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Neuromodulation is present throughout the nervous system and serves a critical role
for circuit function and dynamics. The computational investigations of neuromodulation
in large scale networks require supportive software platforms. Snudda is a software for
the creation and simulation of large scale networks of detailed microcircuits consisting
of multicompartmental neuron models. We have developed an extension to Snudda
to incorporate neuromodulation in large scale simulations. The extended Snudda
framework implements neuromodulation at the level of single cells incorporated into
large-scale microcircuits. We also developed Neuromodcell, a software for optimizing
neuromodulation in detailed multicompartmental neuron models. The software adds
parameters within the models modulating the conductances of ion channels and
ionotropic receptors. Bath application of neuromodulators is simulated and models
which reproduce the experimentally measured effects are selected. In Snudda, we
developed an extension to accommodate large scale simulations of neuromodulation.
The simulator has two modes of simulation – denoted replay and adaptive. In the
replay mode, transient levels of neuromodulators can be defined as a time-varying
function which modulates the receptors and ion channels within the network in a
cell-type specific manner. In the adaptive mode, spiking neuromodulatory neurons are
connected via integrative modulating mechanisms to ion channels and receptors. Both
modes of simulating neuromodulation allow for simultaneous modulation by several
neuromodulators that can interact dynamically with each other. Here, we used the
Neuromodcell software to simulate dopaminergic and muscarinic modulation of neurons
from the striatum. We also demonstrate how to simulate different neuromodulatory
states with dopamine and acetylcholine using Snudda. All software is freely available
on Github, including tutorials on Neuromodcell and Snudda-neuromodulation.

Keywords: neuromodulation, simulation – computers, microcircuit, dopamine, acetylcholine, striatum

INTRODUCTION

The nervous system depends on fast interaction via ionotropic receptors, which are activated by
a variety of neurotransmitters including glutamate, GABA, and glycine. Besides these ionotropic
receptors, neuromodulation via metabotropic receptors have a profound effect on network
dynamics via slower processes. On a single cell level, these neuromodulators act via a variety
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of receptor subtypes, which modulate the excitability of neurons
and influence their synaptic properties (Nadim and Bucher,
2014). The interactions between neuromodulators and their
targets are complex. For example, a single ion channel type can
be modulated by several different neuromodulators (Swensen
and Marder, 2000; Park and Spruston, 2012). While a single
neuromodulator can affect multiple ion channel types and
signaling pathways within neurons (Greengard, 2001). On a
circuit level, neuromodulation of neurons and synapses can
massively alter the network activity. A challenge is to bridge
the levels between single neurons and the circuit to understand
the role of neuromodulators in shaping network behavior
(Nadim and Bucher, 2014).

There are models of both invertebrate and different types of
vertebrate which attempt to bridge the gap from cellular and
synaptic properties to circuit function, and where the effects
of neuromodulation is considered (Lansner et al., 1998; Kozlov
et al., 2001, 2009; Hamood and Marder, 2014; Nadim and Bucher,
2014; Colangelo et al., 2019). For neuromodulation, the challenge
is that the effect of a single neuromodulator in a single cell
setting could be very different once that cell is embedded within
a circuit. In the circuit, other components, such as other neurons
and synapses, would also be under neuromodulatory control and
hence contribute to more complex circuit interactions (Oh et al.,
2012). Therefore, computational models have to incorporate the
ability to bridge these levels. Furthermore, it has been shown that
different parts of a neuron (dendrites/soma) can be modulated
differently depending on receptor sub-type and target (Bender
et al., 2010). Such compartmental differences can be implemented
in multicompartmental models where reconstructed neuronal
morphologies are used and ion channel models are distributed
throughout the morphology (Frost Nylén et al., 2020; Hjorth
et al., 2020; Lindroos and Hellgren Kotaleski, 2021).

We use the in silico striatal microcircuit (Hjorth et al., 2020)
as a demonstrative example, which consists of 95% striatal
projection neurons (SPNs) and 5% interneurons (fast-spiking
(FS), low-threshold spiking and cholinergic interneurons). Here,
we simulate neuromodulation of SPNs and FS. The striatum
is the input stage of the basal ganglia, a group of subcortical
nuclei involved in action-selection, motor control, and habitual
learning. Neuromodulation is important in the striatum and
especially dopamine is essential for basal ganglia function (Gerfen
and Surmeier, 2011; Surmeier et al., 2014; Da Silva et al., 2018).
The cholinergic interneuron (ChIN) is a spontaneously active
interneuron within the striatum, which releases acetycholine
(ACh). Hence, in addition to the dopaminergic modulation,
cholinergic modulation can modulate several components of the
striatal network, which has extensive expression of muscarinic
receptors (Abudukeyoumu et al., 2019). Furthermore, several
studies have demonstrated the complex interactions between
DA and ACh within the striatum, ranging from modulating
dopamine release via presynaptic nicotinic receptors to direct
dopaminergic modulation of ChINs via D2 receptors (Threlfell
et al., 2012; Howe et al., 2019).

