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Abstract 10 

Immune cells undergo cytokine-driven polarization in respond to diverse stimuli. This process significantly 11 
modulates their transcriptional profiles and functional states. Although single-cell RNA sequencing (scRNA-seq) 12 
has advanced our understanding of immune responses across various diseases or conditions, currently there lacks 13 
a method to systematically examine cytokine effects and immune cell polarization. To address this gap, we 14 
developed Single-cell unified polarization assessment (Scupa), the first computational method for comprehensive 15 
immune cell polarization analysis. Scupa is trained on data from the Immune Dictionary, which characterizes 66 16 
cytokine-driven polarization states across 14 immune cell types. By leveraging the cell embeddings from the 17 
Universal Cell Embeddings model, Scupa effectively identifies polarized cells in new datasets generated from 18 
different species and experimental conditions. Applications of Scupa in independent datasets demonstrated its 19 
accuracy in classifying polarized cells and further revealed distinct polarization profiles in tumor-infiltrating 20 
myeloid cells across cancers. Scupa complements conventional single-cell data analysis by providing new insights 21 
into immune cell polarization, and it holds promise for assessing molecular effects or identifying therapeutic 22 
targets in cytokine-based therapies. 23 

 24 

Introduction 25 

Immune cells detect and respond to a variety of stimuli, ensuring the body can effectively combat infections and 26 
other environmental or biological threats. Cytokines as crucial signaling molecules that facilitate communication 27 
between immune cells. These cytokines can induce significant changes in the transcriptional profiles and 28 
functional states of immune cells, a phenomenon known as immune cell polarization1,2. Through polarization, 29 
immune cells adapt their responses to better address specific challenges, enhancing the overall effectiveness of the 30 
immune system. 31 

Recently, single-cell RNA sequencing (scRNA-seq) has been widely applied in immunological studies to 32 
investigate the responses of immune cells under various conditions. The production and response to cytokines, 33 
which play critical regulatory roles, have been extensively studied in numerous diseases, including COVID-193,4, 34 
rheumatoid arthritis5, and cancers6,7. Importantly, a recent study systematically characterized the responses of 14 35 
immune cell types to each of 86 cytokines and summarized the results as the Immune Dictionary8. A total of 66 36 
cytokine-driven cell polarization states were identified in that study, serving as a valuable reference for assessing 37 
immune cell polarization in other scRNA-seq studies.  38 

Currently, the investigation of immune cell polarization in scRNA-seq data is limited and there lacks consistent 39 
standards across studies. Most studies identified polarized cells based on the expression of certain signature genes 40 
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from previous findings. However, this empirical approach suffers from technical noises, such as dropout effect 41 
and batch effect9,10, as well as biological variations including tissue or disease variations. For example, many 42 
studies analyzed macrophage polarization using M1 and M2 signature genes, but there was no consensus in the 43 
signature gene lists and the expression of these genes varied by conditions11-13. To address this challenge, recent 44 
advances in single-cell foundation models offer unprecedented potential. These models were trained on vast 45 
amounts of scRNA-seq data with millions of cells across all the representative human organs and learned cell 46 
representations within a unified biological latent space14-16. As they have been successfully demonstrated in 47 
multiple downstream tasks like cell type annotation and batch correction, we hypothesized that single-cell 48 
foundation models could also effectively represent immune cell polarization. 49 

To facilitate the analysis of immune cell polarization in scRNA-seq data, we developed the method Scupa for 50 
Single-cell unified polarization assessment. After being trained on scRNA-seq data from the Immune Dictionary, 51 
Scupa learns the representations of immune cell polarization within the latent space of Universal Cell Embeddings 52 
(UCEs)16. As the first computational method for systematic immune cell polarization analysis, Scupa enables the 53 
assessment of individual cell polarization across various predefined cytokine-driven cell polarization states in any 54 
scRNA-seq dataset. 55 

 56 

Results 57 

Overview of Scupa framework and immune cell polarization states 58 

Immune cells undergo transcriptional and phenotypical changes in cytokine-driven polarization. Scupa uses the 59 
immune cell polarization states in the Immune Dictionary as the reference, and trains machine learning models to 60 
distinguish between polarized cells from cytokine-treated samples and unpolarized cells from phosphate buffered 61 
saline (PBS)-treated control samples. The specific polarized states of a cell type are usually driven by the specific 62 
cytokines, with each state exhibiting a unique transcriptional profile. Instead of relying on gene expression 63 
features, which can vary across species, tissues, and conditions, Scupa utilizes cell embeddings from the single-64 
cell foundation model UCE for assessing immune cell polarization16. We chose UCE over other single-cell 65 
foundation models because of its advantages in multiple-species compatibility, and ‘zero-shot’ capability without 66 
the need for additional fine-tuning. We further reduced the dimension of cell embeddings using principal 67 
component analysis (PCA), and trained support vector machine (SVM) models to classify polarized cells and 68 
unpolarized cells based on principal components (PCs). The models learned the representation of each polarized 69 
state in the latent space of UCEs, allowing for transferability to other datasets (Fig. 1a). We found that SVM 70 
outperformed several other machine learning models in this task (Supplementary Table 1).   71 

