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Abstract
A diagnosis of perineural invasion (PNI), defined as cancer within or surrounding at least 33% of the nerve, leads to
selection of aggressive treatment in squamous cell carcinoma (SCC). Recent mechanistic studies show that
cancer and nerves interact prior to physical contact. The purpose of this study was to explore cancer-nerve
interactions relative to clinical outcome. Biopsy specimens from 71 patients with oral cavity SCC were stained with
hematoxylin and eosin and immunohistochemical (IHC; cytokeratin, S100, GAP43, Tuj1) stains. Using current
criteria, PNI detection was increased with IHC. Overall survival (OS) tended to be poor for patients with PNI
(P = .098). OS was significantly lower for patients with minimum tumor-nerve distance smaller than 5 μm
(P = .011). The estimated relative death rate decreased as the nerve-tumor distance increased; therewas a gradual drop
off in death rate from distance equal to zero that stabilized around 500 μm. In PNI-negative patients, nerve diameter was
significantly related to OS (HR 2.88, 95%CI[1.11,7.49]). Among PNI-negative nerves, larger nerve-tumor distance and
smaller nerve diameter were significantly related to better OS, evenwhen adjusting for T-stage and age (HR 0.82, 95%CI
[0.72,0.92]; HR 1.27, 95%CI[1.00,1.62], respectively). GAP43, amarker for neuronal outgrowth, stained less than Tuj1 in
nerves at greater distances from tumor (OR 0.76, 95% CI[0.73,0.79]); more GAP43 staining was associated with PNI.
Findings fromasmall groupof patients suggest that nerve parameters other than presenceof PNI can influenceoutcome
and that current criteria of PNI need to be re-evaluated to integrate recent biological discoveries.
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Introduction
Head and neck squamous cell carcinoma (SCC) is the sixth most
common cancer in the world with ~600,000 new cases a year [1].
Almost half of these patients will die within 5 years of diagnosis making
this the fifth most common cause of cancer-related deaths [2]. SCC has
a high incidence of neural invasion [3,4]. Also known as perineural
invasion (PNI), this type of invasion is strongly correlated with
recurrence and poor survival because nerves are a significant route of
tumor spread toward the brain stem and into other nerves [5,6].
Treatment of SCC is currently based on tumor stage, i.e. tumor size,
spread to lymph nodes, and spread to distant sites. Detection of PNI
enhances the likelihood of lymph node recurrence and leads to selection
of radiation and/or elective lymph node dissection as treatment [7,8].
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Table 1. Demographic and Disease-Related Characteristics of 71 Patients

Patient Characteristics N (%)

Gender
Male 41 (57.7)
Female 30 (42.2)
Age Years
Mean 60.2
SD 12.9

Tumor Characteristics N (%)

Oral Cavity Subsite
Gum 15 (21.1)
Mouth Floor 10 (14.1)
Tongue 34 (47.9)
Retromolar area 9 (12.7)
Other 3 (4.2)

T Stage
1 12 (16.9)
2 21 (29.5)
3 12 (16.9)
4 26 (36.6)

N Stage
0 41 (57.7)
1 8 (11.2)
2 1 (1.4)
2a 2 (2.8)
2b 17 (23.9)
2c 2 (2.8)

Histopathologic Characteristics N (%)

Differentiation
Poor 11 (15.4)
Moderate 27 (38.0)
Well 33 (46.4)

Worst Pattern of Invasion (POI) *
POI 1 5 (7.0)
POI 2 19 (26.7)
POI 3 16 (22.5)
POI 4 26 (36.6)
POI 5 5 (7.0)

PNI (H&E)
No 55 (77.4)
Yes 16 (22.5)

PNI (H&E + IHC**)
No 47 (66.2)
Yes 24 (33.8)

Expanded N Positivity (H&E + IHC**)
N0, PNI-negative 30 (42.2)
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PNI occurs in multiple cancers; the definition has evolved
extensively from the original description of ‘tumor growing along
nerves’ [9] and remains subjective. ‘Clinical PNI’ also known as
‘perineural spread’, refers to neural invasion captured by imaging,
while PNI represents microscopic, asymptomatic findings [10].
Batsakis (1985) [11] first described PNI in SCC as “invasion in,
around and through” nerves. Currently, PNI is defined as “tumor in
close proximity to nerve and involving at least 33% of its
circumference or tumor cells within any of the 3 layers of the nerve
sheath” [12]. This definition includes perineural and intraneural
invasion but could vary in interpretation due to terms such as ‘close
proximity’ and the cut-off of 33%. In fact, there is disagreement on
the microscopic interpretation of PNI in tissue specimens even
among pathologists [13]. The confounding issues and the importance
of a diagnosis of PNI in treatment selection highlight the need for
establishing an objective, widely acceptable definition for PNI.