Previously, Snudda, a Python package for creating data-
driven networks of neurons, placing synapses using touch
detection between axons and dendrites and setting up large scale

simulations was developed by Hjorth et al. (2021). The software
included fast synaptic transmission but neuromodulation was
limited to dopamine. Hence, the Snudda package required
further development to accommodate the generalized
implementation of neuromodulation, together with all the
other functionalities contained within Snudda. Following the
development of Snudda.neuromodulation, it was necessary to
create a software for generating and selecting parameter sets
which reproduce neuromodulation. Therefore, we decided to
develop Neuromodcell, which extracts the modulatory parameters
necessary to reproduce neuromodulation on a single cell level for
multicompartmental neuron models (Figure 1).

In this study, we applied Neuromodcell and
Snudda.neuromodulation to the dopaminergic and cholinergic
modulation of the in silico striatal microcircuit to demonstrate
the functionalities included in these software packages. In
general, Neuromodcell and Snudda can be used to generate
and simulate networks of multicompartmental models with a
wide range of neuromodulators. Within these simulations, a
variety of questions could be addressed. Hence, not merely to
simulate neuromodulation, but to predict which components are
important for certain features and also redundancies within the
network. Furthermore, simulations of multiple neuromodulators
could predict how these interact on a network level. Both
Neuromodcell and Snudda are open-source and freely available
on Github, for further enhancement and expansion.

MATERIALS AND METHODS

Software Setup
Neuromodcell is freely available to be downloaded from its
Github site1, written in Python with requirements specified in
requirements.txt including NEURON2 and Jupyter Notebook.
To install Neuromodcell use pip install neuromodcell. The
software is compatible with Linux operating system and super-
computer clusters (Cray XC40 system). The simulations of
large networks use Snudda (Hjorth et al., 2020, 2021), a
Python package for creating data-driven networks of neurons
available from its Github site3. To simulate neuromodulation,
within the Snudda framework, additional simulation classes
and associated neuromodulation subpackages were created,
snudda.neuromodulation. To use Snudda, install via pip install
snudda and follow the instructions on its wiki page (see
text footnote 3).

Multicompartmental Models
Neuromodcell and Snudda require multicompartmental models
specified for NEURON simulator described by three files:
a morphology file (SWC), a parameter file (JSON) and a
mechanism file (JSON) including a directory with the ion
channel model files (.mod files, NEURON model description
language). The models used in this publication were optimized

1github.com/jofrony/Neuromodcell
2github.com/neuronsimulator/nrn
3github.com/Hjorthmedh/Snudda
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FIGURE 1 | Neuromodcell structure with classes and methods. Neuromodcell specifies the model and optimization parameters using the DefineModulation class.
The associated methods define the protocols, parameters, modulation, and selection criteria for the optimization. Following the simulation, the OptimisationResult
class assists in loading and analyzing the results and saving the final modulation (modulation.json).

using BluePyOpt (Van Geit et al., 2016) in previous publications
(Hjorth et al., 2020; Lindroos and Hellgren Kotaleski, 2021)
with modification for muscarinic modulation; and include direct
and indirect striatal projection neuron (dSPN and iSPN) and
fast-spiking interneuron (FS) models from the striatum.

Parameterization
To modulate the models during the simulation, we introduce
additional parameters for the specific neuromodulator
within the .mod files. The modulation is implemented in a
phenomenological manner, where a modulation parameter is
multiplied with the target (for example the conductance of an ion
channel). Hence, the conductance (in this case) can be regulated
through the simulation. For example, for dopamine, the three
parameters are maxModDA, modDA and levelDA (using the
key, DA to indicate dopamine), based on previous formalism
developed in Hjorth et al. (2020). In general, the convention is
‘maxMod∗’, ‘level∗’ and ‘mod∗’ and the ∗ should be replaced with
a specific name for the neuromodulator. The maxMod∗ defines
the modulation degree (which can vary, with 0.6 being 40%
reduction). The level∗ defines the transient level of modulation
throughout the simulation. The mod∗ defines the activation of
modulation (0 inactive, 1 fully active). Within the examples,
dopaminergic and muscarinic modulation was included (with
muscarinic modulation using key ACh). The list of modulated
ion channels for each cell type is presented in Supplementary

Table 1. For examples of .mod-files with these modulation
parameters (see text footnote 1).