For any new scRNA-seq dataset containing immune cells presented in the Immune Dictionary, Scupa examines 72 
whether the cells have the similar transcriptional changes as reference polarized cells, thereby inferring their 73 
polarization states and received cytokines. The polarization of each cell is assessed based on its cell embeddings 74 
from UCE. The trained SVM models predict the polarization scores of each cell using the learned representation 75 
in the unified latent space of UCEs. According to the cell type, Scupa assigns a score to each individual cell for 76 
every polarization state, ranging from 0 (unpolarized) to 1 (fully polarized). Additionally, Scupa outputs a p-value 77 
by comparing the polarization score of a cell with the null distribution of polarization scores from the reference 78 
unpolarized cells, facilitating the identification of significantly polarized cells. Scupa is designed for integration 79 
into the widely used Seurat pipeline for comprehensive single-cell data analyses17, enabling the output scores and 80 
p-values to be readily visualized in multiple formats (Fig. 1a). 81 

Scupa supports the analysis of 66 polarization states in 14 immune cell types from the Immune Dictionary (Fig. 82 
1b, Supplementary Fig. 1). Among these states, the ‘a states’ of all cell types represent those driven by some type-83 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 19, 2024. ; https://doi.org/10.1101/2024.08.15.608093doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.15.608093
http://creativecommons.org/licenses/by-nc/4.0/


3 
 

I interferons (IFN-α1, IFN-β, IFN-ε, IFN-κ). The ‘b states’ represent those driven by IFN-γ and interleukins 84 
inducing IFN-γ expression (IL-2, IL-12, IL-15, IL-18). The ‘c states’ are for those driven by two proinflammatory 85 
cytokines IL-1α and IL-1β, and the ‘d states’ are mainly driven by TNF-α. In contrast, the driving cytokines of the 86 
‘e states’ and ‘f states’ in various cell types tend to vary. Identification of polarized cells using Scupa suggests the 87 
potential presence of one or more driving cytokines in the tissue, thereby facilitating the understanding of immune 88 
cell environment, communication and response in scRNA-seq data. 89 

Scupa learns the representation of cell polarization in various immune cell types 90 

Cytokines are key regulators of intracellular signaling and gene expression, acting as messengers that mediate and 91 
modulate immune responses. They activate signaling cascades that lead to the phosphorylation and activation of 92 
various transcription factors, which then translocate to the nucleus to modulate the transcription of genes. 93 
Consequently, the cytokine-driven immune cell polarization states are characterized by unique transcriptional 94 
profiles8. UCE can effectively capture these transcriptional changes and represent them as variations in cell 95 
embeddings. For example, we found that the CD8+ T cells treated with driving cytokines of each polarization state 96 
tended to have cell embeddings shifting away from the unpolarized cells, as visualized by uniform manifold 97 
approximation and projection (UMAP, Fig. 2a). By filtering cells based on cosine similarity and the expression of 98 
top marker genes, we obtained fully polarized cells in each state, which displayed distinctly different cell 99 
embedding distributions from unpolarized cells (Fig. 2b).  100 

For each polarization state, we trained an SVM model to classify polarized cells and unpolarized cells, and 101 
quantified the polarization using a score derived from the trained models. With this approach, the gradients of 102 
polarization scores in the unified cell embedding space represent the directions of cell polarization (Fig. 2c). 103 
Among all CD8+ T cells, we found that the polarization scores of some states are highly correlated (Fig. 2d). For 104 
example, the Spearman correlation coefficient between T8-e and T8-f state scores is 0.96. This indicates a high 105 
similarity in transcriptional changes between these two states, which aligns with the findings in the original 106 
study8. We then calculated the p-values for each polarization state by comparing the polarization scores with the 107 
distribution of scores from unpolarized cells. This metrics is useful because the commonly applied p-value 108 
threshold of 0.05 can serve as a good criterion for identifying fully polarized cells across most polarization states 109 
(Fig. 2e). Importantly, in addition to CD8+ T cells, we observed similar patterns of polarization scores and p-110 
values across all other 13 cell types and 61 polarization states. This demonstrated that Scupa could effectively 111 
learn the representation of all polarization states in the unified cell embedding space (Supplementary Figs. 2-14). 112 

Next, we evaluated the performance of Scupa across all polarization states. Using a random 70% of the data for 113 
training and the remaining 30% for testing, we repeated this process 20 times and calculated the area under  the 114 
receiver operating characteristic curve (AUROC) for testing set. The median AUROC values were above 0.95 in 115 
56 out of the 66 polarization states (Fig. 2f). For polarization states with lower performance, such as Neu-e 116 
(AUROC = 0.836), the primary factor was the insufficient number of cells leading to poor model fitting 117 
(Supplementary Fig. 15). Overall, Scupa achieves superior performance in learning the representations of 118 
polarization states in scRNA-seq data. 119 