Recent evidence supports that PNI is a dynamic process involving
mutual tropism between the tumor and nerve. Several groups have
shown that nerves and tumor cells communicate prior to physical
contact [14–16]. For example, in SCC we showed that galanin
released by nerves induces galanin receptor 2 on SCC cells, to
promote release of cytokines [14]. In turn, the cytokines promote
invasion and neuritogenesis. Importantly, these findings highlight
that nerves and cancer are biochemically committed prior to physical
contact. As understanding about biologic mechanisms of neural
invasion increases, so does the need for an evolving definition of PNI
that encompasses different aspects of progression, from early stages
when the tumor and nerve are far apart until physical contact and
invasion of the nerve sheaths.

In this study, we comprehensively analyzed nerve-tumor interac-
tions in human SCC tissue specimens to investigate correlations with
clinical outcome. We observed that among PNI-negative nerves
(using current criteria), smaller nerve-tumor distance and larger
nerve diameter were significantly associated with worse patient
survival, suggesting a role for nerves in SCC aggressiveness. Findings
from a small group of patients suggest that nerve parameters other
than presence of PNI can influence outcome and that current criteria
of PNI need to be re-evaluated to integrate recent biological
discoveries into an objective, reproducible, and clinically-relevant
definition.
N0, PNI 11 (15.5)
N-positive 30 (42.2)

* Worst POI assessed as in Brandwein-Gensler et al. 2005.
** PNI assessed using H&E and IHC stains.
Methods

Patient Population
De-identified tissue sections of human SCC were obtained from

the Tissue Core of the University of Michigan Head and Neck cancer
Specialized Program of Research Excellence (HNSPORE). University
of Michigan Institutional Review Board approval and patient consent
were obtained by the University of Michigan HNSPORE prior to
specimen collection. The study population consisted of 71 patients
with oral cavity SCC (41 males and 30 females), with a mean age of
60.2 years. The median follow-up time was 56.2 months. All patients
were treated with surgery; 29 (40.8%) patients received surgery alone
while 20 (28.2%) patients received adjuvant radiotherapy and 22
(31%) patients received adjuvant chemoradiation. SCC recurred in
18 patients (25.3%) and 14 (19.7%) patients died due to disease.
Table 1 summarizes the demographic and disease-related character-
istics of the patient population.
Immunohistochemistry
Sections of 5μm thickness were stained with hematoxylin and

eosin (H&E) (first and last sections) and sequential sections were
stained with the following antibodies (all 1 h, room temperature):
S100 purified immunoglobulin fraction of rabbit polyclonal
antiserum (Dako, Z0311, 1:1500) to identify nerves, cytokeratin
AE1/AE3 mouse monoclonal antibody (EMD Millipore,
IHCR2025–6, 1:6) to highlight epithelium, Tuj1 mouse monoclonal
antibody (Sigma, T8578, 1:500) to identify β-Tubulin III protein in
the axons, and anti-GAP43 rabbit affinity purified polyclonal
antibody (Novus Biologicals, NB300–143, 1:2000) to identify
regenerating axons and neuronal outgrowth. Mouse (Dako, X0931)
or rabbit IgG (Dako, X0936) were used as negative controls at the
same concentration as primary antibodies. Antigen retrieval was
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performed with citrate buffer pH 6.0. Epitope blocking used 1%
bovine serum albumin in 1x phosphate buffered saline (1 h, room
temperature). The secondary antibody reactions used streptavidin-
biotin complex (Biocare Medical), including Biotinylated Goat anti-
Rabbit IgG (#GR602H), Biotinylated Goat anti-Mouse IgG
(#GM601H), Streptavidin HRP Label (#HP604H) and 3,3′-
diaminobenzidine (DAB) chromogen (#DB801R). Slides were rinsed
and counterstained with Mayer's hematoxylin. IHC stains, and an
IgG control, on sequential slides from a single tissue sample are shown
in Supplementary Figure S1.