Neuromodcell
Neuromodcell is a software for optimizing and simulating
neuromodulation in detailed multicompartmental neuron
models. The software loads and simulates a population of
models with user-defined parameter variations of maxMod∗,
which is how the program induces the changes associated
with neuromodulation. The software also incorporates current
clamp and voltage clamp parameters to simulate specific
biological experiments. Hence, the user can define the simulated
experiment in terms of both neuromodulator and the specific
protocol to be used. Following the simulation, the parameter
sets that reproduce the experimental data are selected based
on a user-specified selection criteria. We provide several
electrophysiological features by default, but custom features
can be included.

Here, Neuromodcell was used to optimize dopaminergic
modulation for dSPN, iSPN and FS, as well as muscarinic
modulation for dSPN and iSPN. The optimizations for dSPN
and iSPN were validated against data from Planert et al. (2013)
and Lahiri and Bevan (2020) (see Supplementary Figure 1) for
dopaminergic modulation and Lv et al. (2017) for muscarinic
modulation. The dopaminergic modulation for FS was validated
against data from Bracci et al. (2002).
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Neuromodulation in Snudda
Neuromodulation in Snudda is implemented as a separate
simulation module called snudda.neuromodulation.
Within the module, there are two simulation classes for
neuromodulation, SnuddaSimulateNeuromodulation and
SnuddaSimulateNeuromodulationSynapse. These classes
represent the two strategies used to simulate neuromodulation,
replay and adaptive. The replay mode plays a predetermined
transient through the level∗-parameters and hence modulates
each component of the circuit in a predefined time dependent
manner. On the other hand, the adaptive mode originates
from the fact that a neuromodulatory neuron integrated within
the microcircuit could not modulate via a predetermined
transient. Instead, the spiking activity of such a neuron would
have to be continuously translated into an instantaneous level
of neuromodulation. Therefore, an alternative approach was
developed where an intermediate mechanism would integrate
the spiking activity. Adaptive simulations couple one or several
presynaptic neurons to postsynaptic neurons via an integrating
mechanism called conc∗, which modifies the neuromodulatory
parameters (level∗) in the circuit (for example concDA to levelDA
for dopamine). Hence, neuromodulation within the simulation
can either follow a fixed recipe (‘replay’ mode), or dynamically
change based on the activity in the network (‘adaptive’ mode).
The mode used within a particular simulation will therefore
depend on the network structure. Using either approach, the
level of neuromodulation would be updated every time step via
the level∗-parameter. The replay mode loads an array which has
set values for the level∗ for each time step of the simulation.
This would suffice if the neuromodulation is synchronous and
the neuromodulatory neurons are not affected by activity of the
circuit. On the other hand, if the activity of the microcircuit
could for example inhibit the neuromodulatory neurons, like
striosomal dSPNs in the striatum, replay mode does not suffice
and adaptive mode would be used instead, as the presynaptic
neuromodulatory neurons can interact with the microcircuit
throughout the simulation.

For replay, the maxMod∗, mod∗ and level∗ are introduced
as RANGE variables. In the adaptive mode, which is based
on pointers, the parameters are introduced with the keyword
POINTERS4 and ‘ptr’ is added to the filename (i.e., na.mod
to na_ptr.mod).

Lastly, both types of simulations require a configuration
file (JSON) which is created using either Neuromodulation
class (snudda.neuromodulation.modulation_network,
for replay simulations) or NeuromodulationSynapse
(snudda.neuromodulation.modulation_synapse, for adaptive
simulations). For examples of how to use these classes (see
text footnote 4).