Scupa characterizes cytokine-driven immune cell polarization in both in vitro and in vivo datasets 120 

To evaluate Scupa’s performance in independent datasets, we collected two scRNA-seq datasets generated from 121 
cytokine-treated samples. The first dataset comprises human peripheral blood mononuclear cell (PBMC) samples 122 
treated with IFN-β or left untreated in vitro18. IFN-β treatment dramatically induces the transcription of interferon-123 
stimulated genes, causing the cell embeddings of treated cells to diverge significantly from those of untreated 124 
cells across all immune cell types (Fig. 3a). We applied Scupa to analyze the immune cell polarization in this 125 
dataset. Considering that IFN-β is the driving cytokine of -a states in all immune cell types (Fig. 1b), we 126 
examined the polarization scores of these states. We found that all cells from the IFN-β-treated sample had 127 
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polarization scores close to 1, while those cells from the untreated sample had scores close to 0. This clearly 128 
indicates a tremendous difference (Fig. 3b). Additionally, nearly all cells from the IFN-β-treated sample had 129 
polarization p-values below 0.05, whereas those cells from the untreated sample had p-values above 0.05 (Fig. 3c, 130 
Supplementary Fig. 16). The ROC curves further confirmed the near-perfect performance of using polarization 131 
scores to classify cells from treated and untreated samples, with AUROCs above 0.99 across all cell types (Fig. 132 
3d). Importantly, although Scupa was trained on mouse scRNA-seq data, it demonstrated excellent performance 133 
on this human scRNA-seq data without any adaptation, suggesting that Scupa learned unified representations of 134 
immune cell polarization across species. 135 

In the second study, the mice chronically infected with lymphocytic choriomeningitis virus (LCMV) were treated 136 
with IL-2, anti-PD-L1, or a combination therapy19. The virus-specific CD8+ T cells from the mouse spleen were 137 
sorted for scRNA-seq. We clustered cells from three treatment groups and control group using UCE cell 138 
embeddings (Fig. 3e), and applied Scupa to analyze the CD8+ T cell polarization in this dataset. As IL-2 is the 139 
driving cytokine for two polarization states, T8-b and T8-e, we examined the polarization scores and p-values of 140 
these two states (Fig. 3f, g). A small number of cells were polarized to T8-b state and enriched in cluster 3, while 141 
more cells were polarized to T8-e state and enriched in cluster 2. To verify the two polarization states with shared 142 
driving cytokines, we examined the expression of polarization state marker genes identified in the Immune 143 
Dictionary8. We found that the expression of some marker genes correlated with polarization scores, such as Stat1 144 
with T8-b scores and Ptma with T8-e scores. This result suggested that Scupa could distinguish these two 145 
polarization states. On the other hand, we observed the ubiquitous high or low expression of some marker genes 146 
(e.g.,  Igtp, Gbp4, Ncl, and Npm1) in all CD8+ T cells, highlighted the variability of gene expression in different 147 
datasets (Fig. 3h, i). Therefore, the feature of independence on marker genes in Scupa makes it more applicable to 148 
various scRNA-seq data from diverse sources. 149 

Since IL-2 was administrated in vivo, it was likely that only a subset of spleen T cells were polarized by IL-2, 150 
while other T cells were polarized by different cytokines or remained unpolarized. To analyze the effect of IL-2 151 
treatment, we compared the percentage of cells with significant T8-e polarization (polarization p-value<0.05) 152 
among groups. This percentage significantly increased in the IL-2 treatment group when compared to the control 153 
group (p<0.0001), and increased in the combination therapy treatment group when compared to the anti-PD-L1 154 
treatment group (p<0.001, Fig. 3j). We also compared the percentage of cells in cluster 2, which was highly 155 
enriched with the cells polarized to T8-e state. Similar increase was observed with IL-2 treatment (Fig. 3j), 156 
confirming the CD8+ T cell polarization to IL-2 driving polarization states. 157 

As above, Scupa was validated using scRNA-seq datasets generated from both in vitro and in vivo samples. It 158 
superbly classified stimulated and unstimulated cells from in vitro samples, and also revealed the increases of cell 159 
polarized to a cytokine-driving polarization state in in vivo samples. 160 

Scupa reveals polarization states and proinflammatory responses of myeloid cells across cancer types 161 

Myeloid cells play a crucial role in the tumor microenvironment, influencing cancer progression and response to 162 
therapy. These cells, which include macrophages, monocytes, dendritic cells (DCs), and neutrophils, can exhibit 163 
either pro-tumor or anti-tumor functions depending on their polarization state and the cytokine milieu20,21. 164 
Understanding the dual roles of myeloid cells in cancers is essential for developing therapeutic strategies that 165 
modulate their function to inhibit tumor progression and improve patient outcomes. In order to systematically 166 
analyze the myeloid cell polarization in multiple cancer types, we applied Scupa to a pan-cancer single-cell atlas 167 
of tumor infiltrating myeloid cell dataset11. 168 