Data Collection
Slides were digitally scanned with iScan Coreo (Ventana Medical

Systems, Roche Diagnostics International Ltd., Switzerland) and
images were analyzed using Ventana Image Viewer software v. 3.1.4.
A board certified Oral and Maxillofacial Pathologist used H&E

sections to grade tumor differentiation and determine PNI (positive
or negative) following current criteria [12]. Since PNI detection may
be enhanced by IHC staining [4,17], using the same criteria, a second
investigator, independently scored PNI status of each nerve using all
IHC stains, resulting in two independent analyses, PNI (H&E) and
PNI (H&E + IHC), for each patient. Other nerve and tumor related
parameters were analyzed using IHC as follows: (1) S100 stained-
sections were used to locate and measure nerve area and minimum
nerve diameter; nerves with minimum diameter b10 μm and nerves
more than 2 mm from the tumor margin were not measured
(Figure 1A and Supplementary Figure S1A, S1B); (2) Cytokeratin-
stained sections were used to determine worst pattern of invasion
using previously described criteria [5], to measure distance between
each nerve and the nearest tumor island, and to measure the area of
the nearest tumor island (Supplementary Figure S1C); (3) Tuj1
stained-sections were used to locate nerves; the proportion of staining
in each nerve was assessed relative to S100 and resulted in a ‘score’ of
less, equal or more than S100; (4) GAP43-stained sections were used
to compare staining of nerves relative to Tuj1 (less, equal or more).
Since specimens were de-identified, data were collected without
knowledge of demographics, treatment, or clinical outcome.

Statistics
Data collected were submitted to the cancer biostatistics group of

the HNSPORE for analysis. Data were stratified into patient-level
and nerve-level data, the first including tumor characteristics for each
patient and the second including information from the IHC stains for
each nerve. Patient-level data were tumor differentiation, worst
pattern of invasion, T stage, N stage, PNI (H&E) and PNI
(H&E + IHC) status. Nerve-level data included nerve area measured
in μm2, minimum nerve diameter measured in μm, distance between
nerve and nearest tumor island or single tumor cell measured in μm,
area of the nearest tumor island measured in μm2, information on
whether the nerve is stained by Tuj1 and S100, individual nerve
expression of GAP43 relative to Tuj1, and PNI status of each nerve as
positive or negative analyzed using all stains.
Descriptive statistics were calculated for patient-level and nerve-

level characteristics. Kaplan–Meier methods were used to estimate
Overall Survival (OS) and Disease-Specific Survival (DSS) proba-
bilities within groups defined by patient-level characteristics. The
time of diagnosis was used as the baseline when defining OS and
DSS. Regression tree methods based on the log-rank statistic were
used to identify potential thresholds of patient-level characteristics
related to differences in OS. Cox Regression modeling was used to
study the relationship between continuous patient-level character-
istics and OS.

The relationships between nerve-level characteristics and GAP43
staining relative to Tuj1 staining were explored using proportional
odds modeling. Weighted Cox regression modeling was used to study
the association between nerve-level characteristics and OS, where
nerves from each subject were weighted by the inverse of the number
of nerves observed for that subject. A Cox generalized additive model
was fitted using the penalized splines method to explore the shape of
the relationship between OS and the distance between the nerve and
the nearest tumor island. All analyses were conducted using R
package, version 3.3.0 (Vienna, Austria).

Results

PNI and Survival Analysis for Patient-Level Data
Descriptive statistics, including median survival time, OS, and

DSS for the 71 patients, are shown in Supplementary Table S1.
Recurrence events were not observed after ~20 months.

The histopathologic characteristics of the tumors are shown in
Table 1. Most tumors were moderately (38%) or well (46.4%)
differentiated and exhibited a worst pattern of invasion grades 2
through 4 (85.8%). Using current criteria (Figure 1, B–D), PNI was
observed in 16 (22.5%) patients by H&E. Assessment of PNI with
H&E + IHC increased detection to 24 (33.8%) patients (Table 1).
Subsequent results focus on PNI in the H&E + IHC group. Of the
patients without lymph node involvement, 11 had PNI and 30 did
not have PNI (Table 1). Of these 24 patients with PNI, 18 (75%) had
multifocal (two or more nerves affected) and 6 had unifocal (one
nerve affected) PNI (Supplementary Table S2).

In unadjusted logistic regression of PNI status, the odds of being
PNI-positive were greater for Stage III tumors than Stage I tumors
(OR 12.5; 95% CI [1.18, 133]). The odds of being PNI-positive in
T3 tumors were 7× that of T1 tumors (OR 7.0; 95% CI [1.04, 46.9])
and the odds of being PNI-positive in node-positive tumors were 2×
that of node-negative tumors, although not statistically significant
(OR 2.08; 95% CI [0.76, 5.66]) (Supplementary Table S3).

Worse OS was associated with PNI positivity, although not
significant (P = .098) (Figure 2A). Kaplan–Meier analysis for DSS
showed a similar trend in that the survival curve was lower for patients
with PNI than for those without PNI (Figure 2B).