To demonstrate the features of Snudda.neuromodulation, we
simulated several networks using both replay and adaptive mode.
Firstly, using the Snudda framework, a network of 10 000 neurons
was created and simulated with dopamine and acetylcholine
transients; and with a cortical activation at 1 s, with cortical and
thalamic background activity. The network is based on previous

4github.com/jofrony/Neuromodulation-software

publications (Hjorth et al., 2020) and the connection probabilities
follows the diagram in Supplementary Figure 2. The transients
consisted of a tonic level of ACh accompanied with a burst or
pause of ACh and a DA burst. The simulations were performed
on a super-computer cluster (Cray XC40 system at PDC Center
for High Performance Computing, KTH). A smaller network
with dSPNs was simulated to show the effect of DA and ACh
without network interactions from iSPNs and FS. Furthermore,
several dopamine transients with different start times were
created using the Neuromodulation class and applied to a network
of 20 dSPNs with a cortical activation lasting for 500 ms. Lastly,
a network of dSPNs was simulated with presynaptic spiking
neurons using the adaptive mode. The presynaptic neurons
represented dopaminergic neurons and were simulated with and
without activation (i.e., bursting). The activity of the neurons
within the simulations were measured by the percentage of
spiking neurons and the mean firing frequency during the cortical
activations using custom Python code and Electrophysiology
Analysis Toolkit5.

Tutorials
A tutorial on Neuromodcell and an example of dopaminergic
modulation of dSPN are available (see text footnote 1).

Examples of simulations using Snudda.neuromodulation
module are available (see text footnote 4).

RESULTS

Overview
Neuromodcell performs parameter variation of ion channels and
receptor models within multicompartmental models to simulate
neuromodulation. The components of the software are presented
in Figure 1 with the main class, DefineModulation (Figure 2)
and its associated class methods, which are used to define the
parameters, protocols, selection criteria and modulation for the
specific cell and neuromodulator. The user specifies the range
of parameter variation for each ion channel and/or receptor
as well as the experimental protocol to be replicated in the
simulation (Figures 3, 4). The models with parameter variations
are simulated using the optimise module, which uses mpi4py for
parallelization.

Following the simulation, a selection process is performed,
where the models are compared to the experimental data
provided in the setup (using DefineModulation). The parameter
variations of the models which pass validation are saved in a
separate file. The code for defining the selection criteria is freely
available (module selection_criteria and selection_function) and
can be modified to measure a specific electrophysiological feature
of the simulation, for example firing frequency or the number of
action potentials.

Below, we describe the process of setting up, optimizing
and selecting the models that pass validation. Following the
completion of the optimization, the results are transferred to

5github.com/NeuralEnsemble/elephant
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FIGURE 2 | Code for setting up the parameters for neuromodulation using
Neuromodcell. The parameter, “path_to_model,” defines the path to the
model and which specific parameterID, parameter_id.
mod_set.define_neuromodulation, the naming defines the neuromodulation
key, DA for dopamine. The example has a simulation time of 1000 ms and
population of 1000 different models.

FIGURE 3 | Code for setting up the parameter variation for neuromodulation.
modset.define_modulation_parameter accepts the ion channel name,
neuromodulator, part of the morphology and the intervals of modulation. Here
we have used data from previous publications (Lindroos et al., 2018; Lindroos
and Hellgren Kotaleski, 2021).

Snudda and simulated using snudda.neuromodulation module.
A step-by-step tutorial is available (see text footnote 4).

Defining Neuromodulation in silico
We performed optimizations of dopaminergic and muscarinic
modulation for dSPN, iSPN, and FS. In the following
examples, the dopaminergic optimization of dSPNs is used
to demonstrate the features of Neuromodcell. We instantiated the
DefineModulation class as shown in Figure 2. The class requires
several arguments to define the optimization, including the

FIGURE 4 | Code for setting up the selection criteria. Dopamine level is
simulated as a bath application. Two simulated current clamps are added to
the set up to replicate the experiment from Planert et al. (2013). The effect of
dopamine is measured by the number of action potentials and compared with
experimental data.

model directory and the number of model variations to simulate
(population). The next step is parameter variation. In Figure 3,
the ion channels which are modulated by DA within dSPN
(based on previous publications Hjorth et al., 2020 and Lindroos
et al., 2018) were set using the define_modulation_parameter
method within the class. The modulation can also be defined to
be somatic, dendritic (basal or apical, due to the SWC naming
convention) or axonal.

Experimental Setup and Selection
Criteria
The experimental data used in the example optimization
was taken from Figure 6C in Planert et al. (2013) for
dSPNs. The experiment used patch clamp recordings and
bath application of dopamine to measure the effect of DA
on dSPNs. Following the application of DA, there was an
increase in the intrinsic excitability of dSPNs measured by the
number of action potentials. Hence, an experimental setup was
introduced into modset, with a current clamp protocol and bath
application of dopamine (Figure 4). Furthermore, the method
define_selection_criteria was used to introduce the measurement
used in the validation step (i.e., the change in the number
of action potentials). Both the define_modulation_function and
define_selection_criteria can select several pre-defined functions
but they can also be customized to accommodate specific
transients or criteria, respectively.