We first revisited the macrophage polarization using Scupa as it has been extensively investigated in cancer 169 
research22. We calculated the polarization scores of five polarization states for all macrophage clusters and 170 
compared these scores across seven cancer types. Among the five states, Mac-b, Mac-c, and Mac-d are all M1-171 
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like states driven by proinflammatory cytokines, while Mac-e is a M2-like state driven by cytokines that induce 172 
M2 polarization (Fig. 1b)2. Several macrophage clusters displayed consistent polarization profiles across cancer 173 
types. C1QC+ and LYVE1+ macrophages generally had low polarization scores of all polarization states, indicating 174 
that they were mainly unpolarized. ISG15+ macrophages generally had high Mac-a, Mac-b, Mac-c, and Mac-d 175 
polarization scores, suggesting that they were primarily polarized by type-I interferons and proinflammatory 176 
cytokines. NLRP3+ and INHBA+ macrophages also had high Mac-b, Mac-c, and Mac-d scores. This might indicate 177 
polarization by proinflammatory cytokines. In particular, SPP1+ macrophages showed significant variation across 178 
these cancer types. They had highest Mac-e polarization scores in thyroid carcinoma (THCA), but had much 179 
lower scores in pancreatic adenocarcinoma (PAAD) or uterine corpus endometrial carcinoma (UCEC). When 180 
comparing macrophage polarization in different cancer types, we found that PAAD and kidney cancer had the 181 
lowest overall polarization scores in all polarization states. This is potentially due to lower cytokine production in 182 
these tumors (Fig. 4a). 183 

Next, we analyzed the relationship between polarization scores of macrophage polarization states and the 184 
expression of M1 and M2 signature genes11. The mean expression of M1 signature genes was positively 185 
correlated with Mac-b, Mac-c, and Mac-d polarization scores across all cancer types. In contrast, there was no 186 
consistent correlation between the mean expression of M2 signature genes and Mac-e polarization scores (Fig. 187 
4b). This lack of correlation was likely attributed to the observation of that the M2 signature genes did not overlap 188 
with the Mac-e marker genes from the Immune Dictionary, thus resulting in strong variation in different studies. 189 
Additionally, we included angiogenesis and phagocytosis signature genes in the correlation analysis11. The mean 190 
expression of angiogenesis signature genes was moderately positively correlated with Mac-b (Spearman’s 191 
correlation coefficient ρ=0.22), Mac-c (ρ=0.42), Mac-d (ρ=0.35), and Mac-e (ρ=0.35) polarization scores, 192 
highlighting macrophages’ simultaneous contributions to inflammation and angiogenesis23. Conversely, the mean 193 
expression of phagocytosis signature genes was negatively correlated with polarization scores of all polarization 194 
states, suggesting that phagocytotic macrophages were generally less polarized by cytokines (Fig. 4c). 195 
Considering the high correlation between Mac-b, Mac-c, and Mac-d polarization scores, and proinflammatory 196 
cytokines as driving cytokines for these states, we defined a macrophage proinflammatory state score as the 197 
maximum of these three scores in each single cell. This score summarizes macrophage proinflammatory 198 
polarization and its distribution indicates the proinflammatory activity in different cancers. We found that 199 
lymphoma (LYM) was characterized with the highest overall proinflammatory scores, followed by THCA and 200 
esophageal carcinoma (ESCA). PAAD and kidney cancer exhibited the lowest overall proinflammatory scores 201 
(Fig. 4d). 202 

In addition to macrophages, we examined the polarization of monocytes and different DC populations. These cell 203 
populations displayed stronger variation in polarization across cancer types than macrophages (Fig. 4e, f). In 204 
LYM, CD14+ monocytes, CD16+ monocytes, cDC2, and pDCs had high polarization scores of all polarization 205 
states, supporting the strong effect and important role of multiple cytokines in the cancer24. In ESCA, UCEC, and 206 
THCA, monocytes, cDC1, and pDCs were also polarized to multiple states. Notably, the overall polarization of 207 
macrophages, monocytes, and DCs showed a consistent trend in all seven cancer types. All these myeloid cell 208 
populations were more polarized in LYM, THCA, UCEC, and THCA, but less polarized in PAAD, LYE, and 209 
kidney cancer. This trend likely reflects the variation in cytokine milieu in the tumor microenvironment of these 210 
cancer types (Fig. 4d, e, f). Taken together, these results indicated the distinct cytokine environments, myeloid 211 
cell polarization patterns, and proinflammatory responses in different cancers, demonstrating Scupa’s capability 212 
to complement the conventional scRNA-seq analysis with unique cell polarization analysis. 213 