Thirty of the 71 patients (42.2%) had lymph node involvement.
While lymph node metastasis was not associated with OS (P = .29;
Figure 2C), it was significantly related to DSS (log-rank P = .019;
Figure 2D). We investigated the association between PNI, lymph
node involvement and OS. Among patients with negative lymph
nodes (n = 41, 57.7%), the occurrence of PNI was associated with
poor OS (P = .057) (Figure 2E). The trend for DSS was similar
but not significant (P = .173) (Figure 2F), which supports that PNI is
a driver of survival among patients without lymph node involvement.
As expected, higher T-stage (clinically large tumors) correlated with
poor overall survival (Figure 2G, P = .021) whereas the worst pattern
of invasion was not associated with survival (Figure 2H, P = .80).

We recently showed that nerves and SCC are biochemically
committed to PNI prior to physical contact [14]. Therefore, we
investigated the correlation between nerve-cancer distance and
patient outcome regardless of the PNI status of the patient (Figure 3,
A–B illustrates PNI-negative cases with nerve and tumor in



Figure 1.Microscopic analysis of patients' samples. A: Schematic demonstrating whole tissue analysis. All nerves within 2 mm from the
tumor were considered for data collection. B-D: Representation of three different microscopic aspects of PNI observed by H&E,
Cytokeratin and S100. B: tumor cells infiltrating the nerve. C: Total encirclement of the nerve by tumor cells. D: At least 33% encirclement
of the nerve. Arrows point to tumor cells, asterisks indicate nerves. Scale bars = 500 μm.
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Figure 2. Kaplan–Meier survival plots for Overall Survival (OS) and Disease Specific Survival (DSS) related to PNI and other tumor
characteristics. A-B: PNI status graded by H&E + IHC. C-D: lymph nodemetastasis clinical status. E-F: Patients with negative lymph node
stratified by PNI status. Overall log-rank p-value for E is 0.145 and for F is 0.039. G: Tumor stage with patients stratified as T1 + T2 and
T3 + T4. H: Worst pattern of invasion (POI). The number of patients at risk for each group at each time point is shown below the plots.
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proximity). Regression tree methods were used to break the subjects
into two groups that were most different in terms of overall survival
with respect to values of a single covariate (based on the log-rank
statistic). When this tree was calculated based on minimum nerve-
tumor distance, a split was obtained at 5 μm. There were 38 subjects
with minimum distance greater than 5 μm and 32 subjects lower
than 5 μm. The tissue sections from one subject had no detectable
nerves. The Kaplan–Meier plot shows that patients with minimum
nerve-tumor distances less than 5 μm have poorer overall
survival (Figure 3C, P = .011). Notably, the survival curve
for the PNI-negative subjects with minimum nerve-tumor distance
≤5 μm appears similar to the PNI subjects (Figure 3D, red and green
lines).
PNI of large nerves (N1 mm in diameter) has been correlated with
local recurrence and poor OS [5]. Therefore, we investigated the
correlation between average nerve diameter and patient outcome.
The average nerve diameter regardless of PNI in 71 patients was 41
μm (Supplementary Table S2). Only 7 nerves in 5 of 71 patients
(7%) had a maximum nerve diameter greater than 1 mm (all PNI-
negative). Notably, in PNI-negative patients, nerve diameter is
significantly related to OS (unadjusted Cox modeling; HR 2.88, 95%
CI, [1.11, 7.49] P = .029), although it is not significantly
associated with OS in the adjusted regression method (adjusted for
T stage, age, and nerve-tumor distance). Moreover, PNI-negative
patients with maximum nerve diameter N80 μm had worse OS than
the subjects with maximum diameter ≤80 μm (Figure 3E, P = .015).

Image of Figure 2


Figure 3. Nerve-tumor distance and nerve diameter are associated with survival. A-B: Representation of nerves not classified as PNI by
the current definition, but with tumor cells in proximity to the nerve. C-E: Kaplan–Meier survival plots for Overall Survival. C: Patients
stratified by the minimum distance between nerve and tumor considering all measured nerves for each patient and using a 5 μm cut-off.
D: PNI negative patients split into two groups based on the same nerve-tumor distance cut-off as in C. E: PNI negative patients split into
two groups based on the maximum nerve diameter per patient, using a cut-off of 80 μm. The number of patients at risk for each group at
each time point is shown below the plots. Single arrows point the tumor cells, asterisks indicate nerves and double arrow indicates
distance. Scale bars = 100 μm (A) and 500 μm (B).
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As previously, tree-based methods were used to estimate the sample
split.