Optimization
The optimization uses the OptimiseModulation, from optimise
module in Neuromodcell. The optimization for dSPN used a
custom Python script called optimise_dspn.py, which loaded
the path_to_model and the specific seed for the optimization
(Figure 5). The seed is used to randomize the modulation
parameters defined using define_modulation_parameter. The
modulation parameters sets (i.e., population) are simulated in
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parallel with the specific model (defined in DefineModulation),
as illustrated in Figure 1.

Analysis
The result of the optimization was visualized using dSPNanalysis
(inheritance from OptimiseAnalysis class in Neuromodcell)
(Figure 6). The class loads the output files following the
optimization and enables the user to plot and/or analyze the
results. In Figure 7, the result of dopaminergic modulation
of dSPN is shown with the model variations (modulated) and
control simulation (in black). The dopaminergic modulation
increases the intrinsic excitability of dSPNs via D1 receptors.
The result of the Neuromodcell optimization produced model
variations which reproduce the experimental data from Planert
et al. (2013). The control simulation (in black, Figure 7A) has
four spikes following current injection. The simulated dopamine
modulation increases the number of spikes and the change in the
number of action potentials are within the range extracted from
the experimental data (Figure 7B).

Transfer Files to Snudda Simulation
Following the optimization, the parameter sets which reproduce
the neuromodulation are saved as modulation.json and moved
to the model directory (i.e., the model is now defined
by parameters.json, morphology.swc, mechanisms.json and
modulation.json). The modified .mod files should also be
transferred to a common Snudda mechanism directory.

Dopamine
Using the replay mode in Snudda.neuromodulation, we simulated
a network of 10 000 (Figure 8A) multicompartmental neuron

FIGURE 5 | Code for running the optimization.

FIGURE 6 | Code for analyzing the results from the optimization using
dSPNanalysis. dSPNanalysis (inheritance from OptimiseAnalysis class) loads
the results from the optimization. The results can be plotted by custom
methods and the final modulation is saved.

models of dSPNs, iSPNs, and FS to exemplify the effect of
the dopamine modulation. The simulation included a cortical
stimulation of dSPNs, iSPNs and FS at 1 s, lasting for 0.5 s.
In Figure 8, the effect of dopamine on network activity is
shown. Following cortical activation, 6% of dSPNs within
the network were spiking. By modulating the ion channels
defined in the optimization result of Neuromodcell, dopamine
modulation increases the percentage of spiking dSPNs to the
double (Figures 8B,C). iSPNs are modulated by D2 receptors,
which reduces the intrinsic excitability. Hence, in Figure 8B,
the percentage of spiking iSPNs within the network decreases
by approximately 3%. The middle panel in Figure 8C shows
an example trace of an iSPN, where the dopamine modulation
reduces the number of spikes. FS are modulated by D1-like
receptors, which depolarizes the membrane potential, as seen in
Figure 8C. Following, an optimization using Neuromodcell, the
parameter sets for FS dopamine modulation increase the number
of spiking neurons within the network (Figure 8B). The cortical
activation occurs via activating glutamate ionotropic receptor
models. These receptors can also be modulated by the same
formalism as previously described which leads to changes in the
amplitude and release probability (Supplementary Figure 3).

Dopamine and Acetylcholine
The neuromodulation extension to Snudda can also simulate
multiple neuromodulators. To demonstrate this, we simulated
five scenarios of dopamine and acetylcholine modulation with the
same network presented in Figure 8A. As previously described,
dSPNs and FS are modulated by D1 receptors while iSPNs are
modulated by D2 receptors. In addition, we used Neuromodcell
to optimize for muscarinic modulation for dSPNs and iSPNs.