 214 

Discussion 215 
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In this study, we introduce Scupa, the first computational method designed to assess immune cell polarization 216 
from scRNA-seq data. Scupa is design to complement to the conventional scRNA-seq analysis pipelines by 217 
providing additional perspectives in the cytokine environment and immune cell polarization. The method 218 
leverages the recently released Immune Dictionary, which systematically characterized the responses of 14 219 
immune cell types to 86 cytokines and then identified 66 cytokine-driven polarization states. Unlike traditional 220 
approaches that rely on predefined signature genes, Scupa utilizes cell embeddings from the single-cell foundation 221 
model, Universal Cell Embeddings, to capture the nuanced transcriptional changes associated with different 222 
polarization states. Our results clearly indicated that Scupa could effectively classify polarized and unpolarized 223 
cells by training machine learning models on cell embeddings. The method was validated using independent 224 
datasets, including human PBMCs treated with IFN-β and CD8+ T cells from mice spleen treated with IL-2 and 225 
anti-PD-L1. Scupa accurately identified polarized cells and revealed the cytokine-driven polarization states within 226 
these datasets. With UCE’s multiple-species compatibility, even though our method was trained on the mouse 227 
data of Immune Dictionary, it could effectively be applied to human dataset without additional fine tuning. While 228 
this needs further evaluation, it suggested the robustness of our model across species. 229 

Additionally, we apply Scupa to a pan-cancer single-cell atlas to investigate the polarization of myeloid cells 230 
across seven cancer types. The analysis reveals distinct polarization profiles and proinflammatory responses in 231 
macrophages, monocytes, and DC populations. Notably, LYM, THCA, UCEC exhibit higher polarization scores 232 
when compared to PAAD, LYE, and kidney cancer, reflecting distinct cytokine environments in different cancer 233 
types. 234 

Macrophage polarization has been one of the top research interests in immunology due to its significant role in 235 
health and disease. Traditionally, macrophages have been categorized into two main polarization states. The first 236 
state is M1, or classically activated macrophages that are induced by proinflammatory cytokines like IFN-γ and 237 
TNF-α. These macrophages are associated with antimicrobial and tumoricidal activities. The second state is M2, 238 
or alternatively activated macrophages that are stimulated by cytokines such as IL-4 and IL-13. These 239 
macrophages are involved in tissue repair and immune regulation2,22. However, this dichotomous classification 240 
has been increasingly recognized as an oversimplification, with emerging evidence suggesting a spectrum of 241 
intermediate states influenced by a variety of cytokines and environmental cues25. In many scRNA-seq studies, 242 
the lack of consistent marker genes and standards further makes the polarization inference arbitrary. Scupa 243 
provides a signature gene-free approach for analyzing macrophage polarization to five cytokine-driving states. 244 
Using Scupa, we identified the C1QC+ or LYVE1+ unpolarized macrophage subpopulations and multiple 245 
macrophage subpopulations polarized to M1-like polarization states. Of note, Scupa analysis revealed SPP1+ 246 
macrophages polarized to Mac-e state, a M2-like polarization state, suggesting its pro-tumor roles. This result was 247 
further supported by previous findings that the worse clinical outcomes were associated with higher SPP1 248 
expression11. 249 

Cytokine therapies have emerged as a powerful strategy for treating various diseases, leveraging the potent 250 
regulatory effects of cytokines to modulate immune responses and target disease processes. These therapies 251 
harness the ability of cytokines to influence cellular behavior, enhancing or suppressing immune responses as 252 
needed. For instance, cytokines such as interferons have been used to treat viral infections and certain cancer 253 
types26,27, while interleukins have shown promise in enhancing immune responses in cancer immunotherapy19,28. 254 
Scupa’s ability to systematically assess immune cell polarization based on scRNA-seq data offers a valuable tool 255 
for assessing the molecular effects of cytokine therapies (Fig. 3e-k). By evaluating how cytokine treatments 256 
impact the polarization and functional states of immune cells, Scupa can provide insights into the therapeutic 257 
mechanisms at a granular level. It also holds the potential to identify therapeutic targets for cytokine therapies, 258 
facilitating the development and optimization of cytokine-based treatments. 259 
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There are some limitations in this work. First, there lacks high-quality experimentally generated immune cell 260 
polarization states. Although we included all predefined polarization states from the Immune Dictionary, there 261 
may be additional, unidentified polarization states due to the constraints of experimental design. For example, 262 
some chemokines have been found to induce macrophage polarization29,30, but the chemokine family was not 263 
included in the Immune Dictionary. Second, there are noncytokine pathways of immune cell polarization, such as 264 
hypoxia and lactate for macrophage polarization31,32. Identification of new immune cell polarization states will 265 
require further investigations comparable to the Immune Dictionary, and necessary immunological expertise. 266 
Such data has not been available yet, but Scupa can be updated to include newly identified polarization states in 267 
future studies. Third, while Scupa has been demonstrated robust in identifying polarization and states in both mice 268 
and humans, more evaluation will be needed to enhance the models across species.  269 