PNI and Survival Analysis For Nerve-Level Data
To better understand the impact of nerve characteristics on

patients' outcome, we performed a nerve-level set of analyses,
considering each nerve individually. The nerve-level characteristics of
2879 nerves (109 of these nerves had PNI) from 71 subjects observed
by S100 staining are shown in Supplementary Table S4. A Cox
generalized additive model with 4 degrees of freedom was fitted to
investigate the relationship between nerve-tumor distances of
individual nerves to death rate. The nerves were weighted by the
inverse of the number of nerves per patient since larger biopsy
specimens were associated with a higher number of observed nerves
per patient (positive correlation, R = 0.55). Similarly to the OS
patient-level analysis, this method showed that the estimated relative
death rate decreases as the nerve-tumor distance increases (relative to
distance = zero). The graph shows a gradual drop off in death rate
after value equal to zero that stabilizes around distance of 500 μm
(Figure 4).

The Cox regression adjusted modeling of OS using nerve-level data
demonstrated that among PNI-negative nerves (N = 2555), nerve-
tumor distance and nerve diameter were significantly related to OS
(HR 0.82, 95% CI [0.72, 0.92] with P = .001 and HR 1.27, 95%

Image of Figure 3


Figure 4. Nerve-tumor distance associates with patient death rate.
Modeling of nerve-tumor distance to relative death rate using nerve-
level data assuming individual nerves correlating to outcome (overall
survival) andweighting nerves by the inverse of the number of nerves
within a patient. The estimates are relative to distance equal to 0.

Table 3. GAP43 expression related to nerve characteristics of 2879 nerves measured

Proportional Odds Modeling of GAP43 staining relative to Tuj1 staining (more/equal/less)

Unadjusted OR [95% CI] Adjusted OR [95% CI]

Log(nerve-tumor distance) 0.79 [0.76, 0.82] 0.76 [0.73, 0.79]
Log(nerve diameter) 0.64 [0.55, 0.74] 0.56 [0.47, 0.66]
Log(area of adjacent tumor) 1.01 [0.98, 1.05] 1.02 [0.99, 1.06]

Values in bold indicate significance at the 0.05 level.
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CI, [1.00, 1.62] with P = .048 respectively), even when adjusted for
T stage and age (Table 2). This was not observed in the PNI-positive
nerves (N = 109).
While S100 detects Schwann cells in the nerve sheath, Tuj1 is a

specific marker for axons (class III β-tubulin protein) and GAP43
(growth associated protein 43) is a marker for neuronal outgrowth and
regeneration [18]. We showed previously that SCC promotes
neuritogenesis [14]. Therefore, we compared S100, Tuj1 and GAP43
staining (Table 3). Tuj1 staining was comparable to S100 in highlighting
nerves (Figure 5, A–C; top and middle panels). GAP43 staining was
graded relative to Tuj1 as less, equal or more stained (Figure 5, A–C;
bottom and middle panels). Boxplots showed GAP43 expression was
inversely correlated with distance between nerve and tumor (Figure 5D),
and was not associated with the area of the adjacent tumor (Figure 5E).
Additionally, adjusted proportional odds modeling of GAP43 indicated
that higher nerve-tumor distances and larger nerve diameters are
associated with lower relative staining of GAP43 compared to Tuj1
(OR 0.76, 95% CI [0.73, 0.79] and (OR 0.56, 95% CI [0.47, 0.66]),
respectively) (Table 3). Moreover, PNI positivity was associated with
higher relative staining of GAP43 compared to Tuj1 (Unadjusted
proportional odds regression, OR 2.15 95% CI [1.58, 2. 91]).
Table 2. Nerve-level modeling for Overall Survival (2879 nerves measured)

Cox Regression Modeling of Overall Survival using nerve-level data, by PNI status *

Among Nerves with PNI
HR [95% CI]

Among Nerves without PNI
HR [95% CI]

Log(nerve-tumor distance) 0.95 [0.76, 1.21] 0.82 [0.72, 0.92]
Log(nerve diameter) 1.08 [0.72, 1.60] 1.27 [1.00, 1.62]
T Stage
T1/2 (reference)
T3/4 1.65 [0.79, 3.46] 1.42 [0.95, 2.12]

Age 1.02 [0.97, 1.08] 1.02 [0.98, 1.06]

Values in bold indicate significance at the 0.05 level.
* From an adjusted model weighted by number of nerves per subjects and using a robust variance

estimator.
Discussion
Our findings suggest that nerve characteristics on the initial
diagnostic biopsy have an important role in the clinical outcome of
patients with oral cavity SCC with or without PNI. In patients
without PNI, larger nerve diameter and smaller distances between
nerves and tumor are associated with worse patient survival. Nerve-
tumor distance related to patient survival in patient-level and nerve-
level analyses, suggesting that the poor prognosis of patients with PNI
might not be entirely related to the presence of cancer within the
nerve, but also influenced by the molecular interactions prior to
invasion. This is the first study to explore the characteristics of both
PNI-positive and PNI-negative nerves in cancer using patient samples
linked to outcome. The findings could change the criteria for
histopathologic diagnosis of PNI in oral cavity SCC, and suggest that
the definition of PNI should be revisited.

