifen treatment, in MDA-MB-231. Paclitaxel at
100 nM phosphorylated JNK and FADD at 194 serine, and the
FADD phosphorylation was inhibited by the JNK inhibitor,
SP600125 (Figure 3A, left panels). In addition, paclitaxel induced
cell cycle arrest at G2/M (Figure 3B, upper panels) (Figure 3C, left
bars), and strongly suppressed cancer cell proliferation (Figure 3D,
white bars) as assessed by both flow cytometry and MTT assay.
Cell growth suppression in the presence of paclitaxel was
significantly cancelled by inhibition of JNK or FADD phosphory-
lation when dominant negative mutant MKK7 (MKK7 d/n) or
S194A mutant FADD were overexpressed (Figure 3D, white bars).
Phosphorylation of Bcl-2 plays an important role in cell cycle
arrest compensatory for p53, which was also observed in MDA-
MB-231 treated with paclitaxel (data not shown). Moreover, the
Bcl-2 phosphorylation by paclitaxel was inhibited when S194A
mutant FADD was overexpressed in MDA-MB-231 (Figure 3E).
The same mechanisms appeared also to be operating in ER-
positive MCF-7 breast cancer cells: paclitaxel at the same
concentration caused JNK activation/FADD phosphorylation, and
cell cycle arrest at G2/M, which were cancelled by the JNK inhi-
bitor or S194A mutant FADD overexpression (Figure 3A, right
panels) (Figure 3B, lower panels) (Figure 3C, right bars) (Figure 3D
black bars).

Dephosphorylated FADD accelerates cancer cell
invasion and metastatic potential

As shown in Figure 4, overexpression of a dephosphoryla-
tion mimicking mutant FADD, S194A FADD, enhanced invasion
by both ER-positive (MCF-7) and -negative cells (MDA-MB-231)
assessed by matrigel invasion assay. The result raises the
possibility that FADD phosphorylation and upstream JNK
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Figure 2 Fas-associated death domain-containing protein phosphorylation and p53 stabilisation are dependent on JNK activation. (A) MCF-7 cells grown
in medium containing 1 mM tamoxifen for 4 months were treated with the indicated concentrations of SP600125 for 12 or 24 h. Then, phosphorylated and
nonphosphorylated forms of FADD and JNK, and p53 expression were assessed by Western blotting. (B) Stable clones expressing various mutant genes
(control clone, HygB; kinase inactive mutant MKK7 clone, MKK7 d/n; S194A mutant FADD clone, S194A FADD) were generated and maintained in MCF-7
cells treated for 4 months at 1 mM tamoxifen. Then, cell survivals for 72 h in medium in the presence of tamoxifen were analysed by MTT assay. MCF-7 cells
incubated with tamoxifen for 4 months were transfected with NSO p53 or ASO p53. After 24 h incubation, cell survivals for 72 h were analysed. The
representative data shown are for growth ratios compared to the cases before stimulation. (C) Control (HygB) and S194A mutant FADD clones were
established as for (B), and p53 protein expression was assessed by Western blotting.
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activation can directly lead to the reduction of breast cancer
metastasis. Immunohistochemical study revealed equal expression
of JNK and FADD, but phosphorylated forms were signi-
ficantly reduced in primary cancer cells with lymph node

metastasis (Figure 5). Figure 6A and B show that each
phosphorylated form of JNK and FADD was significantly highly
expressed in the patients without lymph node metastasis.
Furthermore, phosphorylated FADD was statistically correlated
with JNK phosphorylation using post hoc test (Figure 6C) and
Spearman’s correlation test.

