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Abstract: Myocardial ischemia is an established pathophysiological feature of hypertrophic cardiomy-
opathy (HCM) that impacts various clinical features, including heart failure (HF) and sudden cardiac
death (SCD). The major determinant of myocardial ischemia in HCM is coronary microvascular
dysfunction (CMD) in the absence of epicardial coronary artery abnormalities. Despite the impossi-
bility to directly visualize microcirculation in vivo, a multimodality approach can allow a detailed
assessment of microvascular dysfunction and ischemia. Accordingly, the non-invasive assessment of
CMD using transthoracic Doppler echocardiography, positron emission tomography, and cardiac
magnetic resonance should now be considered mandatory in any HCM patient. Noteworthy, a
complete diagnostic work-up for myocardial ischemia plays a major role in the approach of the
patients with HCM and their risk stratification. Chronic and recurrent episodes of ischemia can
contribute to fibrosis, culminating in LV remodeling and HF. Ischemia can potentially constitute an
arrhythmic substrate and might prove to have an added value in risk stratification for SCD. Accord-
ingly, strategies for the early diagnosis of CMD should now be considered an important challenge for
the scientific community.
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1. Introduction

Myocardial ischemia is an established pathophysiological feature of hypertrophic
cardiomyopathy (HCM) that impacts various clinical features, including heart failure
(HF) and sudden cardiac death (SCD). Since the original demonstration in the 1980s that
perfusion defects can be found in over half of patients [1,2], myocardial ischemia has been
recognized as a common complication of the disease due to the multiple potential factors
that may contribute to the inadequate oxygen supply and the higher susceptibility for
myocardial hypoxia. First, the cardiomyopathic heart is characterized per se by an increased
oxygen demand due to the larger myocardial mass and increased filling pressures [3–5].
Additionally, regional blood flow may be reduced by concomitant epicardial coronary artery
disease (CAD), which can be detected in around 10% of patients and is a marker of poor
prognosis in HCM [6]. Furthermore, there is growing evidence that anomalous coronary
anatomy and myocardial bridges are common in HCM and may contribute to ischemia by
prolonged coronary compression and reduced blood flow in the early diastolic phase [7].
The major pathophysiologic determinant of myocardial ischemia in HCM, however, is
coronary microvascular dysfunction (CMD) in the absence of epicardial coronary artery
abnormalities [8–10].

This review aims to outline the contemporary diagnostic work-up for myocardial
ischemia in patients with HCM, followed by exploring the main clinical implications of
CMD as a potential pathophysiologic determinant of heart failure (HF) or a predictor of
increased risk of arrhythmic complications and sudden cardiac death (SCD).
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2. Coronary Microvascular Dysfunction in HCM

CMD in HCM has a multifactorial origin, including either ultrastructural abnormalities
and hemodynamic factors. The pathologic bases are the anatomic changes of the small intra-
mural coronary arteries, including medial hypertrophy, intimal hyperplasia, and decreased
luminal size. The underlying pathological changes of CMD involve medial hypertrophy,
intimal hyperplasia, and decreased luminal size of the small intramural coronary arteries
(Figure 1) [11]. The hemodynamic factors include some of the functional characteristics
of the disease, i.e., extravascular compression due to ventricular hypertrophy, diastolic
dysfunction, and LV outflow tract obstruction [10]. Of note, CMD causes a reduction
in coronary vasodilator reserve that is not confined to the hypertrophied regions of LV
myocardium but is extended to the entire ventricle, pointing to a primary involvement.
Interestingly, impaired myocardial oxygenation has been detected in carriers of HCM
mutations prior to development of LV hypertrophy, suggesting that the microcirculation
may be affected early in the disease process [12–14]. Under normal circumstances, the
small coronary arterioles <450 µm in diameter are the principal determinants of coronary
vascular resistance [15]. Half of the total coronary vascular resistance is located in pre-
arterioles >100 µm, which are innervated by the autonomic nervous system [16]. Nearly
all of the remaining vascular resistance lies in vessels <100 µm in diameter, which are also
those responsible for the auto-regulation of blood flow [16]. In addition to intravascular
resistance, myocardial perfusion is also influenced by extravascular forces, particularly
due to the intra-myocardial pressure which is generated throughout the systolic phase [15].
The intra-myocardial pressure is maximal during systole and in the sub-endocardial layers
where it exceeds the aortic pressure [15]. Although direct visualization of the coronary
microcirculation has been achieved in experimental models, the study of the human coro-
nary microcirculation is indirect and relies on the assessment of parameters which reflect
its functional status, such as measurement of myocardial blood flow (MBF) and coronary
flow reserve (CFR). Unfortunately, these parameters are not routinely assessed in patients
with HCM in clinical practice. As a consequence, no data on the prevalence of CMD in ‘real
world’ HCM patients are available at present.
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(C) and with (D) fibrosis: note the higher score in the area with replacement-type fibrosis. (E,F) HCM
patient with SVD in areas without (E) and with (F) fibrosis. (G,H) Ischemic heart disease patient
showing large areas of replacement-type fibrosis with SVD, with a lower score as compared to HCM
cases. (A–H) Heidenhain trichrome. The figure is from De Gaspari M et al., with permission [11].