Recent studies show that nerve-tumor crosstalk happens prior to
physical contact between tumor and nerve [14,16], suggesting that
the definitions of PNI based on nerve-tumor contact and invasion of
the nerve sheath layers do not entirely reflect the biological
mechanism. Although the biological mechanisms of PNI are
incompletely understood, nerves respond to the presence of tumor
both in vitro and in vivo [14–16,19], and a gradient of galanin, a
neuropeptide, secreted by both nerve and SCC promotes invasion of
cancer cells to the nerve and also stimulates neuritogenesis toward the
cancer cells [14]. Therefore, we investigated the extent to which
proximity rather than direct physical contact between nerves and
SCC impact patient outcome. In order to address this question, we
performed a comprehensive analysis, measuring every nerve within
a 2 mm radius from the nearest tumor island or tumor cell. Our
survival data suggest that patients with a minimum nerve-tumor
distance lower than 5 μm tend to survive less compared to patients
with minimum distance higher than 5 μm (Figure 3C). Patients with
PNI were included in the group with minimum distance lower than 5
μm, which may have contributed to poor outcome for the entire
group. However, PNI-negative subjects with closer distances behave
similarly to patients with PNI (Figure 3D), suggesting that cases not
classified as PNI in the current definition (Figure 3, A–B) may have a
similar negative association with survival. To verify if differences in
treatment were responsible for the poorer survival of PNI-negative
patients with closer nerve-tumor distances, we performed an OS
analysis separating patients by those who did and did not receive
adjuvant therapy (data not shown). Although PNI-negative patients
with closer distances had slightly worse survival when not receiving
adjuvant therapy, this analysis was not included in the results since
the confidence bands were large. Moreover, the number of patients in
each group was very small, not allowing for a multivariate analysis to
assess the impact of therapy in survival. Further validation with a
larger sample would possibly tease out the impact of treatment on
survival of PNI-negative patients. The 5 μm cut-off was derived from
regression tree analysis of nerve-tumor distances using patient survival

Image of Figure 4


Figure 5.GAP43 expression is related to nerve-tumor distance. A-C: Three different examples of Tuj1 staining, relative to S100 and GAP43
frommatched tissue sections. A: Tuj1 showing less staining compared to S100 and GAP43 expressing less staining compared to Tuj1. B:
Tuj1 showing less staining compared to S100 and GAP43 showing equal staining compared to Tuj1. C: Tuj1 showing less staining
compared to S100 and GAP43 showing more staining compared to Tuj1. D: GAP43 expression relative to Tuj1 decreases as the distance
between nerve and tumor increases. E: Area of the nearest tumor island has no impact on GAP43 expression relative to Tuj1. Nerves
stained in brown. Scale bars = 100 μm.
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as the variable. This number may change with variations in sample
size, and should not be considered a definitive cut-off. However,
our results suggest an association for nerve-tumor distances greater
than zero.
The nerve-level findings agreed with the patient-level findings

relative to an association with poor survival prior to physical contact
between the nerve and tumor. There was a decrease in death rate
when nerve-tumor distance increased, stabilizing at approximately
500 μm (Figure 4). This model suggests that the 500 μm distance
range is where most of the biochemical interactions between nerve
and tumor cells occur. Furthermore, the adjusted Cox modeling of
nerve level data showed an association between nerve-tumor distances
and survival in PNI-negative nerves, indicating that nerve-tumor
proximity might be related to worse OS for PNI-negative patients
(Table 2).
Nerve diameter was also associated with survival in the present