DISCUSSION

We demonstrated here for the first time that long-term tamoxifen
treatment causes G2/M cell cycle arrest through JNK/FADD
phosphorylation in an ER-positive breast cancer cell line. In
addition, the cytotoxic mechanisms mediated by tamoxifen appear
to be executed by paclitaxel even in ER-negative cancer cells. We
recently indicated an important role for JNK upstream of FADD
phosphorylation at 194 serine on paclitaxel-induced apoptosis in
human prostate cancer cells (Shimada et al, 2004). However,
phosphorylated JNK/FADD signals alone cannot lead to apoptosis
induction, but rather to cell cycle arrest at G2/M in breast cancer
cells. Therefore, it seems likely that there are two major outcomes
with phosphorylated FADD, apoptosis and cell cycle arrest. The
phosphorylated FADD at 194 serine has been suggested to lead to
G2/M transition, and casein kinase (CK) 1a specifically phosphory-
lates FADD at 194 serine and the phosphorylation of FADD is a
crucial event for paclitaxel-induced cell cycle arrest in metaphase
and cell proliferation (Alappat et al, 2003, 2005). It is also
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suggested that CK1 may provide a possible switch mechanism
for Axin function in the regulation of Wnt and JNK pathways
(Zhang et al, 2002), and demonstrated that mutant DN-
Fas-associated death domain protected colon cancer cells from
TRAIL-induced apoptosis in the presence of the CK1 inhibitor
(Izeradjene et al, 2004). These studies indicated that CK1-induced
downstream signals, JNK or FADD phosphorylation, are impor-
tant to cell cycle regulation and apoptosis, which is in line with
our study.

Long-term tamoxifen treatment has been reported to result in
resistance, in which activation of EGF or the Her-2 receptor might
be mainly involved (Knowlden et al, 2003). We also obtained
several resistant clones after 0.01–0.1 mM tamoxifen treatment for
4 months. However, neither P-JNK nor P-FADD were observed
in such cells. Transfection with a phosphorylated mutant form
of JNK or FADD successfully resulted in cell cycle arrest and
growth suppression, similar to the data with higher (1 mM)
concentrations of tamoxifen (data not shown). Therefore, it is
possible that activated JNK/FADD signals induced by paclitaxel
can prevent relapse due to tamoxifen resistance. p53 stabilisation
by long-term tamoxifen at 1 mM was completely cancelled by JNK
inhibitor or overexpression of S194A mutant FADD in the present
study. In addition, we demonstrated p53 antisense oligonucleotide
to inhibit growth arrest by tamoxifen to a similar extent.
These results provide clear evidence that P-FADD plays an
essential role in the p53 induction that contributes to cell
cycle arrest at G2/M in breast cancer cells carrying wild-type
p53. Of interest, in this context, the cytotoxic mechanism
through activated JNK/FADD was executed by paclitaxel in an
ER-negative cell line, MDA-MB-231 as well as in MCF-7 cells.
This line has mutated p53, suggesting that signals other than
p53 may be mainly involved downstream of JNK activation
and p-FADD.

We found that Bcl-2 can be phosphorylated, dependent on
phosphorylation of FADD at 194 serine, and Liao et al (2004) have
reported a contribution of cyclin B1, CDC2 kinase complex and

Bcl-2 phosphorylation to p53-independent cell cycle arrest with
paclitaxel. We also observed inhibition of Bcl-2 phosphorylation
when the dominant negative mutant form was overexpressed and
cancelled cell cycle arrest with paclitaxel in MDA-MB-231 (data not
shown). Therefore, in p53 mutated cancer cells, Bcl-2 phosphory-
lation might be a major downstream target of activated JNK/FADD
signals. Thus, FADD phosphorylation at 194 serine is a common
upstream participant of p53-dependent and -independent path-
ways of growth suppression mediated by tamoxifen or paclitaxel in
human breast cancer cells.

Data on several prognostic factors have recently accumulated,
including the hormone receptor status, Her-2 expression, lymph
node metastasis and tumour size (Suo et al, 2002; Guerra et al,
2003; Cianfrocca and Goldstein, 2004), and overexpression of
cyclins and Her-2 has been reported to enhance metastatic
potential (Kuhling et al, 2003; Regitnig et al, 2004). Shimada
et al (2005) demonstrated that phosphorylation status of FADD is
associated with prostate cancer progression, using immunohisto-
chemistry. Our present clinicopathological study demonstrated
expression of phosphorylated forms of JNK and FADD to be
significantly reduced in cancer cells with lymph node metastasis.
Further, we provided evidence that overexpression of dephos-
phorylated FADD upregulates invasion activity of cancer cells
in vitro. Since FADD is little phosphorylated at 194 serine in both
MCF-7 and MDA-MB-231 cells without any treatment, reduced
expression of phosphorylated FADD by S194A mutant FADD
may be insignificant. In addition, overexpression of mutant
FADD mimicking phosphorylated form (S194E or S194D) made
no significant effects on invasion activity in these cells (data not
shown). Therefore, we consider that upregulation of depho-
sphorylated FADD rather than reduction of phosphorylated
FADD contributes to enhancement of invasion activity in breast
cancer cells.