3. Diagnosis of Coronary Microvascular Dysfunction in HCM

Current evidence indicates that investigation of myocardial ischemia should become a
crucial part of the diagnostic work-up of all patients with HCM regardless of clinical history
and presentation. Typical and atypical chest pain is a frequent symptomatic feature in
HCM, but myocardial ischemia can also occur silently. A study performed in asymptomatic
patients with HCM demonstrated reversible perfusion defects, indicative of ischemia in 50%
of cases [17]. Although signs of inducible ischemia may be detected by electrocardiography,
echocardiography, or myocardial scintigraphy, an accurate quantitative assessment of
myocardial ischemia due to CMD is not easily feasible in clinical practice.

Doppler echocardiography has a pivotal role in the diagnostic work-up of patients
with HCM as the technique is virtually available worldwide. It is a noninvasive method
that allows the study of hypertrophy distribution and quantification of the wall thickness,
LV outflow tract obstruction, and diastolic function [18]. The ability of rest or stress
echocardiography to identify epicardial CAD is limited, as exercise induced wall motion
abnormalities in HCM have a complex and multifactorial pathophysiology and therefore are
not good predictors of epicardial CAD [19] With adenosine, however, CFR can be assessed
either in the left anterior descending artery or in the posterior descending artery [20].
Using Doppler echocardiography for the evaluation of microcirculation, a greater diastolic
flow velocity and lower CFR has been observed in HCM patients compared to normal
subjects [21]. Doppler echocardiography is operator dependent, suffers from significant
intra-observer and inter-observer variability, and may not provide reliable results in case of
obesity and lung disease.

Myocardial perfusion imaging with single-photon-emission computed tomography
(SPECT) can define the presence and severity of ischemia. Historically, the concept of
myocardial ischemia in HCM was originally introduced using thallium-2011 in pivotal
studies that showed its relation to adverse events [22,23]. At present, SPECT has a limited
diagnostic value since quantification of flow cannot be obtained.

Positron emission tomography (PET) allows us to measure MBF quantitatively, both
at rest and after vasodilation, and, consequently, to calculate the CFR. Camici et al., first
described an inadequate increase in MBF following the intravenous administration of
dipyridamole in the majority of HCM patients studied with PET (Figure 2) [8]. Of note,
microvascular dysfunction seems to be more pronounced in hypertrophied segments and
in the subendocardial layers, particularly in patients with LV systolic dysfunction [24].
However, it may also be found in non-hypertrophied segments, suggesting a diffuse
impairment in coronary microvascular function [25]. Interestingly, when assessed by
PET, the difference in MBF between endocardium and epicardium after dipyridamole
administration was reversed after treatment with verapamil in one study [26].

Myocardial ischemia due to CMD can be detected by cardiac magnetic resonance
(CMR) as well. CMR has emerged as an ideal complementary technique to echocardio-
graphy since it provides a detailed characterization of HCM morphology, can detect the
presence of fibrosis, and allows assessment of functional features, particularly abnor-
malities of papillary muscles and mitral apparatus [27,28]. Both microvascular ischemia
and replacement fibrosis can be evaluated by CMR, the former by first-pass perfusion
and the latter by late gadolinium enhancement (LGE). Importantly, there is a correlation
between LGE and the grade of hyperemic MBF assessed by PET, thus suggesting that
LGE corresponds—at least in part—to replacement fibrosis secondary to microvascular
dysfunction and myocardial ischemia [29].
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Figure 2. Both microvascular ischemia and replacement fibrosis can be evaluated by CMR, the former
by first-pass perfusion and the latter by late gadolinium enhancement (LGE). Importantly, there is
a correlation between LGE and the grade of hyperemic MBF assessed by PET, thus suggesting that
LGE corresponds—at least in part—to replacement fibrosis secondary to microvascular dysfunction
and myocardial ischemia. The figure is from Camici PG et al., with permission [25].

Coronary circulation in HCM can be demonstrated invasively by means of Doppler
flow velocity guidewires and, more recently, by combined pressure and temperature
guidewires that allow simultaneous measurement of coronary pressure and flow, thus
potentially facilitating the choice of optimal medical therapy similarly to what occurs in
other subsets of patients [30]. Overall, MBF studies have shown a blunted CFR coupled
with lower coronary resistance compared with controls, thus indicating that reduction
in CFR in HCM is secondary to near-maximal coronary vasodilation due to the higher
demand imposed by the increased LV mass [31].