In Figure 9A, we show the transients used in the simulations,
which consisted of an acetylcholine burst or pause and a
dopamine burst. In the striatum, acetylcholine is released
continuously by cholinergic interneurons due to their
spontaneous activity. Hence, the acetylcholine transients
had a tonic modulation level of 0.5 with burst and pause response
causing an increase or decrease (by 0.5), respectively. These
transients were simulated individually but also simultaneously
(DA and ACh burst; DA and ACh pause). As shown in Figure 8,
dopamine increased the percentage of spiking dSPNs within
the network. The acetylcholine burst also slightly increases the
percentage of spiking dSPNs, although in the simultaneous
simulation (Figure 9B, light purple), the effect is not additive.
Instead, the dopamine burst and acetylcholine pause produces
a larger response. This is contrary to previous results in
Lindroos and Hellgren Kotaleski (2021), where DA and ACh had
additive effects when single neurons were simulated. Hence, we
performed a simulation with only dSPNs to investigate the effect
of DA and ACh. Without network interactions, the effect of DA
and ACh was indeed additive (Supplementary Figures 4A,C).
Hence, the decrease in the percentage of spiking dSPNs could be
attributed to the network interactions and the changes seen in
iSPNs and FS. As described in Figure 8, the intrinsic excitability
of iSPNs is decreased following dopamine modulation, while
ACh modulates iSPNs via M1 receptor, which lead to the opposite
effect. Compared to dSPNs, iSPNs have a larger increase in the
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FIGURE 7 | Optimization of dopaminergic modulation of dSPN. By using the Neuromodcell package, parameter sets which reproduce the dopaminergic modulation
are applied to the multicompartmental model of dSPNs. (A) Simulation of current clamp recordings of dSPN. Control simulation without dopamine modulation in
black and dopamine modulated simulations which passed the selection criteria (non-black traces). (B) The change in the number of action potentials is compared to
control (in green) and the parameter sets which passed in black. The mean and standard deviation of the control behavior from Planert et al. (2013) in blue, the DA
modulated mean and standard deviation in red. –80 mV marked by yellow line.

FIGURE 8 | Simulation of dSPN with and without DA within a network of 10 000 neurons with 4950 dSPNs and iSPNs and 100 FS. (A) A network of 10,000
neurons. Here we plot the soma positions. A dopamine transients was initiated at 0.5 and a cortical stimulation at 1 s. (B) The response of dSPN with the dopamine
modulation in red and the control in black. The dopamine modulation causes a depolarization in the dSPN which results in an increase in the percentage of spiking
dSPNs. The iSPN responded with a decrease in the percentage of spiking neurons, while FS increased. (C) Examples of dSPN, iSPN and FS models and the
response with dopamine modulation (red) and control (black), with cortical stimulation in light blue. –80 mV marked by yellow line.

number of spiking neurons following an ACh burst (Figure 9C).
During the ACh pause, the percentage of spiking iSPNs is
expected to decreased, due to the reduction in ACh levels. In

contrast, the percentage of spiking iSPNs was larger than in
the control. In Zucca et al. (2018), SPNs were recorded in vivo
and cholinergic interneurons were inhibited optogenetically.
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FIGURE 9 | Simulation of five neuromodulation scenarios involving dopamine and acetylcholine in a network of 10,000 neurons, 4950 dSPNs and iSPNs and 100
FS. The network received a cortical simulation at 1 s, for 500 ms. (A) Examples of the acetylcholine (ACh) burst and pause transients and the dopamine burst
transient. In light blue,the timing of the cortical activation in relation to the transients. The percentage of spiking neurons are measured during the cortical simulation.
(B) The response of dSPNs in the five neuromodulation scenarios (B), dopamine (red) produced the largest effect. The acetylcholine burst and pause (light and dark
green) and combinations of DA burst and ACh burst and pause (light and dark purple, respectively). (C) The response of iSPNs in the five neuromodulation scenarios
and (D) the response of FS.

They observed a reduction in the spontaneous activity of SPNs.
The control simulation in Figure 9 was, however, run without
any neuromodulation, which could explain the inconsistency.
Hence, we simulated a small network of SPNs with a cholinergic
pause, but we modified the control simulation to contain a
continuous tonic level of ACh. By comparing the mean firing
frequency of SPNs with and without the pause, we observed the
expected reduction in SPN activity (Supplementary Figure 4).
Therefore, the tonic level of ACh has an influence on the activity
of SPNs. For FS, the main effect is seen within the dopamine
burst modulation (Figure 9D), while for ACh pause and burst
there is no visible effect (due to the lack of direct muscarinic
modulation of FS).