We examined pathological correlations between FADD phos-
phorylation at 194 serine and ER or p53 status, but the results were
insignificant. However, the present in vitro analysis demonstrated

Figure 5 Expressions of phosphorylated JNK/FADD in breast cancer assessed by immunohistochemistry. Binding of antibodies to JNK and FADD and
their phosphorylated forms were assessed with or without lymph node metastasis (Cases 87 and 12, respectively). P-JNK and P-FADD: phosphorylated
forms of JNK and FADD.
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that JNK/FADD signals affect not only in ER-positive cancer cells,
MCF-7, but also in ER-negative cells, MDA-MB-231. In addition, as
shown in Figure 7, Bcl-2 phosphorylation other than p53 plays an

important role in JNK/FADD signals-mediated growth arrest of
breast cancer. Therefore, we conclude that JNK/FADD signals and
the related growth regulation can be executed even in ER-negative
cancer cells with mutated p53.

Taking the available data together, phosphorylation of FADD via
JNK activation may lead not only to cell growth suppression
through G2/M arrest but also directly to inhibition of cancer
invasion or lymph node metastasis. As lymph node metastasis
is well known to be strongly associated with prognosis of breast
cancers (Colpaert et al, 2001), assessment of the phosphorylation
status of JNK or FADD might provide relevant information for the
efficacy of clinical therapy. In other words, drugs that can activate
JNK/FADD such as paclitaxel might be best indicated for the cases
with low levels of phosphorylated JNK or FADD expression. This is
in line with the results of a previous clinical study on the outcome
of paclitaxel treatment in lymph node-positive primary breast
cancers (Fumoleau et al, 2003; Henderson et al, 2003).

In summary, the present study indicates for the first time that
activation of the JNK/FADD pathway might be very important for
suppression of cell growth and invasion, especially lymph node
metastasis, in both ER-positive and -negative breast cancers. We
conclude that chemotherapy targeting to the JNK/FADD signalling
warrants further attention.

ACKNOWLEDGEMENTS

This research was supported in part by a Grant-in-Aid from the
Ministry of Education, Culture, Sports, Science and Technology,
Japan (14770103).

REFERENCES

Alappat EC, Feig C, Boyerinas B, Volkland J, Samuels M, Murmann AE,
Thorburn A, Kidd VJ, Slaughter CA, Osborn SL, Winoto A, Tang WJ,
Peter ME (2005) Phosphorylation of FADD at serine 194 by CKIalpha
regulates its nonapoptotic activities. Mol Cell 19: 321 – 332

Alappat EC, Volkland J, Peter ME (2003) Cell cycle effects by
C-FADD depend on its C-terminal phosphorylation site. J Biol Chem
278: 41585 – 41588

Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM (1995) FADD, a novel
death domain-containing protein, interacts with the death domain of Fas
and initiates apoptosis. Cell 81: 505 – 512

Cianfrocca M, Goldstein LJ (2004) Prognostic and predictive factors in
early-stage breast cancer. Oncologist 9: 606 – 616

Colpaert C, Vermeulen P, Jeuris W, van Beest P, Goovaerts G, Weyler J,
Van Dam P, Dirix L, Van Marck E (2001) Early distant relapse in

120

%
 p

os
iti

ve
 P

-F
A

D
D

%
 p

os
iti

ve
 P

-J
N

K
%

 p
os

iti
ve

 P
-J

N
K

% positive P-FADD

100

80

60

40

20

LN− LN+

LN− LN+

0

120

100

80

60

40

20

0

120

100

80

60

40

20

0
0−25 26−50 51−75 76−100

∗

∗
∗

∗

∗

∗

∗

A

B

C

Figure 6 Correlations between P-JNK or P-FADD expression and
lymph node metastasis, and between P-JNK and P-FADD expression were
shown as box plots. (A, B) Expressions of P-JNK or P-FADD, in cases of
lymph node metastasis positive or negative. (C) We classified 107 patients
into four categories depending on the percentage of P-FADD expression
immunohistochemically. The box plots showed the positivity of P-JNK in
each of the four categories, and the correlation between P-JNK and P-
FADD.