In conclusion, we introduced Scupa, the first method for comprehensive immune cell polarization assessment 270 
using scRNA-seq data. It is broadly appliable to the studies of various diseases involving immune cell populations 271 
and is particularly useful in contexts where cytokines play important roles in disease pathogenesis, progression, 272 
and treatment. 273 

 274 

Methods 275 

Generating cell embeddings using UCE and dimension reduction 276 

We used single-cell foundation model, Universal Cell Embeddings (https://github.com/snap-stanford/UCE), to 277 
generate cell embeddings for all scRNA-seq datasets used in this study. The pretrained 4-layer model was 278 
employed with a batch size of 50. The UCE cell embeddings are 1,280-dimensional, representing cells in the 279 
unified latent space. However, this high dimensionality poses challenges for training machine learning models on 280 
most polarization states with a limited number of cells. 281 

To address this issue, we performed PCA to reduce the dimensionality of UCE cell embeddings for each cell type. 282 
Principal components (PCs) are linear combinations of vector bases in the cell embedding space, with the top PCs 283 
representing directions with the largest variation for that cell type. By default, Scupa uses the first 20 PCs as 284 
features for machine learning training and prediction. Additionally, we generated two-dimensional UMAPs using 285 
the first 20 PCs for data visualization. 286 

Identifying fully polarized cells in the Immune Dictionary 287 

According to both our analysis and the original study8, only a subset of immune cells were polarized after 288 
cytokine treatment in the in vivo experiments. This was likely due to variable cytokine concentration, receptor 289 
expression, and cellular status of different cells. The cell embeddings of some cells from cytokine-treated samples 290 
were closer to those of unpolarized cells from the PBS-treated samples than other cells from cytokine-treated 291 
samples, likely suggesting an unpolarized state or mildly polarization state (Fig. 2e, Supplementary Fig. 2-14). 292 
Therefore, we first identified fully polarized cells of each polarization state for training machine learning models. 293 

We identified the fully polarized cells of each polarization state based on following three criteria. 1) The cell is 294 
from a sample treated with one of the driving cytokines. 2) The mean expression of top marker genes of the 295 
polarization in the cell is higher than that of most other cells. 3) The UCE cell embeddings of the cell are similar 296 
to those of the other cells from the samples treated with driving cytokines. 297 

For criterion 2, we used a consistent threshold of the 90th quantile, i.e., the mean expression of top marker genes 298 
in the cell was required to be higher than that in 90% cells of the same cell type. For criterion 3, we found that the 299 
UCE cell embeddings of all cells of the same cell type were highly correlated and, thus, not informative for 300 
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identifying fully polarized cells. To overcome this issue, we calculated the ‘embedding shift’ as the vector 301 
difference between the cell embedding of each cell and the cell embedding of unpolarized cell center, which 302 
represented the cell embedding change from the unpolarized state. We then calculated the cosine similarity 303 
between the embedding shift of each cell with the rest cells from the samples treated with driving cytokines. Fully 304 
polarized cells had to secure a minimum mean cosine similarity, ranging from 0.08 to 0.2 among different cell 305 
types. Those cells that satisfied with all criteria were considered fully polarized cells and  then were used for 306 
training machine learning models alongside unpolarized cells from PBS-treated samples. 307 

Training and testing machine learning models 308 

When training machine learning models to classify unpolarized cells and polarized cells, we tested several models 309 
including: 1) logistic regression using the ‘glm’ function from R package ‘stats’, 2) SVM using the ‘svm’ function 310 
from R package ‘e1071’, 3) random forest using the ‘randomForest’ function from R package ‘randomForest’, 311 
and 4) semi-supervised learning approach. For each cell type, 70% cells were randomly selected for training and 312 
the remaining 30% for testing. During training, unpolarized cells were labeled with a polarization score of 0, 313 
while the fully polarized cells identified in the previous step were labeled with a polarization score of 1. For 314 
binary classification models, the predicted probability to the fully polarized state was used as the polarization 315 
score. For regression models, the output prediction was clamped to a range of 0 to 1 and used as the polarization 316 
score. We repeated the training and testing for 20 times and calculated the mean AUROC values for each machine 317 
learning model. SVM showed the best performance with the highest mean AUROC values across all polarization 318 
states. The final SVM models in Scupa were trained using the ‘svm’ function from R package ‘e1071’, with a 319 
linear kernel and eps-regression type33.  320 

For the semi-supervised learning approach, we included the cells from the samples treated with cytokines other 321 
than the polarization state-driving cytokines as unlabeled data. We first trained supervised machine learning 322 
models (logistic regression, SVM, random forest) on labeled data: unpolarized cells and fully polarized cells from 323 
the previous step. The trained models were then used to classify unlabeled cells as either unpolarized or polarized. 324 
In the end, the final machine learning models were trained on the combined data from initial identification and 325 
following prediction. In our comparison of the testing results from supervised models with semi-supervised 326 
models, we found that the semi-supervised models generally had slight worse performance compared to the 327 
corresponding supervised models, despite that they improved the performance on some polarization states with 328 
small cell numbers (Supplementary Table 1). Therefore, we did not used the trained semi-supervised models for 329 
prediction in the Scupa package. 330 