The Timing of Dopamine
The user can construct different transients to investigate the
effect of timing on network activity. We created a smaller
network of 30 dSPNs to illustrate the effect such an investigation
could have on network activity. We defined six transients which
were identical, in terms of time constants and modulation level
(Figure 10A). We then adjusted the start time in relation to

cortical stimulation at 1s (of a 3 s simulation). The different delays
caused the peak modulation to occur at different times during
the cortical stimulation. Figure 10B shows that the transient
−100 ms results in the largest increase in mean firing frequency.
While −/+500 ms transients are not different from control.
This is due to the dopamine level being too low and the peak
dopamine response occurring much earlier and later compared
to the cortical stimulation. The +100 ms delay produced a lower
increase in the mean firing frequency but the percentage of
spiking neurons were similar to the −100 ms case (Figure 10C).
The user could conduct similar investigations into other features
of the transients such as the time constants, tonic levels or more
complex transients (Lahiri and Bevan, 2020).

Adaptive Modulation
The previous simulations have used a transient(s) to modulate
the network. In Figure 11, we simulate neuromodulation using
the adaptive mode in Snudda. In adaptive mode, the spiking
activity of the presynaptic neurons are translated to modulation
levels as described in Figure 11A. The top panel in Figure 11A
shows the spike times of two presynaptic neurons (green and red).
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FIGURE 10 | Timing of dopamine signal with cortical input in a small network of dSPNs. (A) Different delays in the dopamine transients with cortical input at
1000 ms, for 500 ms. (B) The mean frequency of dSPNs following the different DA delays. In control (without dopamine modulation), the dSPNs within the network
do not spike following cortical activation. Dopamine modulation starts at 500 ms before cortical input (–500 ms), does not produce enough modulation to induce
spiking. While –300 ms, increases the mean firing frequency and the following delays except 500 ms. (C) The percentage of spiking neurons within the network at
different dopamine delays. At 300 ms, the percentage of spiking cells was 7%. –100 and 100 ms produced a similar effect on the number of spiking neurons within
the network.

FIGURE 11 | Simulating presynaptic spiking neurons and dopaminergic neuromodulation. In (A), a schematic representation of the adaptive mode, concDA (orange)
placed on a segment within the multicompartmental model, which receive input from presynaptic cells (red and green). Every spike input triggers a transient inside
the concDA which is sent to the ion channel (green) on that particular segment, rightmost panel in (A) hence modulating the current. In (B), a simulation of a network
of dSPNs, where neuromodulation depends on presynaptic spontaneously active neurons. Compared to control (without modulation) (black), the simulation with the
presynaptic neurons produces a depolarization in dSPNs (red). If the frequency of the presynaptic neuron increases (C), this translates to an increase in the
neuromodulation. The dSPN depolarises more than in the spontaneous case and this results in an increase in the percentage of spiking neurons. In (D), the bar chart
shows the comparison between control and spontaneous versus bursting presynaptic cell (and control for bursting simulation, where the connections between the
cells were disabled). The percentage of spiking cells within the network increases following the dopamine modulation which occurs when the presynaptic cell firing
frequency increased. –80 mV marked by yellow line.
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These neurons are connected to an integrating mechanisms called
concDA (for dopamine, in orange in Figure 11A). The concDA
integrates the spiking activity of the two cells into modulation
levels (as seen in Figure 11A in left most box). The concDA sends
the modulation level from both neurons into the ion channel
model (right most box in Figure 11A). The level of current
follows the modulation as the conductance of the ion channel is
modulated and hence affecting the neuronal activity.

We created a small network of dSPNs to illustrate the
effect of changing the firing frequency of the presynaptic
neurons. We placed spontaneously active neurons to modulate
the dSPNs via D1 receptors. In control, 50% of the dSPNs
within the network were spiking and the spontaneous activity
of the presynaptic neurons did not change the percentage
(Figure 11D). Although in Figure 11B, the spontaneous activity
has an effect on the membrane potential of the dSPNs. By
stimulation the presynaptic spontaneous neurons, we increased
the firing frequency (Figure 11C). As expected the level of
neuromodulation increased as the concDA mechanism integrates
the number of spikes into neuromodulation. This leads to
a depolarization of the dSPN membrane potential. On a
network scale, the increased firing frequency leads to simulated
D1 receptor modulation and an increase in the percentage
of spiking dSPNs.

DISCUSSION

In this article, we present a framework for simulating
neuromodulation in detailed multicompartmental neuronal
models being part of large-scale microcircuits, using
Neuromodcell and Snudda. Our priority was to create an
extension to Snudda, a software for large scale simulation
of networks of multicompartmental models, which also
simulates transients of neuromodulator(s). Firstly, we developed
Neuromodcell which enables the user to optimize and select
parameters for a specific type of neuromodulator. The
neuromodulation is defined by introducing parameters within
the ion channel and receptors models, hence enabling dynamic
control of for example conductance. Secondly, we developed an
extension to Snudda, which incorporates the neuromodulation
parameters found using Neuromodcell. Thirdly, we simulated
a range of different neuromodulatory states with the striatal
microcircuit to show the versatility of the tool.