study, both in patient-level and nerve-level analyses. Previously,
Brandwein-Gensler et al. [5] and Aivazian et al. [20] showed that PNI
in nerves N1 mm in diameter is an important predictor of recurrence
and poor survival. In our sample only 7 nerves (5 patients) were larger
than 1 mm and all were PNI-negative. Therefore, we were unable to
assess nerve diameter using the 1 mm cut-off. However, since our
analysis included the diameter of virtually all nerves in the specimens,
we were able to investigate the impact of nerve diameter on survival of
patients with and without PNI. Notably, the regression model
suggests that the presence of larger nerves is associated with poorer OS
in PNI-negative subjects. We also showed that among PNI-negative
patients, a maximum nerve diameter N80 μm was associated with
poor survival. As with minimum nerve-tumor distance, 80 μm is not a
definitive cut-off for stratifying patient risk based on nerve diameter;
rather, the results can be interpreted as initial evidence of a relationship
between nerve diameter and clinical outcome in the absence of PNI.
The association between nerve diameter and outcomemay be explained
by mechanisms of nerve-tumor interaction. For example, larger nerves
could produce a steeper gradient of cytokines than smaller nerves,
causing a bigger impact on the behavior of cancer cells. Furthermore,
Magnon et al. [19] showed the dependence of tumor growth on nerves;
larger adjacent nerves may have a bigger impact on aggressive tumor
growth and poor survival. Further investigation of the impact of nerve
diameter in oral cavity SCC on patient survival in larger patient cohorts
would be important due to the impact on diagnostic interpretation
of biopsies.
Other PNI variables previously shown in association with worse

outcome such as multifocal PNI [20] and extratumoral PNI [21] were
also evaluated in this study, with no correlation with worse survival
(data not shown).
In SCC, there is large variability in the incidence of PNI reported

based on H&E staining; it has ranged from 6.1% when no clear
criteria were used to define PNI [22], to 71% using a broad PNI
definition [23]. S100 in conjunction with H&E increases PNI
detection [4,17]. Using the Liebig et al. definition [12] in the present
study, detection of PNI increased from 22.5% when using H&E
alone to 33.8% when adding IHC to the analysis. Other studies that
used Liebig's definition reported a similar incidence of 27.4% [8] to
29% [20]. Also using the same PNI criteria, Shen et al. [17] found a
stepwise increase in PNI rate in tongue tumors from 22% using
medical records, to 39% after re-evaluation of H&E slides, and to
51% after including S100 in the analysis. Regardless of tumor
characteristics and oral cavity sub-site, staining with S100 enhances
PNI detection possibly because it highlights small nerves embedded
in the tumor and also helps differentiate nerves from desmoplastic
stroma. Despite increased PNI detection with IHC, it is not clear
whether including IHC adds benefit for patient survival i.e., are small
nerves detected by IHC associated with poor survival as observed with
large nerves detected by H&E alone? Since IHC added only 8 PNI
patients, it is difficult to draw conclusions about the association of
PNI in small nerves with patients' outcome. Although it is possible
that small PNI-positive nerves do not associate with worse outcome in
the same manner as large PNI-positive nerves, this possibility is not
supported by our observation that nerve-tumor distance associates
with worse survival, an analysis that included small nerves. In fact, our
sample was mainly comprised of small nerves, suggesting that all
nerves are important for assessing prognosis. The other studies
looking at PNI by IHC did not address this issue [4,17].

The presence of PNI has been associated with poor prognosis in
oral cavity SCC [7,20,24–26]. However, comparing results from
different studies is challenging due to varying criteria for defining
PNI. For instance, some studies did not indicate how PNI was
defined and evaluated [7,24,27–30] whereas others defined PNI as
“infiltration of perineural space by tumor cells” [31]; “carcinoma
infiltrating along within a nerve” [32]; or “tumor cells found in the
perineural space or epineurium”, excluding cases where tumor cells
were not entering the perineural space [25]. Our data with well-
defined criteria supports that PNI positivity is associated with
poor prognosis, since OS and DSS tended to be poor in the presence
of PNI.

Lymph node involvement, particularly extracapsular spread, is
associated with poor survival in SCC [33]. Although in the present
study, lymph node involvement was associated with OS, this finding
was not statistically significant. However, node involvement was
significantly associated with DSS. Although an association between
PNI and lymph node status is reported in several patient series, this
was not verified in our cohort, which assessed the clinical node status.
Multiple studies reported PNI as an independent predictor of lymph
node recurrence [8,26,34–36], which is a leading cause of treatment
failure [37,38].

We also showed that among patients with no tumor in the lymph
nodes, the occurrence of PNI was associated with poor survival (P =
.057), suggesting that the presence of PNI is an important risk factor
for poor survival among patients with negative nodes. A similar
finding was reported previously in a larger cohort (88 patients) [7],
supporting that in the absence of lymph node metastasis, PNI status
could help predict poor outcome and determine adjuvant treatment
choice, such as the use of adjuvant radiation therapy [7]. When
assessing the pathological node status using excised lymph node
microscopic analysis, many others demonstrated that PNI is an
independent predictor of lymph node metastasis for SCC
[25,26,35,39] and that PNI patients should undergo elective neck
dissection to increase survival rates [26,29,35,40].