Estimating statistical significance of polarization 331 

When calculating the p-value of a cell for being polarized to a polarization state, we set the null hypothesis as H0: 332 
the observed cell is an unpolarized cell, and the alternative hypothesis as H1: the observed cell is a polarized cell. 333 
The polarization score serves as the test statistic. We used the polarization score distribution from unpolarized 334 
cells of a specific cell type in the Immune Dictionary as the null distribution. The p-value is calculated as the 335 
probability of obtaining a polarization score equal or greater than the observed polarization score from the null 336 
distribution. This hypothesis testing is a non-parametric, with no assumptions about the cell embedding 337 
distributions of the input dataset.  338 

Scupa adjusts the p-values using the Benjamini-Hochberg procedure for the input dataset. We found that both 339 
unadjusted p-values and adjusted p-values accurately classified polarized cells in the samples from in vitro 340 
experiments (Supplementary Fig. 16). However, there were significantly fewer cells with adjusted p-values <0.05 341 
in the samples from in vivo experiments. This discrepancy is likely due to varying extents of immune cell 342 
polarization across different studies, and possibly more dynamic natures in the living cells. Multiple experimental 343 
factors can influence the cytokine concentration in the tissue, thereby affecting the extent of immune cell 344 
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polarization. Consequently, using a stringent adjusted p-value threshold for identifying fully polarized cells would 345 
result in few positive cells if cytokine concentration were low.  Based on our analysis of four datasets included in 346 
this study, it is recommended to use unadjusted p-values<0.05 for identifying polarized cells in the samples from 347 
in vivo experiments. 348 

Cross-dataset batch effect correction 349 

As a single-cell foundation model, UCE is robust to dataset and batch-specific artifacts, though cross-dataset 350 
batch effects may still persist between the Immune Dictionary and other datasets. To enhance Scupa’s 351 
transferability to diverse datasets, we provide a straightforward and effective approach for cross-dataset batch 352 
effect correction. UCE’s capability allows us to represent cross-dataset batch effects as the difference in 353 
unpolarized cell embeddings between two datasets. When there are untreated control and treated samples, cells 354 
from the control samples could be specified as unpolarized cells. Scupa first calculates the center of reference 355 

unpolarized cells’ UCE cell embeddings 𝒄𝑟𝑒𝑓, and the center of input unpolarized cells’ UCE cell embeddings 356 

𝒄𝑖𝑛. For a cell k with UCE cell embeddings (𝒆𝒎𝒃𝑘,𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙) from the input dataset, its cell embeddings are 357 

adjusted to: 358 

𝒆𝒎𝒃𝑘,𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 𝒆𝒎𝒃𝑘,𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 − 𝒄𝑖𝑛 + 𝒄𝑟𝑒𝑓 359 

This adjustment allows the learned representations of immune cell polarization to be applied to the adjusted cell 360 
embeddings, bypassing complicated data integration processes and thus, preserving polarization information that 361 
might be lost with scRNA-seq data integration methods34,35. In the Scupa package, we implement this batch effect 362 
correction approach and provide an optional parameter for users to specify unpolarized cells in the input dataset, 363 
suitable for experimental designs with untreated healthy controls. 364 

Regarding the two cytokine treatment datasets in Scupa evaluation, we used this batch effect correction approach 365 
when analyzing immune cell polarization. In the IFN-β treated human PBMC scRNA-seq dataset, the cells from 366 
the untreated sample were specified as unpolarized cells. Similarly, in the IL-2 treated mouse spleen scRNA-seq 367 
dataset, the cells from the untreated mouse were specified as unpolarized cells. We found only slight differences 368 
in the polarization analysis results when specifying unpolarized cells or not in both datasets. This evaluation 369 
indicated the robustness of UCE and Scupa to cross-dataset batch effect correction. For the pan-cancer myeloid 370 
cell dataset, we did not indicate unpolarized cells due to the absence of an untreated healthy control sample in the 371 
dataset. 372 

Statistical analysis 373 

The calculation of p-values and adjusted p-values in Scupa is described in subsection “Deriving statistical 374 
significance of polarization” above. When comparing the cell proportions between two conditions in the IL-2 375 
treated mouse spleen scRNA-seq dataset, we used two-sided Fisher exact test. All statistical analyses were 376 
performed in R (v 4.1.3). 377 