4. Clinical Implications of CMD in HCM

The identification of patients at risk for sudden cardiac death (SCD) or progression to
heart failure (HF) constitutes one of the main clinical concerns in HCM [32–36]. The role
of myocardial ischemia as a predictive factor should be always taken into consideration
in HCM [32] as it may be associated with important complications that impact clinical
outcome [31]. Similar to what occurs in patients with CAD, there is now agreement that
chronic or recurrent ischemic injury might promote deposition of collagen leading to
replacement fibrosis, a pathologic finding distinct from the progressive reactive interstitial
fibrosis which is typically found in HCM [37]. Indeed, CMD may lead over time to recurrent
ischemia and myocyte death, thus acting as a localizer of replacement fibrosis. The clinical
consequences are either adverse LV remodeling and HF or arrhythmias and SCD.
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4.1. CMD and Risk of Heart Failure

Multiple prospective investigations have clearly demonstrated that patients with HCM
are prone to developing heart failure (HF) [38–40]. Most importantly, those who experience
HF have a high risk of death from both progressive pump failure and SCD and have an
annual mortality ten-fold higher than the general HCM population [41–43].

The prognostic role of myocardial ischemia has clearly been demonstrated in a study
by Cecchi et al., who showed that the degree of CMD is a strong, independent predictor of
clinical deterioration and death [44]. An age-adjusted multivariate analysis demonstrated
that a low dipyridamole MBF was the most powerful independent predictor of outcome,
with a 9.6 times increased risk of cardiovascular mortality for patients in the lowest tertile
(i.e., with a dipyridamole flow ≤1.1 mL/g/min). Specifically, all the four heart-failure-
related deaths and three of five SCDs occurred among the 18 patients in the lowest tertile
of dipyridamole flow [44]. It is noteworthy that at the time of the PET scan, none of the
patients had severe symptoms, and only a few would have been considered at high risk on
the basis of the established indicators of outcome. Nevertheless, substantial microvascular
dysfunction could already be demonstrated, several years before their clinical progression,
in most of those patients who subsequently deteriorated or died [44]. The value of maximal
MBF value was recently confirmed in a recent study on a larger HCM population, with
a slight increase level to 1.35 mL/min/g (Figure 3) [45]. These results have intriguing
implications in that PET evaluation of MBF may significantly improve risk stratification
and allow the implementation of preventive measures in clinically stable patients with
HCM [46]. Indeed, a severe CMD—as indicated by a MBF of 1.1 mL/min/g or lower after
dipyridamole infusion—can be considered a strong predictor of unfavorable outcome and
cardiovascular mortality [46]. Of note, these findings expand upon previous observations
that the detection of microvascular abnormalities in HCM allows us to discriminate between
the disease and athletes with LV hypertrophy [47].
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4.2. CMD and Risk of Sudden Cardiac Death

Myocardial ischemia is now thought to be responsible for some of the most worri-
some complications of HCM, which are malignant arrhythmias and SCD [48,49]. Autopsy
findings from individuals with HCM-related SCD found a high prevalence of histolog-
ical changes consistent with acute or subacute myocardial ischemia, possibly forming
the substrate for arrhythmogenesis [50]. Pivotal studies with SPECT suggested an asso-
ciation between myocardial ischemia, syncope, and SCD [22]. Flow heterogeneity using
positron emission tomography (PET) has been associated with ventricular arrhythmias [51],
suggesting a potential role for PET in SCD risk assessment. More recently, CMR has demon-
strated reversible and fixed uptake defects without obstructive CAD on invasive coronary
angiography, suggesting ischemia and scar, respectively [52,53].

Despite the long-standing evidence that myocardial ischemia can play a pathogenetic
role in SCD, the 2014 European guidelines failed to include assessment of myocardial
ischemia in the risk score for prediction of SCD. The score includes only some factors
already considered in previous documents (maximum LV wall thickness, family history,
and syncope) with the addition of three continuous variables, i.e., age, LV outflow tract
gradient, and left atrial diameter [54]. It is tempting to speculate that the limitations of this
score might have played a role in frequency of SCD in later years. Although the incidence
of SCD is now lower than previously reported in the original series of the 1980s and 1990s,
most SCDs occur in patients who have not been deemed to be at high risk and have not
been treated with a defibrillator [55].