Tamoxifen

P-JNKPaclitaxel

P-FADD

p53 P-Bcl-2

p53 dependent p53 independent

Cancer invasion

Iymph node
metastasis

Cell cycle arrest at G2/M

Cancer development

Non-P-FADD

Figure 7 Schematic presentation of JNK/FADD-mediated regulation of
cytotoxicity. Tamoxifen or paclitaxel activates JNK and induces FADD
phosphorylation, resulting in cell cycle arrest and suppression of cancer
growth through p53 stabilisation or Bcl-2 phosphorylation in breast cancer
cells. In addition, the nonphosphorylated form of FADD is closely
associated with cancer invasion, therefore, induction of FADD phospho-
trylation can prevent metastatic activity.

FADD phosphorylation in breast cancer

S Matsuyoshi et al

538

British Journal of Cancer (2006) 94(4), 532 – 539 & 2006 Cancer Research UK

M
o

le
c
u

la
r

D
ia

g
n

o
stic

s



‘node-negative’ breast cancer patients is not predicted by occult axillary
lymph node metastases, but by the features of the primary tumour.
J Pathol 193: 442 – 449

Fumoleau P, Bonneterre J, Luporsi E (2003) Adjuvant chemotherapy for
node-positive breast cancer patients: which is the reference today? J Clin
Oncol 21: 1190 – 1191: author reply 1191 – 1192

Gagandeep S, Novikoff PM, Ott M, Gupta S (1999) Paclitaxel shows
cytotoxic activity in human hepatocellular carcinoma cell lines. Cancer
Lett 136: 109 – 118

Geard CR, Jones JM, Schiff PB (1993) Taxol and radiation. J Natl Cancer
Inst Monogr 15: 89 – 94

Guerra I, Algorta J, Diaz de Otazu R, Pelayo A, Farina J (2003)
Immunohistochemical prognostic index for breast cancer in young
women. Mol Pathol 56: 323 – 327

Henderson IC, Berry DA, Demetri GD, Cirrincione CT, Goldstein LJ,
Martino S, Ingle JN, Cooper MR, Hayes DF, Tkaczuk KH, Fleming G,
Holland JF, Duggan DB, Carpenter JT, Frei E, Schilsky RL, Wood WC,
Muss HB, Norton L (2003) Improved outcomes from adding sequential
Paclitaxel but not from escalating Doxorubicin dose in an adjuvant
chemotherapy regimen for patients with node-positive primary breast
cancer. J Clin Oncol 21: 976 – 983

Imai Y, Kimura T, Murakami A, Yajima N, Sakamaki K, Yonehara S (1999)
The CED-4-homologous protein FLASH is involved in Fas-mediated
activation of caspase-8 during apoptosis. Nature 398: 777 – 785

Izeradjene K, Douglas L, Delaney AB, Houghton JA (2004) Casein kinase I
attenuates tumor necrosis factor-related apoptosis-inducing ligand-
induced apoptosis by regulating the recruitment of fas-associated death
domain and procaspase-8 to the death-inducing signaling complex.
Cancer Res 64: 8036 – 8044

Knowlden JM, Hutcheson IR, Jones HE, Madden T, Gee JM, Harper ME,
Barrow D, Wakeling AE, Nicholson RI (2003) Elevated levels of
epidermal growth factor receptor/c-erbB2 heterodimers mediate an
autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 cells.
Endocrinology 144: 1032 – 1044