We simulated an example network of dSPNs, iSPNs, and FS.
These neurons are modulated by dopamine D1 and D2 receptors.
We used Neuromodcell to optimize for parameters sets which
reproduced the available experimental data on dopaminergic
modulation of these cell types. The simulations of dopaminergic
modulation showed that DA can modulate the excitability
of the network. Hence, the simulations of dopamine are in
line with known effects of DA in the striatum (Gerfen and
Surmeier, 2011; Maltese et al., 2021). Currently, the Neuromodcell
optimization produces a population of modulated models, which
are selected according to predefined parameters. In the future,
the Neuromodcell optimization could be improved and utilize
more elaborate optimization algorithms, for example the genetic
algorithm used within BluePyOpt software (Van Geit et al., 2016).

Within the striatum, cholinergic interneurons release
acetylcholine which modulates the network via nicotinic
and muscarinic receptors. Both dSPNs and iSPNs are
modulated by the M1 receptor, while only the M4 receptor
modulates dSPNs (Abudukeyoumu et al., 2019). Using
Snudda.neuromodulation, we simulated muscarinic modulation
throughout the whole network. We defined a burst and
pause transient with a tonic background level of muscarinic
modulation to replicate the acetylcholine levels reported
in the striatum. We could show that this changes the
excitability of dSPNs and iSPNs which is consistent with
reports (Abudukeyoumu et al., 2019). Furthermore, we could
replicate the effect of ACh pause on SPNs reported by Zucca et al.
(2018).

Within the striatum, there are several in silico investigations
which can be performed using Snudda.neuromodulation. In
Parkinson’s disease (PD), the degeneration of dopaminergic
neurons results in a change in the balance between dopamine
and acetylcholine (McKinley et al., 2019) and anti-cholinergic
drugs were used to treat PD before DOPA therapy emerged
(Carlsson, 2001). Although, the interaction between dopamine
and acetylcholine is not fully understood. Therefore, future
simulations could investigate how the changes of DA and ACh
on the single cell level affect network activity; and potentially
dissect the important components using Neuromodcell and
Snudda. Furthermore, in Howe et al. (2019), they showed
that cholinergic activity and DA levels were coordinated
during spontaneous movement. Using Snudda.neuromodulation
such transients could be simulated to understand how the
coordination between ACh and DA affects the activity of
dSPNs and iSPNs.

Recent advances in biosensor technology are enabling research
to visualize neuromodulator levels within neuronal networks
(Leopold et al., 2019). These biosensors can provide high spatial
and temporal resolution on the action of neuromodulators like
dopamine, serotonin, and opioids amongst others. Hence, a
simulation platform like Snudda, can incorporate such data
to understand how the underlying neural circuit responds to
these transients.

Neuromodulation affects many aspects of neurons and neural
circuits. Presently, Neuromodcell and Snudda focused on the
effect on ion channels and receptors. Hence, we have included a
limited part of the effects that neuromodulators have on network
activity (Nadim and Bucher, 2014). Many of the targets of
neuromodulators are not incorporated into multicompartmental
models, including transcription factors and other subcellular
processes. Simulations of such effects would require other
types of models and simulators. Although, a possible future
development would be to include synaptic plasticity within the
large scale simulations. Currently, Snudda includes receptor
models of glutamate (NMDA/AMPA) and GABA receptors with
short-term plasticity. In several brain areas, neuromodulators
can regulate the long-term potentiation (LTP) and long-term
depression (LTD) (Huang et al., 2012; Xu et al., 2018; Perrin and
Venance, 2019). Hence, synaptic plasticity could be coupled to
neuromodulation levels during the simulation and simulate the
effect of LTP vs. LTD, although currently this is not included in
Snudda.
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Snudda is a general tool for simulating large scale networks
of neurons in any part of the nervous system with NEURON
simulator. Our aim was to develop an extension to Snudda, which
simulates neuromodulation on a large scale and can include
any neuromodulator. We then developed Neuromodcell, which
provides a tool for investigating neuromodulation at single cell
level, in addition to the integration into the Snudda framework.
These tools can provide a link between the single cell experiments
and circuit level experiments of neuromodulation, which is
currently not possible with the available simulation tools.
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