Data availability 378 

All data used in the study are from published studies. The Immune Dictionary scRNA-seq dataset was 379 

downloaded from Single Cell Portal (https://singlecell.broadinstitute.org/single_cell/study/SCP2554/). The IFN-β 380 

treated human PBMC scRNA-seq dataset with cell type annotation was downloaded using SeuratData 381 
(https://github.com/satijalab/seurat-data). The rest datasets were downloaded from Gene Expression Omnibus 382 
(GEO) database with following accession numbers: IL-2 treated mouse spleen scRNA-seq dataset (GEO206732) 383 
and pan-cancer infiltrating myeloid cell scRNA-seq data (GSE154763). The processed datasets with generated 384 
UCE cell embeddings are available at https://zenodo.org/doi/10.5281/zenodo.13312248. 385 
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Code availability 386 

Scupa is available as a R package. The source code and vignettes of Scupa are freely available at 387 
https://github.com/bsml320/Scupa. The code for generating the results is available at 388 
https://zenodo.org/doi/10.5281/zenodo.13312248. 389 
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 404 

Fig. 1. The framework of Scupa and cytokine-driven cell polarization states. a. Scupa uses the Immune 405 
Dictionary as the reference and training set for measuring immune cell polarization. Major immune cell 406 
polarization states were defined in the Immune Dictionary according to driving cytokines and top marker genes. 407 
Universal Cell Embeddings (UCEs) were generated for the Immune Dictionary and any new scRNA-seq dataset 408 
for Scupa. Scupa trained support vector machine (SVM) models for various cell polarization states using the 409 
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Immune Dictionary, and then it applies the trained models to predict polarization in a new dataset. It outputs the 410 
polarization score and p-value for each individual cell. Created with BioRender.com. b. A network showing the 411 
driving cytokines and immune cell polarization states. 412 

 413 

 414 

Fig. 2. Scupa learns the representation of polarization states in CD8+ T cells and other cells. a. Uniform 415 
manifold approximation and projection (UMAP) plots showing CD8+ T cells from the samples treated with 416 
driving cytokines of each polarization state or from the control samples treated with PBS. UMAPs are derived 417 
from UCE cell embeddings rather than gene expression. b. UMAP plot showing the distribution of fully polarized 418 
cells of each polarization state after filtering. c. UMAP plots showing polarization scores of each polarization 419 
state from Scupa prediction. d. The Spearman correlation coefficients between polarization scores from each two 420 
polarization states. e. The polarization scores and p-values of fully polarized cells of each polarization state and 421 
unpolarized cells. The red dashed line indicates p-value=0.05. f. Box plots showing the testing AUROC values in 422 
20 repeats across all polarization states. 423 

 424 
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 425 

Fig. 3. Validation of Scupa in in vitro and in vivo datasets. a. UMAP plots showing the immune cells from the 426 

control and IFN-β-stimulated samples. UMAPs are derived from UCE cell embeddings rather than gene 427 

expression. Ctrl: untreated control sample. Stim: interferon-stimulated sample. b. UMAP plots showing the 428 

polarization scores in different immune cell types. The cells from IFN-β-stimulated samples generally had much 429 

higher scores. c. UMAP plots showing the polarization p-values in different immune cell types. The cells from 430 

IFN-β-stimulated samples generally had much lower p-values. d. ROC curves showing the superior performance 431 

of polarization scores for classifying immune cells from the control and IFN-β-stimulated samples. e. UMAP 432 

plots showing CD8+ T cells in different clusters and treatment groups. f. UMAP plots showing polarization scores 433 
of two IL-2-driving states, T8-b and T8-e. g. UMAP plots showing polarization p-values of two IL-2-driving 434 
states. h. The expression level of five T8-b marker genes. i. The expression level of five T8-e marker genes. j. The 435 
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percentage of cells with T8-e polarization p-value<0.05 among different treatment groups. k. The percentage of 436 
cells in cluster 2 among different treatment groups. ***: p<0.001. ****: p<0.0001. 437 

 438 

 439 

Fig. 4. Comparison of the polarization states of infiltrating myeloid cells across seven cancer types by 440 
Scupa. a. The mean polarization scores in different macrophage subpopulations from different cancer types. 441 
Polarization scores are scaled across cancer types. b. The polarization scores of macrophage states Mac-b, Mac-c, 442 
and Mac-d were positively correlated with M1 signature gene expression. In contrast, the polarization scores of 443 
macrophage state Mac-e were not positively correlated with M2 signature gene expression. c. The correlation 444 
between macrophage state polarization scores, M1 signature gene expression, M2 signature gene expression, 445 
angiogenesis signature gene expression, and phagocytosis signature gene expression in all macrophages. d. LYM 446 
macrophages displays overall highest proinflammatory state scores. e. The mean polarization scores in different 447 
monocyte subpopulations from seven cancer types. f. The mean polarization scores in different DC 448 
subpopulations from seven cancer types. ESCA: esophageal carcinoma, KIDNEY: kidney cancer, LYM: 449 
lymphoma, MYE: myeloma, PAAD: pancreatic adenocarcinoma, THCA: thyroid carcinoma, UCEC: uterine 450 
corpus endometrial carcinoma.  451 
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