The highly anticipated American Heart Association/American College of Cardiology
(AHA/ACC) HCM guidelines have been recently released [56]. The update lists 133 rec-
ommendations for HCM care in several categories, including role of high-volume HCM
centers, diagnosis, initial evaluation and follow-up, risk assessment and prevention of
SCD, and lifestyle considerations. As regards risk factors for SCD, the 2020 American
document highlights the fact that retrospective observational studies over the past decade
have identified a number of noninvasive clinical risk markers associated with increased
risk for SCD in HCM. In association with clinical judgment and shared decision-making,
patients with HCM are considered potential candidates for primary prevention indication
to implantable cardioverter defibrillators if they have ≥1 of the traditional major risk
markers, i.e., family history of SCD, massive LV hypertrophy, and unexplained syncope,
or one novel marker, such as apical aneurysm, LGE on CMR, and impaired LV systolic
function (ejection fraction<50%). This choice is based upon the evidence that large areas
of myocardial fibrosis (>15% of LV mass)—which now can be easily detected by LGE on
CMR—are associated with an increase in arrhythmic events resulting from a reentry circuit
mechanism [57].

LV apical aneurysm represents a further important example of the pro-arrhythmic
effects that myocardial ischemia unrelated to CAD might have in HCM. It is now said that
apical aneurysms showing an obstructive pattern are areas of myocardial scarring caused
by continuous exposition of the apical myocardium to high LV wall stress and systolic
pressures, which in turn lead to pressure overload, greater oxygen demand, abnormal
coronary perfusion, and myocardial ischemia [57]. Apical aneurysms constitute a potential
site of anatomic reentry for sustained monomorphic ventricular tachycardia at the junction
between the scarred aneurysm rim and adjacent viable myocardium mechanism [58].
Interestingly, Maron et al., incorporated LGE and apical aneurysm in a risk factor prediction
algorithm and were able to identify almost 95% of HCM patients at risk of SCD [59].

In summary, the current consensus is that ventricular arrhythmogenesis and the risk
of SCD in HCM clearly relates to the combination of abnormal cellular substrate, ventricu-
lar anatomy, dynamic changes in hemodynamics, rhythm disturbances, and myocardial
ischemia [32,60].
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5. Treatment of CMD

Although myocardial ischemia has a well-recognized pathogenetic role in HCM, the
best pharmacologic treatment of CMD has yet to be identified. From a theoretical point of
view, however, pharmacologic agents that have shown to exert favorable effects on CMD in
patients with CAD have the potential to be effective in primary cardiomyopathies as well.

Angiotensin-converting enzyme (ACE) inhibitors have been proposed for the treat-
ment of CMD in patients with non-obstructive CAD, based on pleiotropic actions on the
vascular wall (i.e., reverse remodeling of intramural coronary arterioles) and consequent
improvement in CFR [61]. However, it is important to underline the fact that ACE inhibitors
should be used with caution in HCM as they may be harmful in the subset of patients with
LV outflow tract obstruction due to their vasodilating effects.

Calcium channel blockers in general, and dihydropyridines in particular, are poten-
tially useful to treat CMD due to their vascular relaxing effect and dilator effect on coronary
resistant vessels [62]. Nevertheless, although verapamil is often used in patients with HCM,
no previous investigation has demonstrated any clinical effect on microcirculation.

Late sodium current inhibitor ranolazine has been reported as an effective drug to
control angina symptoms in several cardiac conditions, including HCM patients [33,63].
However, the RESTYLE-HCM randomized, placebo-controlled trial failed to show any
significant improvement with ranolazine on functional capacity, symptomatic status, and
diastolic function, with only a decrease in the number of ventricular arrhythmias being
associated with ranolazine [64].

At variance with pharmacologic agents that seem to be unable to improve myocardial
perfusion in HCM [65–68], mechanical reduction of LV outflow tract gradient by alcohol
septal ablation or surgical myectomy seem to improve CFR and septal endocardial-to-
epicardial MBF [69,70]. The evidence that only invasive strategies aimed at reducing
or abolishing LV obstruction have been shown to affect CMD in patients with HCM
suggests that further investigations on pharmacologic options are needed. As a matter of
fact, these patients suffer from ischemia-related symptoms and might experience major
adverse cardiac events. Thus, large outcome trials testing the efficacy of currently available
traditional anti-atherothrombotic and anti-ischemic therapy, as well as novel therapies in
this population, are warranted.

6. Conclusions

Myocardial ischemia secondary to CMD is a major pathophysiological feature of
HCM, that might impact various pathological and clinical features encompassing tissue
abnormalities and arrhythmic events (Figure 4). A comprehensive diagnostic work-up
plays a major role in the approach of the patients with HCM and their risk stratification [60]
as the non-invasive assessment of CFR using transthoracic Doppler echocardiography,
PET, and CMR is now mandatory in any HCM patient. Guidelines on HCM have been
revised and updated in light of most recent evidence but have not clearly acknowledged
the emerging role of well-recognized predictive factors such as myocardial ischemia [7,8].
While unraveling the prognostic role of genetics, clinical and preclinical features potentially
associated with a higher risk of HF and SCD such as CMD now have the potential for
improving risk stratification in patients with HCM.
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