Since evaluation of PNI in the surgical specimen is detailed and
time-consuming, PNI might be under-reported in clinical practice.
Also, complete histological evaluation can only be performed after
surgical excision, but detecting PNI in the diagnostic biopsy, before
primary surgery, is the preferred situation to improve neck (lymph
node) management of patients. Using biopsy samples, our series of
multiple oral cavity sub-sites detected PNI in 33.8% of patients with
oral cavity SCC, a rate of detection comparable with the studies using
surgical specimens and the same definition [20,35,40]. This finding
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suggests that evaluation of PNI using S100 stain on diagnostic
biopsies could enhance detection of PNI during the diagnostic phase,
which may influence treatment planning for subsequent definitive
surgery. Patients with PNI could benefit from more aggressive
treatment at the time of the primary surgery. Due to challenges in
PNI detection, tumor thickness at the deepest site has been advocated
as a surrogate marker of PNI and nodal metastasis in clinical practice
[35], also facilitating the decision about elective neck dissection at the
time of surgical excision of the tumor excision.

Our approach to detection of PNI involved not only the use of
S100 but also Tuj1 antibody to stain nerves. Tuj1 was expressed in
nerves in all tumor samples but the staining pattern of the nerves was
slightly different from S100. Tuj1 showed a more delicate pattern of
expression, which is expected since S100 stains Schwann cells while
Tuj1 stains β-tubulin in the axons. However, 99% of nerves
expressing S100 were clearly detected by Tuj1, supporting the use of
Tuj1 or S100 to detect nerves.

GAP43 is a marker for neuronal outgrowth, more often studied in
the context of nerve regeneration [18,41,42]. Our results demonstrate
that the proportion of nerves stained by GAP43 is very high in SCC
samples. Nearly all nerves stained by Tuj1 were also detected by
GAP43. In the mouse skin, the majority of axons express GAP43
[43], which may be similar to the oral mucosa. Previous reports of
GAP43 expression in cancer samples were not identified.

GAP43 in SCC tended to be more prominent in nerves closer to
tumors. Furthermore, nerves with PNI had more proportional
GAP43 staining than PNI-negative nerves. These findings could be
interpreted as more intense nerve stimulation by tumor cells in
proximity to nerves, translating the previously described biological
mechanisms by which galanin or axon guidance molecules present in
the tumor environment appear to drive neuritogenesis [14,44,45].
This is the first study to address neuritogenesis in the context of SCC
using human clinical samples, linking nerve response to tumor
proximity. In prostate cancer, nerve density and the number of
ganglion neurons is increased when compared to normal prostate
tissue [44], and it is likely that nerves in other tumors might behave in
a similar way.

Nerve diameter was inversely related to the staining proportion of
GAP43, as larger diameter nerves expressed less GAP43 compared to
Tuj1. A subjective finding was that larger nerves consistently showed
less GAP43 expression in the inner part of the nerve and more
staining at the periphery, while smaller nerves stained evenly
throughout the nerve. We believe this pattern is consistent with
that expected for a marker of neuronal outgrowth, expressing more
activity where the neurites project, that is at the periphery of the
nerve.

Pre-treatment incisional biopsy specimens, which are smaller
samples than surgical resection specimens, enabled evaluation of all
nerves within 2 mm from nearest tumor cells. The study design was
robust in that it was limited to oral cavity SCC collected in a similar
time frame. Staining for each marker was performed sequentially and
slides were scanned upon completion. Digital scanning and analysis
enabled comprehensive data collection without concerns about loss of
staining intensity, a particular advantage in qualitative comparisons
between S100, Tuj1 and GAP43. Additionally, the samples were de-
identified allowing for unbiased analysis because statistical analysis
was performed by an independent group. However, some limitations
such as the relatively small sample size and the use of cut-offs based on
regression tree methods might impact the results. Further studies with
larger sample size are necessary to establish a risk model exploring the
relationship between nerve-tumor distance and nerve diameter with
clinical outcomes.

Taken together, our findings support mechanistic studies showing
that nerve-tumor crosstalk occurs prior to physical contact between
the cancer and nerve, and the hypothesis that nerve parameters in
addition to PNI status should be evaluated in histopathological
examination of SCC. Most importantly, nerve-tumor proximity and
larger nerve diameter seem to be related to worse survival, regardless
of the presence of PNI as currently defined. Furthermore, our clinical
findings indicate that the current definition of PNI and the
dichotomous categorization of patients into PNI-positive and
-negative might not be accurate enough to separate patients into
categories of more aggressive or indolent tumors, since nerve features
appear to be associated with patient outcome. Additional studies
would also help elucidate if a new definition of PNI or nerve
characteristics could be applied to multiple cancers or if tumor-
specific definitions should be developed based on the neurotropism of
each cancer.
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