Kuhling H, Alm P, Olsson H, Ferno M, Baldetorp B, Parwaresch R, Rudolph
P (2003) Expression of cyclins E, A, and B, and prognosis in lymph node-
negative breast cancer. J Pathol 199: 424 – 431

Liao CH, Pan SL, Guh JH, Teng CM (2004) Genistein inversely affects
tubulin-binding agent-induced apoptosis in human breast cancer cells.
Biochem Pharmacol 67: 2031 – 2038

Madsen MW, Reiter BE, Larsen SS, Briand P, Lykkesfeldt AE (1997)
Estrogen receptor messenger RNA splice variants are not involved in

antiestrogen resistance in sublines of MCF-7 human breast cancer cells.
Cancer Res 57: 585 – 589

Mingo-Sion AM, Marietta PM, Koller E, Wolf DM, Van Den Berg CL (2004)
Inhibition of JNK reduces G2/M transit independent of p53, leading to
endoreduplication, decreased proliferation, and apoptosis in breast
cancer cells. Oncogene 23: 596 – 604

Moriguchi T, Toyoshima F, Masuyama N, Hanafusa H, Gotoh Y, Nishida E
(1997) A novel SAPK/JNK kinase, MKK7, stimulated by TNFalpha and
cellular stresses. EMBO J 16: 7045 – 7053

Nagata S, Golstein P (1995) The Fas death factor. Science 267: 1449 – 1456
Paulsen GH, Strickert T, Marthinsen AB, Lundgren S (1996) Changes in

radiation sensitivity and steroid receptor content induced by hormonal
agents and ionizing radiation in breast cancer cells in vitro. Acta Oncol
35: 1011 – 1019

Regitnig P, Schippinger W, Lindbauer M, Samonigg H, Lax SF (2004)
Change of HER-2/neu status in a subset of distant metastases from breast
carcinomas. J Pathol 203: 918 – 926

Scaffidi C, Volkland J, Blomberg I, Hoffmann I, Krammer PH, Peter ME (2000)
Phosphorylation of FADD/MORT1 at serine 194 and association with a 70-
kDa cell cycle-regulated protein kinase. J Immunol 164: 1236 – 1242

Shimada K, Matsuyoshi S, Nakamura M, Ishida E, Kishi M, Konishi N
(2004) Phosphorylation of FADD is critical for sensitivity to anticancer
drug-induced apoptosis. Carcinogenesis 25: 1089 – 1097

Shimada K, Matsuyoshi S, Nakamura M, Ishida E, Konishi N (2005)
Phosphorylation status of Fas-associated death domain-containing
protein (FADD) is associated with prostate cancer progression. J Pathol
206: 423 – 432

Shimada K, Nakamura M, Ishida E, Kishi M, Konishi N (2003) Roles of p38-
and c-jun NH2-terminal kinase-mediated pathways in 2-methoxyestra-
diol-induced p53 induction and apoptosis. Carcinogenesis 24: 1067 – 1075

Shimada K, Nakamura M, Ishida E, Kishi M, Yonehara S, Konishi N (2002)
Phosphorylation of Fas-associated death domain contributes to en-
hancement of etoposide-induced apoptosis in prostate cancer cells. Jpn J
Cancer Res 93: 1164 – 1174

Suo Z, Risberg B, Kalsson MG, Willman K, Tierens A, Skovlund E, Nesland
JM (2002) EGFR family expression in breast carcinomas. c-erbB-2 and c-
erbB-4 receptors have different effects on survival. J Pathol 196: 17 – 25

Tishler RB, Geard CR, Hall EJ, Schiff PB (1992) Taxol sensitizes human
astrocytoma cells to radiation. Cancer Res 52: 3495 – 3497

Zhang Y, Qiu WJ, Chan SC, Han J, He X, Lin SC (2002) Casein kinase I and
casein kinase II differentially regulate axin function in Wnt and JNK
pathways. J Biol Chem 277: 17706 – 17712

FADD phosphorylation in breast cancer

S Matsuyoshi et al

539

British Journal of Cancer (2006) 94(4), 532 – 539& 2006 Cancer Research UK

M
o

le
c
u

la
r

D
ia

g
n

o
st

ic
s


